

THE ART OF 64-BIT ASSEMBLY, VOLUME 1

San Francisco

T H E A R T
O F 6 4 - B I T
A S S E M B LY

Vo l u m e 1

x 8 6 - 6 4 M a c h i n e
O r g a n i z a t i o n a n d

P r o g r a m m i n g

Randal l Hyde

THE ART OF 64-BIT ASSEMBLY, VOLUME 1. Copyright © 2022 by Randall Hyde.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0108-9 (print)
ISBN-13: 978-1-7185-0109-6 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editors: Katrina Taylor and Miles Bond
Developmental Editors: Athabasca Witschi and Nathan Heidelberger
Cover Design: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Anthony Tribelli
Copyeditor: Sharon Wilkey
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: Sadie Barry

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Hyde, Randall, author.
Title: The art of 64-bit assembly. Volume 1, x86-64 machine organization
 and programming / Randall Hyde.
Description: San Francisco : No Starch Press Inc, 2022. | Includes
 bibliographical references and index. |
Identifiers: LCCN 2021020214 (print) | LCCN 2021020215 (ebook) | ISBN
 9781718501089 (print) | ISBN 9781718501096 (ebook)
Subjects: LCSH: Assembly languages (Electronic computers)
Classification: LCC QA76.73.A8 H969 2022 (print) | LCC QA76.73.A8 (ebook)
 | DDC 005.13/6--dc23
LC record available at https://lccn.loc.gov/2021020214
LC ebook record available at https://lccn.loc.gov/2021020215

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

To my wife, Mandy. In the second
edition of The Art of Assembly Language,

I mentioned that it had been a great 30 years
and I was look ing forward to another 30.
Now it’s been 40, so I get to look forward

to at least another 20!

About the Author
Randall Hyde is the author of The Art of Assembly Language and Write Great Code,
Volumes 1, 2, and 3 (all from No Starch Press), as well as Using 6502 Assembly
Language and P-Source (Datamost). He is also the coauthor of Microsoft Macro
Assembler 6.0 Bible (The Waite Group). Over the past 40 years, Hyde has worked
as an embedded software/hardware engineer developing instrumentation
for nuclear reactors, traffic control systems, and other consumer electronics
devices. He has also taught computer science at California State Polytechnic
University, Pomona, and at the University of California, Riverside. His website
is http://www.randallhyde.com/.

About the Tech Reviewer
Tony Tribelli has more than 35 years of experience in software development.
This experience ranges, among other things, from embedded device kernels
to molecular modeling and visualization to video games. The latter includes
ten years at Blizzard Entertainment. He is currently a software development
consultant and privately develops applications utilizing computer vision.

http://www.randallhyde.com/

B R I E F C O N T E N T S

Foreword . xxiii

Acknowledgments .xxv

Introduction . xxvii

PART I: MACHINE ORGANIZATION . .1

Chapter 1: Hello, World of Assembly Language . 3

Chapter 2: Computer Data Representation and Operations . 43

Chapter 3: Memory Access and Organization . 105

Chapter 4: Constants, Variables, and Data Types . 147

PART II: ASSEMBLY LANGUAGE PROGRAMMING 213

Chapter 5: Procedures . 215

Chapter 6: Arithmetic . 287

Chapter 7: Low-Level Control Structures . 377

Chapter 8: Advanced Arithmetic . 453

Chapter 9: Numeric Conversion . 491

Chapter 10: Table Lookups . 583

Chapter 11: SIMD Instructions . 595

Chapter 12: Bit Manipulation . 707

Chapter 13: Macros and the MASM Compile-Time Language . 747

Chapter 14: The String Instructions . 825

Chapter 15: Managing Complex Projects . 847

Chapter 16: Stand-Alone Assembly Language Programs . 873

x Brief Contents

PART III: REFERENCE MATERIAL . .899

A: ASCII Character Set . 901

B: Glossary . 905

C: Installing and Using Visual Studio . 919

D: The Windows Command Line Interpreter . 925

E: Answers to Questions . 935

Index . 967

C O N T E N T S I N D E T A I L

FOREWORD xxiii

ACKNOWLEDGMENTS xxv

INTRODUCTION xxvii

PART I: MACHINE ORGANIZATION 1

1
HELLO, WORLD OF ASSEMBLY LANGUAGE 3
1 .1 What You’ll Need . 4
1 .2 Setting Up MASM on Your Machine . 4
1 .3 Setting Up a Text Editor on Your Machine . 5
1 .4 The Anatomy of a MASM Program . 5
1 .5 Running Your First MASM Program . 6
1 .6 Running Your First MASM/C++ Hybrid Program . 7
1 .7 An Introduction to the Intel x86-64 CPU Family . 9
1 .8 The Memory Subsystem . 13
1 .9 Declaring Memory Variables in MASM . 14

1 .9 .1 Associating Memory Addresses with Variables 16
1 .9 .2 Associating Data Types with Variables . 17

1 .10 Declaring (Named) Constants in MASM . 18
1 .11 Some Basic Machine Instructions . 18

1 .11 .1 The mov Instruction . 18
1 .11 .2 Type Checking on Instruction Operands . 20
1 .11 .3 The add and sub Instructions . 21
1 .11 .4 The lea Instruction . 22
1 .11 .5 The call and ret Instructions and MASM Procedures 22

1 .12 Calling C/C++ Procedures . 24
1 .13 Hello, World! . 25
1 .14 Returning Function Results in Assembly Language . 27
1 .15 Automating the Build Process . 33
1 .16 Microsoft ABI Notes . 35

1 .16 .1 Variable Size . 35
1 .16 .2 Register Usage . 38
1 .16 .3 Stack Alignment . 39

1 .17 For More Information . 39
1 .18 Test Yourself . 40

xii Contents in Detail

2
COMPUTER DATA REPRESENTATION AND OPERATIONS 43
2 .1 Numbering Systems . 44

2 .1 .1 A Review of the Decimal System . 44
2 .1 .2 The Binary Numbering System . 44
2 .1 .3 Binary Conventions . 45

2 .2 The Hexadecimal Numbering System . 46
2 .3 A Note About Numbers vs . Representation . 48
2 .4 Data Organization . 50

2 .4 .1 Bits . 51
2 .4 .2 Nibbles . 51
2 .4 .3 Bytes . 52
2 .4 .4 Words . 53
2 .4 .5 Double Words . 54
2 .4 .6 Quad Words and Octal Words . 55

2 .5 Logical Operations on Bits . 55
2 .5 .1 The AND Operation . 55
2 .5 .2 The OR Operation . 56
2 .5 .3 The XOR Operation . 57
2 .5 .4 The NOT Operation . 57

2 .6 Logical Operations on Binary Numbers and Bit Strings . 57
2 .7 Signed and Unsigned Numbers . 62
2 .8 Sign Extension and Zero Extension . 67
2 .9 Sign Contraction and Saturation . 68
2 .10 Brief Detour: An Introduction to Control Transfer Instructions 69

2 .10 .1 The jmp Instruction . 69
2 .10 .2 The Conditional Jump Instructions . 70
2 .10 .3 The cmp Instruction and Corresponding Conditional Jumps 72
2 .10 .4 Conditional Jump Synonyms . 73

2 .11 Shifts and Rotates . 74
2 .12 Bit Fields and Packed Data . 79
2 .13 IEEE Floating-Point Formats . 86

2 .13 .1 Single-Precision Format . 87
2 .13 .2 Double-Precision Format . 88
2 .13 .3 Extended-Precision Format . 89
2 .13 .4 Normalized Floating-Point Values . 89
2 .13 .5 Non-Numeric Values . 90
2 .13 .6 MASM Support for Floating-Point Values . 90

2 .14 Binary-Coded Decimal Representation . 91
2 .15 Characters . 92

2 .15 .1 The ASCII Character Encoding . 93
2 .15 .2 MASM Support for ASCII Characters . 95

2 .16 The Unicode Character Set . 96
2 .16 .1 Unicode Code Points . 96
2 .16 .2 Unicode Code Planes . 97
2 .16 .3 Unicode Encodings . 97

2 .17 MASM Support for Unicode . 98
2 .18 For More Information . 99
2 .19 Test Yourself . 99

Contents in Detail xiii

3
MEMORY ACCESS AND ORGANIZATION 105
3 .1 Runtime Memory Organization . 106

3 .1 .1 The .code Section . 108
3 .1 .2 The .data Section . 108
3 .1 .3 The .const Section . 109
3 .1 .4 The .data? Section . 110
3 .1 .5 Organization of Declaration Sections Within Your Programs 110
3 .1 .6 Memory Access and 4K Memory Management Unit Pages 111

3 .2 How MASM Allocates Memory for Variables . 113
3 .3 The Label Declaration . 114
3 .4 Little-Endian and Big-Endian Data Organization . 114
3 .5 Memory Access . 116
3 .6 MASM Support for Data Alignment . 119
3 .7 The x86-64 Addressing Modes . 122

3 .7 .1 x86-64 Register Addressing Modes . 122
3 .7 .2 x86-64 64-Bit Memory Addressing Modes . 123
3 .7 .3 Large Address Unaware Applications . 127

3 .8 Address Expressions . 130
3 .9 The Stack Segment and the push and pop Instructions . 134

3 .9 .1 The Basic push Instruction . 134
3 .9 .2 The Basic pop Instruction . 135
3 .9 .3 Preserving Registers with the push and pop Instructions 137

3 .10 The Stack Is a LIFO Data Structure . 137
3 .11 Other push and pop Instructions . 140
3 .12 Removing Data from the Stack Without Popping It . 140
3 .13 Accessing Data You’ve Pushed onto the Stack Without Popping It 142
3 .14 Microsoft ABI Notes . 144
3 .15 For More Information . 144
3 .16 Test Yourself . 145

4
CONSTANTS, VARIABLES, AND DATA TYPES 147
4 .1 The imul Instruction . 148
4 .2 The inc and dec Instructions . 149
4 .3 MASM Constant Declarations . 149

4 .3 .1 Constant Expressions . 152
4 .3 .2 this and $ Operators . 154
4 .3 .3 Constant Expression Evaluation . 156

4 .4 The MASM typedef Statement . 156
4 .5 Type Coercion . 157
4 .6 Pointer Data Types . 161

4 .6 .1 Using Pointers in Assembly Language . 162
4 .6 .2 Declaring Pointers in MASM . 163
4 .6 .3 Pointer Constants and Pointer Constant Expressions 164
4 .6 .4 Pointer Variables and Dynamic Memory Allocation 166
4 .6 .5 Common Pointer Problems . 167

4 .7 Composite Data Types . 174
4 .8 Character Strings . 174

4 .8 .1 Zero-Terminated Strings . 174
4 .8 .2 Length-Prefixed Strings . 175

xiv Contents in Detail

4 .8 .3 String Descriptors . 176
4 .8 .4 Pointers to Strings . 177
4 .8 .5 String Functions . 177

4 .9 Arrays . 181
4 .9 .1 Declaring Arrays in Your MASM Programs . 182
4 .9 .2 Accessing Elements of a Single-Dimensional Array 183
4 .9 .3 Sorting an Array of Values . 185

4 .10 Multidimensional Arrays . 189
4 .10 .1 Row-Major Ordering . 190
4 .10 .2 Column-Major Ordering . 193
4 .10 .3 Allocating Storage for Multidimensional Arrays 194
4 .10 .4 Accessing Multidimensional Array Elements in Assembly Language .196

4 .11 Records/Structs . 197
4 .11 .1 MASM Struct Declarations . 198
4 .11 .2 Accessing Record/Struct Fields . 199
4 .11 .3 Nesting MASM Structs . 200
4 .11 .4 Initializing Struct Fields . 200
4 .11 .5 Arrays of Structs . 203
4 .11 .6 Aligning Fields Within a Record . 204

4 .12 Unions . 206
4 .12 .1 Anonymous Unions . 208
4 .12 .2 Variant Types . 209

4 .13 Microsoft ABI Notes . 210
4 .14 For More Information . 210
4 .15 Test Yourself . 210

PART II: ASSEMBLY LANGUAGE
PROGRAMMING 213

5
PROCEDURES 215
5 .1 Implementing Procedures . 216

5 .1 .1 The call and ret Instructions . 218
5 .1 .2 Labels in a Procedure . 219

5 .2 Saving the State of the Machine . 220
5 .3 Procedures and the Stack . 224

5 .3 .1 Activation Records . 228
5 .3 .2 The Assembly Language Standard Entry Sequence 231
5 .3 .3 The Assembly Language Standard Exit Sequence 233

5 .4 Local (Automatic) Variables . 234
5 .4 .1 Low-Level Implementation of Automatic (Local) Variables 235
5 .4 .2 The MASM Local Directive . 237
5 .4 .3 Automatic Allocation . 240

5 .5 Parameters . 240
5 .5 .1 Pass by Value . 241
5 .5 .2 Pass by Reference . 241
5 .5 .3 Low-Level Parameter Implementation . 243
5 .5 .4 Declaring Parameters with the proc Directive 255
5 .5 .5 Accessing Reference Parameters on the Stack 256

Contents in Detail xv

5 .6 Calling Conventions and the Microsoft ABI . 261
5 .7 The Microsoft ABI and Microsoft Calling Convention . 263

5 .7 .1 Data Types and the Microsoft ABI . 263
5 .7 .2 Parameter Locations . 264
5 .7 .3 Volatile and Nonvolatile Registers . 265
5 .7 .4 Stack Alignment . 267
5 .7 .5 Parameter Setup and Cleanup (or “What’s with

These Magic Instructions?”) . 268
5 .8 Functions and Function Results . 270
5 .9 Recursion . 271
5 .10 Procedure Pointers . 278
5 .11 Procedural Parameters . 280
5 .12 Saving the State of the Machine, Part II . 280
5 .13 Microsoft ABI Notes . 283
5 .14 For More Information . 284
5 .15 Test Yourself . 284

6
ARITHMETIC 287
6 .1 x86-64 Integer Arithmetic Instructions . 287

6 .1 .1 Sign- and Zero-Extension Instructions . 288
6 .1 .2 The mul and imul Instructions . 289
6 .1 .3 The div and idiv Instructions . 291
6 .1 .4 The cmp Instruction, Revisited . 293
6 .1 .5 The setcc Instructions . 295
6 .1 .6 The test Instruction . 297

6 .2 Arithmetic Expressions . 299
6 .2 .1 Simple Assignments . 299
6 .2 .2 Simple Expressions . 300
6 .2 .3 Complex Expressions . 302
6 .2 .4 Commutative Operators . 307

6 .3 Logical (Boolean) Expressions . 308
6 .4 Machine and Arithmetic Idioms . 310

6 .4 .1 Multiplying Without mul or imul . 310
6 .4 .2 Dividing Without div or idiv . 312
6 .4 .3 Implementing Modulo-N Counters with AND 312

6 .5 Floating-Point Arithmetic . 313
6 .5 .1 Floating-Point on the x86-64 . 317
6 .5 .2 FPU Registers . 317
6 .5 .3 FPU Data Types . 324
6 .5 .4 The FPU Instruction Set . 325
6 .5 .5 FPU Data Movement Instructions . 326
6 .5 .6 Conversions . 328
6 .5 .7 Arithmetic Instructions . 330
6 .5 .8 Comparison Instructions . 350
6 .5 .9 Constant Instructions . 360
6 .5 .10 Transcendental Instructions . 361
6 .5 .11 Miscellaneous Instructions . 363

6 .6 Converting Floating-Point Expressions to Assembly Language 364
6 .6 .1 Converting Arithmetic Expressions to Postfix Notation 366
6 .6 .2 Converting Postfix Notation to Assembly Language 367

xvi Contents in Detail

6 .7 SSE Floating-Point Arithmetic . 369
6 .7 .1 SSE MXCSR Register . 369
6 .7 .2 SSE Floating-Point Move Instructions . 370
6 .7 .3 SSE Floating-Point Arithmetic Instructions . 371
6 .7 .4 SSE Floating-Point Comparisons . 372
6 .7 .5 SSE Floating-Point Conversions . 373

6 .8 For More Information . 374
6 .9 Test Yourself . 375

7
LOW-LEVEL CONTROL STRUCTURES 377
7 .1 Statement Labels . 378

7 .1 .1 Using Local Symbols in Procedures . 378
7 .1 .2 Initializing Arrays with Label Addresses . 381

7 .2 Unconditional Transfer of Control (jmp) . 382
7 .2 .1 Register-Indirect Jumps . 383
7 .2 .2 Memory-Indirect Jumps . 389

7 .3 Conditional Jump Instructions . 390
7 .4 Trampolines . 393
7 .5 Conditional Move Instructions . 394
7 .6 Implementing Common Control Structures in Assembly Language 396

7 .6 .1 Decisions . 396
7 .6 .2 if/then/else Sequences . 397
7 .6 .3 Complex if Statements Using Complete Boolean Evaluation 400
7 .6 .4 Short-Circuit Boolean Evaluation . 401
7 .6 .5 Short-Circuit vs . Complete Boolean Evaluation 403
7 .6 .6 Efficient Implementation of if Statements in Assembly Language 405
7 .6 .7 switch/case Statements . 410

7 .7 State Machines and Indirect Jumps . 424
7 .8 Loops . 433

7 .8 .1 while Loops . 433
7 .8 .2 repeat/until Loops . 434
7 .8 .3 forever/endfor Loops . 436
7 .8 .4 for Loops . 437
7 .8 .5 The break and continue Statements . 438
7 .8 .6 Register Usage and Loops . 442

7 .9 Loop Performance Improvements . 443
7 .9 .1 Moving the Termination Condition to the End of a Loop 443
7 .9 .2 Executing the Loop Backward . 445
7 .9 .3 Using Loop-Invariant Computations . 446
7 .9 .4 Unraveling Loops . 447
7 .9 .5 Using Induction Variables . 448

7 .10 For More Information . 450
7 .11 Test Yourself . 450

8
ADVANCED ARITHMETIC 453
8 .1 Extended-Precision Operations . 454

8 .1 .1 Extended-Precision Addition . 454
8 .1 .2 Extended-Precision Subtraction . 457
8 .1 .3 Extended-Precision Comparisons . 458

Contents in Detail xvii

8 .1 .4 Extended-Precision Multiplication . 461
8 .1 .5 Extended-Precision Division . 466
8 .1 .6 Extended-Precision Negation Operations . 477
8 .1 .7 Extended-Precision AND Operations . 479
8 .1 .8 Extended-Precision OR Operations . 479
8 .1 .9 Extended-Precision XOR Operations . 480
8 .1 .10 Extended-Precision NOT Operations . 480
8 .1 .11 Extended-Precision Shift Operations . 480
8 .1 .12 Extended-Precision Rotate Operations . 484

8 .2 Operating on Different-Size Operands . 485
8 .3 Decimal Arithmetic . 486

8 .3 .1 Literal BCD Constants . 487
8 .3 .2 Packed Decimal Arithmetic Using the FPU . 488

8 .4 For More Information . 489
8 .5 Test Yourself . 489

9
NUMERIC CONVERSION 491
9 .1 Converting Numeric Values to Strings . 491

9 .1 .1 Converting Numeric Values to Hexadecimal Strings 492
9 .1 .2 Converting Extended-Precision Hexadecimal Values to Strings 499
9 .1 .3 Converting Unsigned Decimal Values to Strings 500
9 .1 .4 Converting Signed Integer Values to Strings 507
9 .1 .5 Converting Extended-Precision Unsigned Integers to Strings 508
9 .1 .6 Converting Extended-Precision Signed Decimal Values to Strings 513
9 .1 .7 Formatting Conversions . 514
9 .1 .8 Converting Floating-Point Values to Strings . 519

9 .2 String-to-Numeric Conversion Routines . 546
9 .2 .1 Converting Decimal Strings to Integers . 546
9 .2 .2 Converting Hexadecimal Strings to Numeric Form 556
9 .2 .3 Converting Unsigned Decimal Strings to Integers 563
9 .2 .4 Converting of Extended-Precision String to Unsigned Integer 566
9 .2 .5 Converting of Extended-Precision Signed Decimal String to Integer . . . 569
9 .2 .6 Converting of Real String to Floating-Point . 570

9 .3 For More Information . 581
9 .4 Test Yourself . 581

10
TABLE LOOKUPS 583
10 .1 Tables . 583

10 .1 .1 Function Computation via Table Lookup . 584
10 .1 .2 Generating Tables . 590
10 .1 .3 Table-Lookup Performance . 593

10 .2 For More Information . 593
10 .3 Test Yourself . 593

11
SIMD INSTRUCTIONS 595
11 .1 The SSE/AVX Architectures . 596
11 .2 Streaming Data Types . 596

xviii Contents in Detail

11 .3 Using cpuid to Differentiate Instruction Sets . 599
11 .4 Full-Segment Syntax and Segment Alignment . 604
11 .5 SSE, AVX, and AVX2 Memory Operand Alignment . 606
11 .6 SIMD Data Movement Instructions . 609

11 .6 .1 The (v)movd and (v)movq Instructions . 609
11 .6 .2 The (v)movaps, (v)movapd, and (v)movdqa Instructions 610
11 .6 .3 The (v)movups, (v)movupd, and (v)movdqu Instructions 612
11 .6 .4 Performance of Aligned and Unaligned Moves 612
11 .6 .5 The (v)movlps and (v)movlpd Instructions . 615
11 .6 .6 The movhps and movhpd Instructions . 617
11 .6 .7 The vmovhps and vmovhpd Instructions . 618
11 .6 .8 The movlhps and vmovlhps Instructions . 619
11 .6 .9 The movhlps and vmovhlps Instructions . 619
11 .6 .10 The (v)movshdup and (v)movsldup Instructions 620
11 .6 .11 The (v)movddup Instruction . 621
11 .6 .12 The (v)lddqu Instruction . 622
11 .6 .13 Performance Issues and the SIMD Move Instructions 622
11 .6 .14 Some Final Comments on the SIMD Move Instructions 624

11 .7 The Shuffle and Unpack Instructions . 625
11 .7 .1 The (v)pshufb Instructions . 625
11 .7 .2 The (v)pshufd Instructions . 626
11 .7 .3 The (v)pshuflw and (v)pshufhw Instructions 628
11 .7 .4 The shufps and shufpd Instructions . 630
11 .7 .5 The vshufps and vshufpd Instructions . 632
11 .7 .6 The (v)unpcklps, (v)unpckhps, (v)unpcklpd, and

(v)unpckhpd Instructions . 633
11 .7 .7 The Integer Unpack Instructions . 637
11 .7 .8 The (v)pextrb, (v)pextrw, (v)pextrd, and (v)pextrq Instructions 641
11 .7 .9 The (v)pinsrb, (v)pinsrw, (v)pinsrd, and (v)pinsrq Instructions 642
11 .7 .10 The (v)extractps and (v)insertps Instructions 643

11 .8 SIMD Arithmetic and Logical Operations . 644
11 .9 The SIMD Logical (Bitwise) Instructions . 645

11 .9 .1 The (v)ptest Instructions . 646
11 .9 .2 The Byte Shift Instructions . 646
11 .9 .3 The Bit Shift Instructions . 647

11 .10 The SIMD Integer Arithmetic Instructions . 648
11 .10 .1 SIMD Integer Addition . 648
11 .10 .2 Horizontal Additions . 650
11 .10 .3 Double-Word–Sized Horizontal Additions 652
11 .10 .4 SIMD Integer Subtraction . 653
11 .10 .5 SIMD Integer Multiplication . 654
11 .10 .6 SIMD Integer Averages . 657
11 .10 .7 SIMD Integer Minimum and Maximum . 657
11 .10 .8 SIMD Integer Absolute Value . 659
11 .10 .9 SIMD Integer Sign Adjustment Instructions 659
11 .10 .10 SIMD Integer Comparison Instructions . 660
11 .10 .11 Integer Conversions . 664

11 .11 SIMD Floating-Point Arithmetic Operations . 668
11 .12 SIMD Floating-Point Comparison Instructions . 671

11 .12 .1 SSE and AVX Comparisons . 671
11 .12 .2 Unordered vs . Ordered Comparisons . 673
11 .12 .3 Signaling and Quiet Comparisons . 673

Contents in Detail xix

11 .12 .4 Instruction Synonyms . 673
11 .12 .5 AVX Extended Comparisons . 674
11 .12 .6 Using SIMD Comparison Instructions . 676
11 .12 .7 The (v)movmskps, (v)movmskpd Instructions 676

11 .13 Floating-Point Conversion Instructions . 679
11 .14 Aligning SIMD Memory Accesses . 681
11 .15 Aligning Word, Dword, and Qword Object Addresses 683
11 .16 Filling an XMM Register with Several Copies of the Same Value 684
11 .17 Loading Some Common Constants Into XMM and YMM Registers 685
11 .18 Setting, Clearing, Inverting, and Testing a Single Bit in an SSE Register 687
11 .19 Processing Two Vectors by Using a Single Incremented Index 688
11 .20 Aligning Two Addresses to a Boundary . 690
11 .21 Working with Blocks of Data Whose Length Is Not

a Multiple of the SSE/AVX Register Size . 691
11 .22 Dynamically Testing for a CPU Feature . 692
11 .23 The MASM Include Directive . 702
11 .24 And a Whole Lot More . 703
11 .25 For More Information . 703
11 .26 Test Yourself . 705

12
BIT MANIPULATION 707
12 .1 What Is Bit Data, Anyway? . 707
12 .2 Instructions That Manipulate Bits . 708

12 .2 .1 The and Instruction . 709
12 .2 .2 The or Instruction . 710
12 .2 .3 The xor Instruction . 712
12 .2 .4 Flag Modification by Logical Instructions . 712
12 .2 .5 The Bit Test Instructions . 715
12 .2 .6 Manipulating Bits with Shift and Rotate Instructions 716

12 .3 The Carry Flag as a Bit Accumulator . 716
12 .4 Packing and Unpacking Bit Strings . 717
12 .5 BMI1 Instructions to Extract Bits and Create Bit Masks 723
12 .6 Coalescing Bit Sets and Distributing Bit Strings . 728
12 .7 Coalescing and Distributing Bit Strings Using BMI2 Instructions 731
12 .8 Packed Arrays of Bit Strings . 733
12 .9 Searching for a Bit . 736
12 .10 Counting Bits . 739
12 .11 Reversing a Bit String . 739
12 .12 Merging Bit Strings . 741
12 .13 Extracting Bit Strings . 742
12 .14 Searching for a Bit Pattern . 743
12 .15 For More Information . 744
12 .16 Test Yourself . 744

13
MACROS AND THE MASM COMPILE-TIME LANGUAGE 747
13 .1 Introduction to the Compile-Time Language . 748
13 .2 The echo and .err Directives . 748
13 .3 Compile-Time Constants and Variables . 750
13 .4 Compile-Time Expressions and Operators . 750

xx Contents in Detail

13 .4 .1 The MASM Escape (!) Operator . 750
13 .4 .2 The MASM Evaluation (%) Operator . 750
13 .4 .3 The catstr Directive . 751
13 .4 .4 The instr Directive . 751
13 .4 .5 The sizestr Directive . 752
13 .4 .6 The substr Directive . 752

13 .5 Conditional Assembly (Compile-Time Decisions) . 752
13 .6 Repetitive Assembly (Compile-Time Loops) . 756
13 .7 Macros (Compile-Time Procedures) . 760
13 .8 Standard Macros . 760
13 .9 Macro Parameters . 762

13 .9 .1 Standard Macro Parameter Expansion . 762
13 .9 .2 Optional and Required Macro Parameters 766
13 .9 .3 Default Macro Parameter Values . 768
13 .9 .4 Macros with a Variable Number of Parameters 769
13 .9 .5 The Macro Expansion (&) Operator . 770

13 .10 Local Symbols in a Macro . 770
13 .11 The exitm Directive . 772
13 .12 MASM Macro Function Syntax . 773
13 .13 Macros as Compile-Time Procedures and Functions . 775
13 .14 Writing Compile-Time “Programs” . 776

13 .14 .1 Constructing Data Tables at Compile Time 776
13 .14 .2 Unrolling Loops . 779

13 .15 Simulating HLL Procedure Calls . 781
13 .15 .1 HLL-Like Calls with No Parameters . 781
13 .15 .2 HLL-Like Calls with One Parameter . 782
13 .15 .3 Using opattr to Determine Argument Types 784
13 .15 .4 HLL-Like Calls with a Fixed Number of Parameters 786
13 .15 .5 HLL-Like Calls with a Varying Parameter List 791

13 .16 The invoke Macro . 794
13 .17 Advanced Macro Parameter Parsing . 795

13 .17 .1 Checking for String Literal Constants . 797
13 .17 .2 Checking for Real Constants . 798
13 .17 .3 Checking for Registers . 808
13 .17 .4 Compile-Time Arrays . 813

13 .18 Using Macros to Write Macros . 818
13 .19 Compile-Time Program Performance . 822
13 .20 For More Information . 822
13 .21 Test Yourself . 823

14
THE STRING INSTRUCTIONS 825
14 .1 The x86-64 String Instructions . 826

14 .1 .1 The rep, repe, repz, and the repnz and repne Prefixes 826
14 .1 .2 The Direction Flag . 827
14 .1 .3 The movs Instruction . 827
14 .1 .4 The cmps Instruction . 832
14 .1 .5 The scas Instruction . 835
14 .1 .6 The stos Instruction . 835
14 .1 .7 The lods Instruction . 836
14 .1 .8 Building Complex String Functions from lods and stos 837

14 .2 Performance of the x86-64 String Instructions . 837

Contents in Detail xxi

14 .3 SIMD String Instructions . 838
14 .3 .1 Packed Compare Operand Sizes . 839
14 .3 .2 Type of Comparison . 839
14 .3 .3 Result Polarity . 840
14 .3 .4 Output Processing . 841
14 .3 .5 Packed String Compare Lengths . 841
14 .3 .6 Packed String Comparison Results . 843

14 .4 Alignment and Memory Management Unit Pages . 844
14 .5 For More Information . 845
14 .6 Test Yourself . 845

15
MANAGING COMPLEX PROJECTS 847
15 .1 The include Directive . 848
15 .2 Ignoring Duplicate Include Operations . 849
15 .3 Assembly Units and External Directives . 849
15 .4 Header Files in MASM . 852
15 .5 The externdef Directive . 852
15 .6 Separate Compilation . 854
15 .7 An Introduction to Makefiles . 862

15 .7 .1 Basic Makefile Syntax . 863
15 .7 .2 Make Dependencies . 864
15 .7 .3 Make Clean and Touch . 867

15 .8 The Microsoft Linker and Library Code . 869
15 .9 Object File and Library Impact on Program Size . 870
15 .10 For More Information . 871
15 .11 Test Yourself . 871

16
STAND-ALONE ASSEMBLY LANGUAGE PROGRAMS 873
16 .1 Hello World, by Itself . 874
16 .2 Header Files and the Windows Interface . 876
16 .3 The Win32 API and the Windows ABI . 878
16 .4 Building a Stand-Alone Console Application . 878
16 .5 Building a Stand-Alone GUI Application . 879
16 .6 A Brief Look at the MessageBox Windows API Function 880
16 .7 Windows File I/O . 881
16 .8 Windows Applications . 897
16 .9 For More Information . 897
16 .10 Test Yourself . 898

PART III: REFERENCE MATERIAL 899

A
ASCII CHARACTER SET 901

B
GLOSSARY 905

C
INSTALLING AND USING VISUAL STUDIO 919
C .1 Installing Visual Studio Community . 919
C .2 Creating a Command Line Prompt for MASM . 920
C .3 Editing, Assembling, and Running a MASM Source File .922

D
THE WINDOWS COMMAND LINE INTERPRETER 925
D .1 Command Line Syntax . 925
D .2 Directory Names and Drive Letters . 928
D .3 Some Useful Built-in Commands . 930

D .3 .1 The cd and chdir Commands . 930
D .3 .2 The cls Command . 931
D .3 .3 The copy Command . 931
D .3 .4 The date Command . 931
D .3 .5 The del (erase) Command . 932
D .3 .6 The dir Command . 932
D .3 .7 The more Command . 932
D .3 .8 The move Command . 933
D .3 .9 The ren and rename Commands . 933
D .3 .10 The rd and rmdir Commands . 933
D .3 .11 The time Command . 933

D .4 For More Information . 934

E
ANSWERS TO QUESTIONS 935

INDEX 967

F O R E W O R D

Assembly language programmers often hear the question, “Why would
you bother when there are so many other languages that are much easier
to write and to understand?” There has always been one answer: you write
assembly language because you can.

Free of any other assumptions, free of artificial structuring, and free of
the restrictions that so many other languages impose on you, you can create
anything that is within the capacity of the operating system and the proces-
sor hardware. The full capacity of the x86 and later x64 hardware is avail-
able to the programmer. Within the boundaries of the operating system,
any structure that is imposed, is imposed by the programmer in the code
design and layout that they choose to use.

There have been many good assemblers over time, but the use of the
Microsoft assembler, commonly known as MASM, has one great advantage:
it has been around since the early 1980s, and while others come and go,
MASM is updated on an as-needed basis for technology and operating sys-
tem changes by the operating system vendor Microsoft.

From its origins as a real-mode 16-bit assembler, over time and technol-
ogy changes it has been updated to a 32-bit version. With the introduction
of 64-bit Windows, there is a 64-bit version of MASM as well that produces
64-bit object modules. The 32- and 64-bit versions are components in the
Visual Studio suite of tools and can be used by both C and C++ as well as
pure assembler executable files and dynamic link libraries.

xxiv Foreword

Randall Hyde’s original The Art of Assembly Language has been a refer-
ence work for nearly 20 years, and with the author’s long and extensive
understanding of x86 hardware and assembly programming, a 64-bit ver-
sion of the book is a welcome addition to the total knowledge base for
future high-performance x64 programming.

—Steve Hutchesson
https://www.masm32.com/

https://www.masm32.com/

A C K N O W L E D G M E N T S

Several individuals at No Starch Press have contributed to the quality of this
book and deserve appropriate kudos for all their effort:

Bill Pollock, president

Barbara Yien, executive editor

Katrina Taylor, production editor

Miles Bond, assistant production editor

Athabasca Witschi, developmental editor

Nathan Heidelberger, developmental editor

Natalie Gleason, marketing manager

Morgan Vega Gomez, marketing coordinator

Sharon Wilkey, copyeditor

Sadie Barry, proofreader

Jeff Lytle, compositor

—Randall Hyde

I N T R O D U C T I O N

This book is the culmination of 30 years’
work. The very earliest versions of this book

were notes I copied for my students at Cal
Poly Pomona and UC Riverside under the title

“How to Program the IBM PC Using 8088 Assembly
Language.” I had lots of input from students and a
good friend of mine, Mary Philips, that softened the
edges a bit. Bill Pollock rescued that early version
from obscurity on the internet, and with the help of
Karol Jurado, the first edition of The Art of Assembly
Language became a reality in 2003.

Thousands of readers (and suggestions) later, along with input from Bill
Pollock, Alison Peterson, Ansel Staton, Riley Hoffman, Megan Dunchak,

xxviii Introduction

Linda Recktenwald, Susan Glinert Stevens, and Nancy Bell at No Starch
Press (and a technical review by Nathan Baker), the second edition of this
book arrived in 2010.

Ten years later, The Art of Assembly Language (or AoA as I refer to it) was
losing popularity because it was tied to the 35-year-old 32-bit design of the
Intel x86. Today, someone who was going to learn 80x86 assembly language
would want to learn 64-bit assembly on the newer x86-64 CPUs. So in early
2020, I began the process of translating the old 32-bit AoA (based on the
use of the High-Level Assembler, or HLA) to 64 bits by using the Microsoft
Macro Assembler (MASM).

When I first started the project, I thought I’d translate a few HLA
programs to MASM, tweak a little text, and wind up with The Art of 64-Bit
Assembly with minimal effort. I was wrong. Between the folks at No Starch
Press wanting to push the envelope on readability and understanding, and
the incredible job Tony Tribelli has done in his technical review of every
line of text and code in this book, this project turned out to be as much
work as writing a new book from scratch. That’s okay; I think you’ll really
appreciate the work that has gone into this book.

 A Note About the Source Code in This Book
A considerable amount of x86-64 assembly language (and C/C++) source
code is presented throughout this book. Typically, source code comes in
three flavors: code snippets, single assembly language procedures or func-
tions, and full-blown programs.

Code snippets are fragments of a program; they are not stand-alone,
and you cannot compile (assemble) them using MASM (or a C++ compiler
in the case of C/C++ source code). Code snippets exist to make a point or
provide a small example of a programming technique. Here is a typical
example of a code snippet you will find in this book:

someConst = 5
 .
 .
 .
mov eax, someConst

The vertical ellipsis (. . .) denotes arbitrary code that could appear in its
place (not all snippets use the ellipsis, but it’s worthwhile to point this out).

Assembly language procedures are also not stand-alone code. While you
can assemble many assembly language procedures appearing in this book
(by simply copying the code straight out of the book into an editor and
then running MASM on the resulting text file), they will not execute on
their own. Code snippets and assembly language procedures differ in one
major way: procedures appear as part of the downloadable source files for
this book (at https://artofasm.randallhyde.com/).

Full-blown programs, which you can compile and execute, are labeled
as listings in this book. They have a listing number/identifier of the form

https://artofasm.randallhyde.com/

Introduction xxix

“Listing C -N,” where C is the chapter number and N is a sequentially increas-
ing listing number, starting at 1 for each chapter. Here is an example of a
program listing that appears in this book:

; Listing 1-3

; A simple MASM module that contains
; an empty function to be called by
; the C++ code in Listing 1-2.

 .CODE

; The "option casemap:none" statement
; tells MASM to make all identifiers
; case-sensitive (rather than mapping
; them to uppercase). This is necessary
; because C++ identifiers are case-
; sensitive.

 option casemap:none

; Here is the "asmFunc" function.

 public asmFunc
asmFunc PROC

; Empty function just returns to C++ code.

 ret ; Returns to caller

asmFunc ENDP
 END

Listing 1: A MASM program that the C++ program in Listing 1-2 calls

Like procedures, all listings are available in electronic form at my
website: https://artofasm.randallhyde.com/. This link will take you to the page
containing all the source files and other support information for this book
(such as errata, electronic chapters, and other useful information). A few
chapters attach listing numbers to procedures and macros, which are not
full programs, for legibility purposes. A couple of listings demonstrate
MASM syntax errors or are otherwise unrunnable. The source code still
appears in the electronic distribution under that listing name.

Typically, this book follows executable listings with a build command
and sample output. Here is a typical example (user input is given in a bold-
face font):

C:\>build listing4-7

C:\>echo off
 Assembling: listing4-7.asm
c.cpp

https://artofasm.randallhyde.com/

xxx Introduction

C:\>listing4-7
Calling Listing 4-7:
aString: maxLen:20, len:20, string data:'Initial String Data'
Listing 4-7 terminated

Most of the programs in this text run from a Windows command line
(that is, inside the cmd.exe application). By default, this book assumes you’re
running the programs from the root directory on the C: drive. Therefore,
every build command and sample output typically has the text prefix C:\>
before any command you would type from the keyboard on the command
line. However, you can run the programs from any drive or directory.

If you are completely unfamiliar with the Windows command line, please
take a little time to learn about the Windows command line interpreter (CLI).
You can start the CLI by executing the cmd.exe program from the Windows
run command. As you’re going to be running the CLI frequently while read-
ing this book, I recommend creating a shortcut to cmd.exe on your desktop. In
Appendix C, I describe how to create this shortcut to automatically set up the
environment variables you will need to easily run MASM (and the Microsoft
Visual C++ compiler). Appendix D provides a quick introduction to the
Windows CLI for those who are unfamiliar with it.

PART I
M A C H I N E O R G A N I Z A T I O N

1
H E L L O , W O R L D O F

A S S E M B LY L A N G U A G E

This chapter is a “quick-start” chapter that
lets you begin writing basic assembly lan-

guage programs as rapidly as possible. By
the conclusion of this chapter, you should

understand the basic syntax of a Microsoft Macro Assembler (MASM)
program and the prerequisites for learning new assembly language
features in the chapters that follow.

N O T E This book uses the MASM running under Windows because that is, by far, the
most commonly used assembler for writing x86-64 assembly language programs.
Furthermore, the Intel documentation typically uses assembly language examples that
are syntax-compatible with MASM. If you encounter x86 source code in the real world,
it will likely be written using MASM. That being said, many other popular x86-64
assemblers are out there, including the GNU Assembler (gas), Netwide Assembler
(NASM), Flat Assembler (FASM), and others. These assemblers employ a different
syntax from MASM (gas being the one most radically different). At some point, if you
work in assembly language much, you’ll probably encounter source code written with
one of these other assemblers. Don’t fret; learning the syntactical differences isn’t that
hard once you’ve mastered x86-64 assembly language using MASM.

4 Chapter 1

This chapter covers the following:

•	 Basic syntax of a MASM program

•	 The Intel central processing unit (CPU) architecture

•	 Setting aside memory for variables

•	 Using machine instructions to control the CPU

•	 Linking a MASM program with C/C++ code so you can call routines in
the C Standard Library

•	 Writing some simple assembly language programs

 1.1 What You’ll Need
You’ll need a few prerequisites to learn assembly language programming
with MASM: a 64-bit version of MASM, plus a text editor (for creating and
modifying MASM source files), a linker, various library files, and a C++
compiler.

Today’s software engineers drop down into assembly language only when
their C++, C#, Java, Swift, or Python code is running too slow and they need
to improve the performance of certain modules (or functions) in their code.
Because you’ll typically be interfacing assembly language with C++, or other
high-level language (HLL) code, when using assembly in the real world, we’ll
do so in this book as well.

Another reason to use C++ is for the C Standard Library. While differ-
ent individuals have created several useful libraries for MASM (see http://
www.masm32.com/ for a good example), there is no universally accepted stan-
dard set of libraries. To make the C Standard Library immediately accessible
to MASM programs, this book presents examples with a short C/C++ main
function that calls a single external function written in assembly language
using MASM. Compiling the C++ main program along with the MASM
source file will produce a single executable file that you can run and test.

Do you need to know C++ to learn assembly language? Not really. This
book will spoon-feed you the C++ you’ll need to run the example programs.
Nevertheless, assembly language isn’t the best choice for your first language,
so this book assumes that you have some experience in a language such as
C/C++, Pascal (or Delphi), Java, Swift, Rust, BASIC, Python, or any other
imperative or object-oriented programming language.

 1.2 Setting Up MASM on Your Machine
MASM is a Microsoft product that is part of the Visual Studio suite of
developer tools. Because it’s Microsoft’s tool set, you need to be running
some variant of Windows (as I write this, Windows 10 is the latest version;
however, any later version of Windows will likely work as well). Appendix C
provides a complete description of how to install Visual Studio Community
(the “no-cost” version, which includes MASM and the Visual C++ compiler,
plus other tools you will need). Please refer to that appendix for more
details.

http://www.masm32.com/
http://www.masm32.com/

Hello, World of Assembly Language 5

 1.3 Setting Up a Text Editor on Your Machine
Visual Studio includes a text editor that you can use to create and edit
MASM and C++ programs. Because you have to install the Visual Studio
package to obtain MASM, you automatically get a production-quality pro-
grammer’s text editor you can use for your assembly language source files.

However, you can use any editor that works with straight ASCII files
(UTF-8 is also fine) to create MASM and C++ source files, such as Notepad++
or the text editor available from https://www.masm32.com/. Word processing
programs, such as Microsoft Word, are not appropriate for editing program
source files.

 1.4 The Anatomy of a MASM Program
A typical (stand-alone) MASM program looks like Listing 1-1.

; Comments consist of all text from a semicolon character
; to the end of the line.

; The ".code" directive tells MASM that the statements following
; this directive go in the section of memory reserved for machine
; instructions (code).

 .code

; Here is the "main" function. (This example assumes that the
; assembly language program is a stand-alone program with its
; own main function.)

main PROC

Machine instructions go here

 ret ; Returns to caller

main ENDP

; The END directive marks the end of the source file.

 END

Listing 1-1: Trivial shell program

A typical MASM program contains one or more sections representing
the type of data appearing in memory. These sections begin with a MASM
statement such as .code or .data. Variables and other memory values appear
in a data section. Machine instructions appear in procedures that appear
within a code section. And so on. The individual sections appearing in an
assembly language source file are optional, so not every type of section will
appear in a particular source file. For example, Listing 1-1 contains only a
single code section.

https://www.masm32.com/

6 Chapter 1

The .code statement is an example of an assembler directive—a state-
ment that tells MASM something about the program but is not an actual
x86-64 machine instruction. In particular, the .code directive tells MASM to
group the statements following it into a special section of memory reserved
for machine instructions.

 1.5 Running Your First MASM Program
A traditional first program people write, popularized by Brian Kernighan
and Dennis Ritchie’s The C Programming Language (Prentice Hall, 1978)
is the “Hello, world!” program. The whole purpose of this program is to
provide a simple example that someone learning a new programming lan-
guage can use to figure out how to use the tools needed to compile and
run programs in that language.

Unfortunately, writing something as simple as a “Hello, world!” pro-
gram is a major production in assembly language. You have to learn several
machine instruction and assembler directives, not to mention Windows
system calls, to print the string “Hello, world!” At this point in the game,
that’s too much to ask from a beginning assembly language programmer
(for those who want to blast on ahead, take a look at the sample program in
Appendix C).

However, the program shell in Listing 1-1 is actually a complete
assembly language program. You can compile (assemble) and run it. It
doesn’t produce any output. It simply returns back to Windows imme-
diately after you start it. However, it does run, and it will serve as the
mechanism for showing you how to assemble, link, and run an assembly
language source file.

MASM is a traditional command line assembler, which means you need to
run it from a Windows command line prompt (available by running the cmd.exe
program). To do so, enter something like the following into the command
line prompt or shell window:

C:\>ml64 programShell.asm /link /subsystem:console /entry:main

This command tells MASM to assemble the programShell.asm program
(where I’ve saved Listing 1-1) to an executable file, link the result to pro-
duce a console application (one that you can run from the command line),
and begin execution at the label main in the assembly language source file.
Assuming that no errors occur, you can run the resulting program by typ-
ing the following command into your command prompt window:

C:\>programShell

Windows should immediately respond with a new command line
prompt (as the programShell application simply returns control back to
Windows after it starts running).

Hello, World of Assembly Language 7

 1.6 Running Your First MASM/C++ Hybrid Program
This book commonly combines an assembly language module (containing one
or more functions written in assembly language) with a C/C++ main program
that calls those functions. Because the compilation and execution process is
slightly different from a stand-alone MASM program, this section demonstrates
how to create, compile, and run a hybrid assembly/C++ program. Listing 1-2
provides the main C++ program that calls the assembly language module.

// Listing 1-2

// A simple C++ program that calls an assembly language function.
// Need to include stdio.h so this program can call "printf()".

#include <stdio.h>

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

extern "C"
{
 // Here's the external function, written in assembly
 // language, that this program will call:

 void asmFunc(void);
};

int main(void)
{
 printf("Calling asmMain:\n");
 asmFunc();
 printf("Returned from asmMain\n");
}

Listing 1-2: A sample C/C++ program, listing1-2.cpp, that calls an assembly language
function

Listing 1-3 is a slight modification of the stand-alone MASM program
that contains the asmFunc() function that the C++ program calls.

; Listing 1-3

; A simple MASM module that contains an empty function to be
; called by the C++ code in Listing 1-2.

 .CODE

; (See text concerning option directive.)

 option casemap:none

; Here is the "asmFunc" function.

 public asmFunc
asmFunc PROC

8 Chapter 1

; Empty function just returns to C++ code.

 ret ; Returns to caller

asmFunc ENDP
 END

Listing 1-3: A MASM program, listing1-3.asm, that the C++ program in Listing 1-2 calls

Listing 1-3 has three changes from the original programShell.asm source
file. First, there are two new statements: the option statement and the public
statement.

The option statement tells MASM to make all symbols case-sensitive. This
is necessary because MASM, by default, is case-insensitive and maps all iden-
tifiers to uppercase (so asmFunc() would become ASMFUNC()). C++ is a case-
sensitive language and treats asmFunc() and ASMFUNC() as two different identifiers.
Therefore, it’s important to tell MASM to respect the case of the identifiers
so as not to confuse the C++ program.

N O T E MASM identifiers may begin with a dollar sign ($), underscore (_), or an alphabetic
character and may be followed by zero or more alphanumeric, dollar sign, or under-
score characters. An identifier may not consist of a $ character by itself (this has a
special meaning to MASM).

The public statement declares that the asmFunc() identifier will be vis-
ible outside the MASM source/object file. Without this statement, asmFunc()
would be accessible only within the MASM module, and the C++ compila-
tion would complain that asmFunc() is an undefined identifier.

The third difference between Listing 1-3 and Listing 1-1 is that the
function’s name was changed from main() to asmFunc(). The C++ compiler
and linker would get confused if the assembly code used the name main(),
as that’s also the name of the C++ main() function.

To compile and run these source files, you use the following commands:

C:\>ml64 /c listing1-3.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-3.asm

C:\>cl listing1-2.cpp listing1-3.obj
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

listing1-2.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-2.exe
listing1-2.obj
listing1-3.obj

Hello, World of Assembly Language 9

C:\>listing1-2
Calling asmFunc:
Returned from asmFunc

The ml64 command uses the /c option, which stands for compile-only, and
does not attempt to run the linker (which would fail because listing1-3.asm is
not a stand-alone program). The output from MASM is an object code file
(listing1-3.obj), which serves as input to the Microsoft Visual C++ (MSVC)
compiler in the next command.

The cl command runs the MSVC compiler on the listing1-2.cpp file and
links in the assembled code (listing1-3.obj). The output from the MSVC com-
piler is the listing1-2.exe executable file. Executing that program from the
command line produces the output we expect.

 1.7 An Introduction to the Intel x86-64 CPU Family
Thus far, you’ve seen a single MASM program that will actually compile and
run. However, the program does nothing more than return control to Windows.
Before you can progress any further and learn some real assembly language,
a detour is necessary: unless you understand the basic structure of the Intel
x86-64 CPU family, the machine instructions will make little sense.

The Intel CPU family is generally classified as a von Neumann architec-
ture machine. Von Neumann computer systems contain three main building
blocks: the central processing unit (CPU), memory, and input/output (I/0) devices.
These three components are interconnected via the system bus (consisting
of the address, data, and control buses). The block diagram in Figure 1-1
shows these relationships.

The CPU communicates with memory and I/O devices by placing a
numeric value on the address bus to select one of the memory locations or
I/O device port locations, each of which has a unique numeric address.
Then the CPU, memory, and I/O devices pass data among themselves by
placing the data on the data bus. The control bus contains signals that
determine the direction of the data transfer (to/from memory and to/from
an I/O device).

CPU

Memory

I/O devices

Figure 1-1: Von Neumann computer system
block diagram

10 Chapter 1

Within the CPU, special locations known as registers are used to manip-
ulate data. The x86-64 CPU registers can be broken into four categories:
general-purpose registers, special-purpose application-accessible registers,
segment registers, and special-purpose kernel-mode registers. Because
the segment registers aren’t used much in modern 64-bit operating systems
(such as Windows), there is little need to discuss them in this book. The
special-purpose kernel-mode registers are intended for writing operating
systems, debuggers, and other system-level tools. Such software construc-
tion is well beyond the scope of this text.

The x86-64 (Intel family) CPUs provide several general-purpose registers
for application use. These include the following:

•	 Sixteen 64-bit registers that have the following names: RAX, RBX, RCX,
RDX, RSI, RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, and R15

•	 Sixteen 32-bit registers: EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP,
R8D, R9D, R10D, R11D, R12D, R13D, R14D, and R15D

•	 Sixteen 16-bit registers: AX, BX, CX, DX, SI, DI, BP, SP, R8W, R9W,
R10W, R11W, R12W, R13W, R14W, and R15W

•	 Twenty 8-bit registers: AL, AH, BL, BH, CL, CH, DL, DH, DIL, SIL,
BPL, SPL, R8B, R9B, R10B, R11B, R12B, R13B, R14B, and R15B

Unfortunately, these are not 68 independent registers; instead, the x86-64
overlays the 64-bit registers over the 32-bit registers, the 32-bit registers over
the 16-bit registers, and the 16-bit registers over the 8-bit registers. Table 1-1
shows these relationships.

Because the general-purpose registers are not independent, modify-
ing one register may modify as many as three other registers. For example,
modifying the EAX register may very well modify the AL, AH, AX, and
RAX registers. This fact cannot be overemphasized. A common mistake in
programs written by beginning assembly language programmers is register
value corruption due to the programmer not completely understanding the
ramifications of the relationships shown in Table 1-1.

Table 1-1: General-Purpose Registers on the x86-64

Bits 0–63 Bits 0–31 Bits 0–15 Bits 8–15 Bits 0–7

RAX EAX AX AH AL

RBX EBX BX BH BL

RCX ECX CX CH CL

RDX EDX DX DH DL

RSI ESI SI SIL

RDI EDI DI DIL

RBP EBP BP BPL

RSP ESP SP SPL

R8 R8D R8W R8B

Hello, World of Assembly Language 11

Bits 0–63 Bits 0–31 Bits 0–15 Bits 8–15 Bits 0–7

R9 R9D R9W R9B

R10 R10D R10W R10B

R11 R11D R11W R11B

R12 R12D R12W R12B

R13 R13D R13W R13B

R14 R14D R14W R14B

R15 R15D R15W R15B

In addition to the general-purpose registers, the x86-64 provides special-
purpose registers, including eight floating-point registers implemented in the
x87 floating-point unit (FPU). Intel named these registers ST(0) to ST(7).
Unlike with the general-purpose registers, an application program cannot
directly access these. Instead, a program treats the floating-point regis-
ter file as an eight-entry-deep stack and accesses only the top one or two
entries (see “Floating-Point Arithmetic” in Chapter 6 for more details).

Each floating-point register is 80 bits wide, holding an extended-
precision real value (hereafter just extended precision). Although Intel added
other floating-point registers to the x86-64 CPUs over the years, the FPU
registers still find common use in code because they support this 80-bit
floating-point format.

In the 1990s, Intel introduced the MMX register set and instructions
to support single instruction, multiple data (SIMD) operations. The MMX reg-
ister set is a group of eight 64-bit registers that overlay the ST(0) to ST(7)
registers on the FPU. Intel chose to overlay the FPU registers because this
made the MMX registers immediately compatible with multitasking oper-
ating systems (such as Windows) without any code changes to those OSs.
Unfortunately, this choice meant that an application could not simultane-
ously use the FPU and MMX instructions.

Intel corrected this issue in later revisions of the x86-64 by adding the
XMM register set. For that reason, you rarely see modern applications using
the MMX registers and instruction set. They are available if you really want
to use them, but it is almost always better to use the XMM registers (and
instruction set) and leave the registers in FPU mode.

To overcome the limitations of the MMX/FPU register conflicts,
AMD/Intel added sixteen 128-bit XMM registers (XMM0 to XMM15) and
the SSE/SSE2 instruction set. Each register can be configured as four 32-bit
floating-point registers; two 64-bit double-precision floating-point registers;
or sixteen 8-bit, eight 16-bit, four 32-bit, two 64-bit, or one 128-bit integer
registers. In later variants of the x86-64 CPU family, AMD/Intel doubled
the size of the registers to 256 bits each (renaming them YMM0 to YMM15)
to support eight 32-bit floating-point values or four 64-bit double-precision
floating-point values (integer operations were still limited to 128 bits).

12 Chapter 1

The RFLAGS (or just FLAGS) register is a 64-bit register that encapsu-
lates several single-bit Boolean (true/false) values.1 Most of the bits in the
RFLAGS register are either reserved for kernel mode (operating system)
functions or are of little interest to the application programmer. Eight
of these bits (or flags) are of interest to application programmers writing
assembly language programs: the overflow, direction, interrupt disable,2
sign, zero, auxiliary carry, parity, and carry flags. Figure 1-2 shows the lay-
out of the flags within the lower 16 bits of the RFLAGS register.

Overflow
Direction
Interrupt

Sign
Zero

Auxiliary carry

Parity

Carry

Not very
interesting to
application
programmers

15 0

Figure 1-2: Layout of the FLAGS register (lower 16 bits of RFLAGS)

Four flags in particular are extremely valuable: the overflow, carry, sign,
and zero flags, collectively called the condition codes.3 The state of these flags
lets you test the result of previous computations. For example, after compar-
ing two values, the condition code flags will tell you whether one value is
less than, equal to, or greater than a second value.

One important fact that comes as a surprise to those just learning assem-
bly language is that almost all calculations on the x86-64 CPU involve a regis-
ter. For example, to add two variables together and store the sum into a third
variable, you must load one of the variables into a register, add the second
operand to the value in the register, and then store the register away in the
destination variable. Registers are a middleman in nearly every calculation.

You should also be aware that, although the registers are called general-
purpose, you cannot use any register for any purpose. All the x86-64 registers
have their own special purposes that limit their use in certain contexts. The
RSP register, for example, has a very special purpose that effectively prevents

1. Technically, the I/O privilege level (IOPL) is 2 bits, but these bits are not accessible from
user-mode programs, so this book ignores this field.

2. Application programs cannot modify the interrupt flag, but we’ll look at this flag in
Chapter 2; hence the discussion of this flag here.

3. Technically, the parity flag is also a condition code, but we will not use that flag in this text.

Hello, World of Assembly Language 13

you from using it for anything else (it’s the stack pointer). Likewise, the RBP
register has a special purpose that limits its usefulness as a general-purpose
register. For the time being, avoid the use of the RSP and RBP registers for
generic calculations; also, keep in mind that the remaining registers are not
completely interchangeable in your programs.

 1.8 The Memory Subsystem
The memory subsystem holds data such as program variables, constants,
machine instructions, and other information. Memory is organized into
cells, each of which holds a small piece of information. The system can com-
bine the information from these small cells (or memory locations) to form
larger pieces of information.

The x86-64 supports byte-addressable memory, which means the basic
memory unit is a byte, sufficient to hold a single character or a (very) small
integer value (we’ll talk more about that in Chapter 2).

Think of memory as a linear array of bytes. The address of the first byte
is 0, and the address of the last byte is 232 – 1. For an x86 processor with
4GB memory installed,4 the following pseudo-Pascal array declaration is
a good approximation of memory:

Memory: array [0..4294967295] of byte;

C/C++ and Java users might prefer the following syntax:

byte Memory[4294967296];

For example, to execute the equivalent of the Pascal statement Memory
[125] := 0;, the CPU places the value 0 on the data bus, places the address
125 on the address bus, and asserts the write line (this generally involves set-
ting that line to 0), as shown in Figure 1-3.

CPU

MemoryAddress = 125

Data = 0

Write = 0

Location
125

Figure 1-3: Memory write operation

To execute the equivalent of CPU := Memory [125];, the CPU places the
address 125 on the address bus, asserts the read line (because the CPU is
reading data from memory), and then reads the resulting data from the
data bus (see Figure 1-4).

4. The following discussion will use the 4GB address space of the older 32-bit x86-64 proces-
sors. A typical x86-64 processor running a modern 64-bit OS can access a maximum of 248
memory locations, or just over 256TB.

14 Chapter 1

CPU

MemoryAddress = 125

Data = Memory[125]

Read = 0

Location
125

Figure 1-4: Memory read operation

To store larger values, the x86 uses a sequence of consecutive memory
locations. Figure 1-5 shows how the x86 stores bytes, words (2 bytes), and
double words (4 bytes) in memory. The memory address of each object is the
address of the first byte of each object (that is, the lowest address).

195

194

193

192

191

190

189

188

187

186

Double word
at address 192

Word at
address 188

Byte at
address 186

Address

Figure 1-5: Byte, word, and double-word storage
in memory

 1.9 Declaring Memory Variables in MASM
Although it is possible to reference memory by using numeric addresses in
assembly language, doing so is painful and error-prone. Rather than having
your program state, “Give me the 32-bit value held in memory location 192
and the 16-bit value held in memory location 188,” it’s much nicer to state,
“Give me the contents of elementCount and portNumber.” Using variable names,
rather than memory addresses, makes your program much easier to write,
read, and maintain.

To create (writable) data variables, you have to put them in a data section
of the MASM source file, defined using the .data directive. This directive tells
MASM that all following statements (up to the next .code or other section-
defining directive) will define data declarations to be grouped into a read/
write section of memory.

Hello, World of Assembly Language 15

Within a .data section, MASM allows you to declare variable objects by
using a set of data declaration directives. The basic form of a data declara-
tion directive is

label directive ?

where label is a legal MASM identifier and directive is one of the directives
appearing in Table 1-2.

Table 1-2: MASM Data Declaration Directives

Directive Meaning

byte (or db) Byte (unsigned 8-bit) value

sbyte Signed 8-bit integer value

word (or dw) Unsigned 16-bit (word) value

sword Signed 16-bit integer value

dword (or dd) Unsigned 32-bit (double-word) value

sdword Signed 32-bit integer value

qword (or dq) Unsigned 64-bit (quad-word) value

sqword Signed 64-bit integer value

tbyte (or dt) Unsigned 80-bit (10-byte) value

oword 128-bit (octal-word) value

real4 Single-precision (32-bit) floating-point value

real8 Double-precision (64-bit) floating-point value

real10 Extended-precision (80-bit) floating-point value

The question mark (?) operand tells MASM that the object will not
have an explicit value when the program loads into memory (the default
initialization is zero). If you would like to initialize the variable with an
explicit value, replace the ? with the initial value; for example:

hasInitialValue sdword -1

Some of the data declaration directives in Table 1-2 have a signed version
(the directives with the s prefix). For the most part, MASM ignores this prefix.
It is the machine instructions you write that differentiate between signed and
unsigned operations; MASM itself usually doesn’t care whether a variable holds
a signed or an unsigned value. Indeed, MASM allows both of the following:

 .data
u8 byte -1 ; Negative initializer is okay
i8 sbyte 250 ; even though +128 is maximum signed byte

All MASM cares about is whether the initial value will fit into a byte.
The -1, even though it is not an unsigned value, will fit into a byte in
memory. Even though 250 is too large to fit into a signed 8-bit integer (see

16 Chapter 1

“Signed and Unsigned Numbers” in Chapter 2), MASM will happily accept
this because 250 will fit into a byte variable (as an unsigned number).

It is possible to reserve storage for multiple data values in a single data
declaration directive. The string multi-valued data type is critical to this
chapter (later chapters discuss other types, such as arrays in Chapter 4).
You can create a null-terminated string of characters in memory by using
the byte directive as follows:

; Zero-terminated C/C++ string.
strVarName byte 'String of characters', 0

Notice the , 0 that appears after the string of characters. In any data
declaration (not just byte declarations), you can place multiple data values in
the operand field, separated by commas, and MASM will emit an object of
the specified size and value for each operand. For string values (surrounded
by apostrophes in this example), MASM emits a byte for each character in the
string (plus a zero byte for the , 0 operand at the end of the string). MASM
allows you to define strings by using either apostrophes or quotes; you must
terminate the string of characters with the same delimiter that begins the
string (quote or apostrophe).

1.9.1 Associating Memory Addresses with Variables
One of the nice things about using an assembler/compiler like MASM is that
you don’t have to worry about numeric memory addresses. All you need to
do is declare a variable in MASM, and MASM associates that variable with
a unique set of memory addresses. For example, say you have the following
declaration section:

 .data
i8 sbyte ?
i16 sword ?
i32 sdword ?
i64 sqword ?

MASM will find an unused 8-bit byte in memory and associate it with
the i8 variable; it will find a pair of consecutive unused bytes and associate
them with i16; it will find four consecutive locations and associate them
with i32; finally, MASM will find 8 consecutive unused bytes and associate
them with i64. You’ll always refer to these variables by their name. You gen-
erally don’t have to concern yourself with their numeric address. Still, you
should be aware that MASM is doing this for you.

When MASM is processing declarations in a .data section, it assigns
consecutive memory locations to each variable.5 Assuming i8 (in the pre-
vious declarations) as a memory address of 101, MASM will assign the
addresses appearing in Table 1-3 to i8, i16, i32, and i64.

5. Technically, MASM assigns offsets into the .data section to variables. Windows converts
these offsets to physical memory addresses when it loads the program into memory at
runtime.

Hello, World of Assembly Language 17

Table 1-3: Variable Address Assignment

Variable Memory address

i8 101

i16 102 (address of i8 plus 1)

i32 104 (address of i16 plus 2)

i64 108 (address of i32 plus 4)

Whenever you have multiple operands in a data declaration statement,
MASM will emit the values to sequential memory locations in the order
they appear in the operand field. The label associated with the data decla-
ration (if one is present) is associated with the address of the first (leftmost)
operand’s value. See Chapter 4 for more details.

1.9.2 Associating Data Types with Variables
During assembly, MASM associates a data type with every label you define,
including variables. This is rather advanced for an assembly language (most
assemblers simply associate a value or an address with an identifier).

For the most part, MASM uses the variable’s size (in bytes) as its type
(see Table 1-4).

Table 1-4: MASM Data Types

Type Size Description

byte (db) 1 1-byte memory operand, unsigned (generic integer)

sbyte 1 1-byte memory operand, signed integer

word (dw) 2 2-byte memory operand, unsigned (generic integer)

sword 2 2-byte memory operand, signed integer

dword (dd) 4 4-byte memory operand, unsigned (generic integer)

sdword 4 4-byte memory operand, signed integer

qword (dq) 8 8-byte memory operand, unsigned (generic integer)

sqword 8 8-byte memory operand, signed integer

tbyte (dt) 10 10-byte memory operand, unsigned (generic integer or BCD)

oword 16 16-byte memory operand, unsigned (generic integer)

real4 4 4-byte single-precision floating-point memory operand

real8 8 8-byte double-precision floating-point memory operand

real10 10 10-byte extended-precision floating-point memory operand

proc N/A Procedure label (associated with PROC directive)

label: N/A Statement label (any identifier immediately followed by a :)

constant Varies Constant declaration (equate) using = or EQU directive

text N/A Textual substitution using macro or TEXTEQU directive

Later sections and chapters fully describe the proc, label, constant, and
text types.

18 Chapter 1

 1.10 Declaring (Named) Constants in MASM
MASM allows you to declare manifest constants by using the = directive. A
manifest constant is a symbolic name (identifier) that MASM associates with a
value. Everywhere the symbol appears in the program, MASM will directly
substitute the value of that symbol for the symbol.

A manifest constant declaration takes the following form:

label = expression

Here, label is a legal MASM identifier, and expression is a constant arith-
metic expression (typically, a single literal constant value). The following
example defines the symbol dataSize to be equal to 256:

dataSize = 256

Most of the time, MASM’s equ directive is a synonym for the = directive.
For the purposes of this chapter, the following statement is largely equiva-
lent to the previous declaration:

dataSize equ 256

Constant declarations (equates in MASM terminology) may appear any-
where in your MASM source file, prior to their first use. They may appear in
a .data section, a .code section, or even outside any sections.

 1.11 Some Basic Machine Instructions
The x86-64 CPU family provides from just over a couple hundred to many
thousands of machine instructions, depending on how you define a machine
instruction. But most assembly language programs use around 30 to 50
machine instructions,6 and you can write several meaningful programs with
only a few. This section provides a small handful of machine instructions so
you can start writing simple MASM assembly language programs right away.

1.11.1 The mov Instruction
Without question, the mov instruction is the most oft-used assembly lan-
guage statement. In a typical program, anywhere from 25 percent to
40 percent of the instructions are mov instructions. As its name suggests, this
instruction moves data from one location to another.7 Here’s the generic
MASM syntax for this instruction:

mov destination_operand, source_operand

6. Different programs may use a different set of 30 to 50 instructions, but few programs use
more than 50 distinct instructions.

7. Technically, mov copies data from one location to another. It does not destroy the original
data in the source operand. Perhaps a better name for this instruction would have been
copy. Alas, it’s too late to change it now.

Hello, World of Assembly Language 19

The source_operand may be a (general-purpose) register, a memory vari-
able, or a constant. The destination_operand may be a register or a memory
variable. The x86-64 instruction set does not allow both operands to be
memory variables. In a high-level language like Pascal or C/C++, the mov
instruction is roughly equivalent to the following assignment statement:

destination_operand = source_operand ;

The mov instruction’s operands must both be the same size. That is, you
can move data between a pair of byte (8-bit) objects, word (16-bit) objects,
double-word (32-bit), or quad-word (64-bit) objects; you may not, however,
mix the sizes of the operands. Table 1-5 lists all the legal combinations for
the mov instruction.

You should study this table carefully because most of the general-purpose
x86-64 instructions use this syntax.

Table 1-5: Legal x86-64 mov Instruction Operands

Source* Destination

reg8 reg8

reg8 mem8

mem8 reg8

constant** reg8

constant mem8

reg16 reg16

reg16 mem16

mem16 reg16

constant reg16

constant mem16

reg32 reg32

reg32 mem32

mem32 reg32

constant reg32

constant mem32

reg64 reg64

reg64 mem64

mem64 reg64

constant reg64

constant32 mem64

* regn means an n -bit register, and memn means an n -bit memory location.
** The constant must be small enough to fit in the specified destination

operand.

20 Chapter 1

This table includes one important thing to note: the x86-64 allows you
to move only a 32-bit constant value into a 64-bit memory location (it will
sign-extend this value to 64 bits; see “Sign Extension and Zero Extension”
in Chapter 2 for more information about sign extension). Moving a 64-bit
constant into a 64-bit register is the only x86-64 instruction that allows a
64-bit constant operand. This inconsistency in the x86-64 instruction set
is annoying. Welcome to the x86-64.

1.11.2 Type Checking on Instruction Operands
MASM enforces some type checking on instruction operands. In particular,
the size of an instruction’s operands must agree. For example, MASM will
generate an error for the following:

i8 byte ?
 .
 .
 .
mov ax, i8

The problem is that you are attempting to load an 8-bit variable (i8)
into a 16-bit register (AX). As their sizes are not compatible, MASM
assumes that this is a logic error in the program and reports an error.8

For the most part, MASM ignores the difference between signed
and unsigned variables. MASM is perfectly happy with both of these mov
instructions:

i8 sbyte ?
u8 byte ?
 .
 .
 .
mov al, i8
mov bl, u8

All MASM cares about is that you’re moving a byte variable into a byte-
sized register. Differentiating signed and unsigned values in those registers
is up to the application program. MASM even allows something like this:

r4v real4 ?
r8v real8 ?
 .
 .
 .
mov eax, r4v
mov rbx, r8v

8. It is possible that you might actually want to do this, with the mov instruction loading AL
with the byte at location i8 and AH with the byte immediately following i8 in memory. If
you really want to do this (admittedly crazy) operation, see “Type Coercion” in Chapter 4.

Hello, World of Assembly Language 21

Again, all MASM really cares about is the size of the memory operands,
not that you wouldn’t normally load a floating-point variable into a general-
purpose register (which typically holds integer values).

In Table 1-4, you’ll notice that there are proc, label, and constant types.
MASM will report an error if you attempt to use a proc or label reserved
word in a mov instruction. The procedure and label types are associated with
addresses of machine instructions, not variables, and it doesn’t make sense
to “load a procedure” into a register.

However, you may specify a constant symbol as a source operand to an
instruction; for example:

someConst = 5
 .
 .
 .
mov eax, someConst

As there is no size associated with constants, the only type checking
MASM will do on a constant operand is to verify that the constant will fit in
the destination operand. For example, MASM will reject the following:

wordConst = 1000
 .
 .
 .
mov al, wordConst

1.11.3 The add and sub Instructions
The x86-64 add and sub instructions add or subtract two operands, respec-
tively. Their syntax is nearly identical to the mov instruction:

add destination_operand, source_operand
sub destination_operand, source_operand

However, constant operands are limited to a maximum of 32 bits. If
your destination operand is 64 bits, the CPU allows only a 32-bit immedi-
ate source operand (it will sign-extend that operand to 64 bits; see “Sign
Extension and Zero Extension” in Chapter 2 for more details on sign
extension).

The add instruction does the following:

destination_operand = destination_operand + source_operand

The sub instruction does the calculation:

destination_operand = destination_operand - source_operand

With these three instructions, plus some MASM control structures, you
can actually write sophisticated programs.

22 Chapter 1

1.11.4 The lea Instruction
Sometimes you need to load the address of a variable into a register rather
than the value of that variable. You can use the lea (load effective address)
instruction for this purpose. The lea instruction takes the following form:

lea reg64, memory_var

Here, reg64 is any general-purpose 64-bit register, and memory_var is a
variable name. Note that memory_var’s type is irrelevant; it doesn’t have to be
a qword variable (as is the case with mov, add, and sub instructions). Every vari-
able has a memory address associated with it, and that address is always 64
bits. The following example loads the RCX register with the address of the
first character in the strVar string:

strVar byte "Some String", 0
 .
 .
 .
 lea rcx, strVar

The lea instruction is roughly equivalent to the C/C++ unary & (address-of)
operator. The preceding assembly example is conceptually equivalent to the
following C/C++ code:

char strVar[] = "Some String";
char *RCX;
 .
 .
 .
 RCX = &strVar[0];

1.11.5 The call and ret Instructions and MASM Procedures
To make function calls (as well as write your own simple functions), you need
the call and ret instructions.

The ret instruction serves the same purpose in an assembly language
program as the return statement in C/C++: it returns control from an assem-
bly language procedure (assembly language functions are called procedures).
For the time being, this book will use the variant of the ret instruction that
does not have an operand:

ret

(The ret instruction does allow a single operand, but unlike in C/C++,
the operand does not specify a function return value. You’ll see the pur-
pose of the ret instruction operand in Chapter 5.)

As you might guess, you call a MASM procedure by using the call instruc-
tion. This instruction can take a couple of forms. The most common is

call proc_name

where proc_name is the name of the procedure you want to call.

Hello, World of Assembly Language 23

As you’ve seen in a couple code examples already, a MASM procedure
consists of the line

proc_name proc

followed by the body of the procedure (typically ending with a ret instruc-
tion). At the end of the procedure (typically immediately after the ret
instruction), you end the procedure with the following statement:

proc_name endp

The label on the endp directive must be identical to the one you supply
for the proc statement.

In the stand-alone assembly language program in Listing 1-4, the main
program calls myProc, which will immediately return to the main program,
which then immediately returns to Windows.

; Listing 1-4

; A simple demonstration of a user-defined procedure.

 .code

; A sample user-defined procedure that this program can call.

myProc proc
 ret ; Immediately return to the caller
myProc endp

; Here is the "main" procedure.

main PROC

; Call the user-defined procedure.

 call myProc

 ret ; Returns to caller
main endp
 end

Listing 1-4: A sample user-defined procedure in an assembly language program

You can compile this program and try running it by using the following
commands:

C:\>ml64 listing1-4.asm /link /subsystem:console /entry:main
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-4.asm
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

24 Chapter 1

/OUT:listing1-4.exe
listing1-4.obj
/subsystem:console
/entry:main

C:\>listing1-4

 1.12 Calling C/C++ Procedures
While writing your own procedures and calling them are quite useful, the
reason for introducing procedures at this point is not to allow you to write
your own procedures, but rather to give you the ability to call procedures
(functions) written in C/C++. Writing your own procedures to convert and
output data to the console is a rather complex task (probably well beyond
your capabilities at this point). Instead, you can call the C/C++ printf()
function to produce program output and verify that your programs are
actually doing something when you run them.

Unfortunately, if you call printf() in your assembly language code with-
out providing a printf() procedure, MASM will complain that you’ve used an
undefined symbol. To call a procedure outside your source file, you need to
use the MASM externdef directive.9 This directive has the following syntax:

externdef symbol:type

Here, symbol is the external symbol you want to define, and type is the
type of that symbol (which will be proc for external procedure definitions).
To define the printf() symbol in your assembly language file, use this
statement:

externdef printf:proc

When defining external procedure symbols, you should put the externdef
directive in your .code section.

The externdef directive doesn’t let you specify parameters to pass to
the printf() procedure, nor does the call instruction provide a mecha-
nism for specifying parameters. Instead, you can pass up to four param-
eters to the printf() function in the x86-64 registers RCX, RDX, R8, and
R9. The printf() function requires that the first parameter be the address
of a format string. Therefore, you should load RCX with the address of a
zero-terminated string prior to calling printf(). If the format string con-
tains any format specifiers (for example, %d), you must pass appropriate
parameter values in RDX, R8, and R9. Chapter 5 goes into great detail
concerning procedure parameters, including how to pass floating-point
values and more than four parameters.

9. MASM has two other directives, extrn and extern, that could also be used. This book uses
the externdef directive because it is the most general directive.

Hello, World of Assembly Language 25

 1.13 Hello, World!
At this point (many pages into this chapter), you finally have enough infor-
mation to write this chapter’s namesake application: the “Hello, world!”
program, shown in Listing 1-5.

; Listing 1-5

; A "Hello, world!" program using the C/C++ printf() function to
; provide the output.

 option casemap:none
 .data

; Note: "10" value is a line feed character, also known as the
; "C" newline character.

fmtStr byte 'Hello, world!', 10, 0

 .code

; External declaration so MASM knows about the C/C++ printf()
; function.

 externdef printf:proc

; Here is the "asmFunc" function.

 public asmFunc
asmFunc proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Here's where we'll call the C printf() function to print
; "Hello, world!" Pass the address of the format string
; to printf() in the RCX register. Use the LEA instruction
; to get the address of fmtStr.

 lea rcx, fmtStr
 call printf

; Another "magic" instruction that undoes the effect of the
; previous one before this procedure returns to its caller.

 add rsp, 56

 ret ; Returns to caller

asmFunc endp
 end

Listing 1-5: Assembly language code for the “Hello, world!” program

26 Chapter 1

The assembly language code contains two “magic” statements that this
chapter includes without further explanation. Just accept the fact that sub-
tracting from the RSP register at the beginning of the function and then
adding this value back to RSP at the end of the function are needed to make
the calls to C/C++ functions work properly. Chapter 5 more fully explains
the purpose of these statements.

The C++ function in Listing 1-6 calls the assembly code and makes the
printf() function available for use.

// Listing 1-6

// C++ driver program to demonstrate calling printf() from assembly
// language.

// Need to include stdio.h so this program can call "printf()".

#include <stdio.h>

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

extern "C"
{
 // Here's the external function, written in assembly
 // language, that this program will call:

 void asmFunc(void);
};

int main(void)
{
 // Need at least one call to printf() in the C program to allow
 // calling it from assembly.

 printf("Calling asmFunc:\n");
 asmFunc();
 printf("Returned from asmFunc\n");
}

Listing 1-6: C++ code for the “Hello, world!” program

Here’s the sequence of steps needed to compile and run this code on
my machine:

C:\>ml64 /c listing1-5.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-5.asm

C:\>cl listing1-6.cpp listing1-5.obj
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64

Hello, World of Assembly Language 27

Copyright (C) Microsoft Corporation. All rights reserved.

listing1-6.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-6.exe
listing1-6.obj
listing1-5.obj

C:\>listing1-6
Calling asmFunc:
Hello, World!
Returned from asmFunc

You can finally print “Hello, world!” on the console!

 1.14 Returning Function Results in Assembly Language
In a previous section, you saw how to pass up to four parameters to a proce-
dure written in assembly language. This section describes the opposite pro-
cess: returning a value to code that has called one of your procedures.

In pure assembly language (where one assembly language proce-
dure calls another), passing parameters and returning function results are
strictly a convention that the caller and callee procedures share with one
another. Either the callee (the procedure being called) or the caller (the
procedure doing the calling) may choose where function results appear.

From the callee viewpoint, the procedure returning the value determines
where the caller can find the function result, and whoever calls that func-
tion must respect that choice. If a procedure returns a function result in the
XMM0 register (a common place to return floating-point results), whoever
calls that procedure must expect to find the result in XMM0. A different pro-
cedure could return its function result in the RBX register.

From the caller’s viewpoint, the choice is reversed. Existing code expects
a function to return its result in a particular location, and the function being
called must respect that wish.

Unfortunately, without appropriate coordination, one section of code
might demand that functions it calls return their function results in one
location, while a set of existing library functions might insist on returning
their function results in another location. Clearly, such functions would not
be compatible with the calling code. While there are ways to handle this
situation (typically by writing facade code that sits between the caller and
callee and moves the return results around), the best solution is to ensure
that everybody agrees on things like where function return results will be
found prior to writing any code.

This agreement is known as an application binary interface (ABI). An ABI
is a contract, of sorts, between different sections of code that describe calling
conventions (where things are passed, where they are returned, and so on),

28 Chapter 1

data types, memory usage and alignment, and other attributes. CPU manu-
facturers, compiler writers, and operating system vendors all provide their
own ABIs. For obvious reasons, this book uses the Microsoft Windows ABI.

Once again, it’s important to understand that when you’re writing your
own assembly language code, the way you pass data between your proce-
dures is totally up to you. One of the benefits of using assembly language
is that you can decide the interface on a procedure-by-procedure basis.
The only time you have to worry about adhering to an ABI is when you call
code that is outside your control (or if that external code makes calls to
your code). This book covers writing assembly language under Microsoft
Windows (specifically, assembly code that interfaces with MSVC); there-
fore, when dealing with external code (Windows and C++ code), you have
to use the Windows/MSVC ABI. The Microsoft ABI specifies that the first
four parameters to printf() (or any C++ function, for that matter) must be
passed in RCX, RDX, R8, and R9.

The Windows ABI also states that functions (procedures) return inte-
ger and pointer values (that fit into 64 bits) in the RAX register. So if some
C++ code expects your assembly procedure to return an integer result, you
would load the integer result into RAX immediately before returning from
your procedure.

To demonstrate returning a function result, we’ll use the C++ program
in Listing 1-7 (c.cpp, a generic C++ program that this book uses for most
of the C++/assembly examples hereafter). This C++ program includes two
extra function declarations: getTitle() (supplied by the assembly language
code), which returns a pointer to a string containing the title of the pro-
gram (the C++ code prints this title), and readLine() (supplied by the C++
program), which the assembly language code can call to read a line of text
from the user (and put into a string buffer in the assembly language code).

// Listing 1-7

// c.cpp

// Generic C++ driver program to demonstrate returning function
// results from assembly language to C++. Also includes a
// "readLine" function that reads a string from the user and
// passes it on to the assembly language code.

// Need to include stdio.h so this program can call "printf()"
// and string.h so this program can call strlen.

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// extern "C" namespace prevents "name mangling" by the C++
// compiler.

Hello, World of Assembly Language 29

extern "C"
{
 // asmMain is the assembly language code's "main program":

 void asmMain(void);

 // getTitle returns a pointer to a string of characters
 // from the assembly code that specifies the title of that
 // program (that makes this program generic and usable
 // with a large number of sample programs in "The Art of
 // 64-Bit Assembly").

 char *getTitle(void);

 // C++ function that the assembly
 // language program can call:

 int readLine(char *dest, int maxLen);

};

// readLine reads a line of text from the user (from the
// console device) and stores that string into the destination
// buffer the first argument specifies. Strings are limited in
// length to the value specified by the second argument
// (minus 1).

// This function returns the number of characters actually
// read, or -1 if there was an error.

// Note that if the user enters too many characters (maxlen or
// more), then this function returns only the first maxlen-1
// characters. This is not considered an error.

int readLine(char *dest, int maxLen)
{
 // Note: fgets returns NULL if there was an error, else
 // it returns a pointer to the string data read (which
 // will be the value of the dest pointer).

 char *result = fgets(dest, maxLen, stdin);
 if(result != NULL)
 {
 // Wipe out the newline character at the
 // end of the string:

 int len = strlen(result);
 if(len > 0)
 {
 dest[len - 1] = 0;
 }
 return len;
 }

30 Chapter 1

 return -1; // If there was an error
}

int main(void)
{
 // Get the assembly language program's title:

 try
 {
 char *title = getTitle();

 printf("Calling %s:\n", title);
 asmMain();
 printf("%s terminated\n", title);
 }
 catch(...)
 {
 printf
 (
 "Exception occurred during program execution\n"
 "Abnormal program termination.\n"
);
 }
}

Listing 1-7: Generic C++ code for calling assembly language programs

The try..catch block catches any exceptions the assembly code generates,
so you get some sort of indication if the program aborts abnormally.

Listing 1-8 provides assembly code that demonstrates several new
concepts, foremost returning a function result (to the C++ program). The
assembly language function getTitle() returns a pointer to a string that the
calling C++ code will print as the title of the program. In the .data section,
you’ll see a string variable titleStr that is initialized with the name of this
assembly code (Listing 1-8). The getTitle() function loads the address of that
string into RAX and returns this string pointer to the C++ code (Listing 1-7)
that prints the title before and after running the assembly code.

This program also demonstrates reading a line of text from the user.
The assembly code calls the readLine() function appearing in the C++
code. The readLine() function expects two parameters: the address of a
character buffer (C string) and a maximum buffer length. The code in
Listing 1-8 passes the address of the character buffer to the readLine()
function in RCX and the maximum buffer size in RDX. The maximum
buffer length must include room for two extra characters: a newline char-
acter (line feed) and a zero-terminating byte.

Finally, Listing 1-8 demonstrates declaring a character buffer (that
is, an array of characters). In the .data section, you will find the following
declaration:

input byte maxLen dup (?)

Hello, World of Assembly Language 31

The maxLen dup (?) operand tells MASM to duplicate the (?) (that is, an
uninitialized byte) maxLen times. maxLen is a constant set to 256 by an equate
directive (=) at the beginning of the source file. (For more details, see
“Declaring Arrays in Your MASM Programs” in Chapter 4.)

; Listing 1-8

; An assembly language program that demonstrates returning
; a function result to a C++ program.

 option casemap:none

nl = 10 ; ASCII code for newline
maxLen = 256 ; Maximum string size + 1

 .data
titleStr byte 'Listing 1-8', 0
prompt byte 'Enter a string: ', 0
fmtStr byte "User entered: '%s'", nl, 0

; "input" is a buffer having "maxLen" bytes. This program
; will read a user string into this buffer.

; The "maxLen dup (?)" operand tells MASM to make "maxLen"
; duplicate copies of a byte, each of which is uninitialized.

input byte maxLen dup (?)

 .code

 externdef printf:proc
 externdef readLine:proc

; The C++ function calling this assembly language module
; expects a function named "getTitle" that returns a pointer
; to a string as the function result. This is that function:

 public getTitle
getTitle proc

; Load address of "titleStr" into the RAX register (RAX holds
; the function return result) and return back to the caller:

 lea rax, titleStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 sub rsp, 56

32 Chapter 1

; Call the readLine function (written in C++) to read a line
; of text from the console.

; int readLine(char *dest, int maxLen)

; Pass a pointer to the destination buffer in the RCX register.
; Pass the maximum buffer size (max chars + 1) in EDX.
; This function ignores the readLine return result.
; Prompt the user to enter a string:

 lea rcx, prompt
 call printf

; Ensure the input string is zero-terminated (in the event
; there is an error):

 mov input, 0

; Read a line of text from the user:

 lea rcx, input
 mov rdx, maxLen
 call readLine

; Print the string input by the user by calling printf():

 lea rcx, fmtStr
 lea rdx, input
 call printf

 add rsp, 56
 ret ; Returns to caller

asmMain endp
 end

Listing 1-8: Assembly language program that returns a function result

To compile and run the programs in Listings 1-7 and 1-8, use state-
ments such as the following:

C:\>ml64 /c listing1-8.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing1-8.asm

C:\>cl /EHa /Felisting1-8.exe c.cpp listing1-8.obj
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

c.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0

Hello, World of Assembly Language 33

Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-8.exe
c.obj
listing1-8.obj

C:\> listing1-8
Calling Listing 1-8:
Enter a string: This is a test
User entered: 'This is a test'
Listing 1-8 terminated

The /Felisting1-8.exe command line option tells MSVC to name the
executable file listing1-8.exe. Without the /Fe option, MSVC would name the
resulting executable file c.exe (after c.cpp, the generic example C++ file from
Listing 1-7).

 1.15 Automating the Build Process
At this point, you’re probably thinking it’s a bit tiresome to type all these (long)
command lines every time you want to compile and run your programs. This is
especially true if you start adding more command line options to the ml64 and
cl commands. Consider the following two commands:

ml64 /nologo /c /Zi /Cp listing1-8.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Felisting1-8.exe c.cpp listing1-8.obj
listing1-8

The /Zi option tells MASM and MSVC to compile extra debug informa-
tion into the code. The /nologo option tells MASM and MSVC to skip print-
ing copyright and version information during compilation. The MASM /Cp
option tells MASM to make compilations case-insensitive (so you don’t need
the options casemap:none directive in your assembly source file). The /O2 option
tells MSVC to optimize the machine code the compiler produces. The
/utf-8 option tells MSVC to use UTF-8 Unicode encoding (which is ASCII-
compatible) rather than UTF-16 encoding (or other character encoding).
The /EHa option tells MSVC to handle processor-generated exceptions (such
as memory access faults—a common exception in assembly language pro-
grams). As noted earlier, the /Fe option specifies the executable output
filename. Typing all these command line options every time you want to
build a sample program is going to be a lot of work.

The easy solution is to create a batch file that automates this process.
You could, for example, type the three previous command lines into a text
file, name it l8.bat, and then simply type l8 at the command line to auto-
matically execute those three commands. That saves a lot of typing and is
much quicker (and less error-prone) than typing these three commands
every time you want to compile and run the program.

34 Chapter 1

The only drawback to putting those three commands into a batch file is
that the batch file is specific to the listing1-8.asm source file, and you would
have to create a new batch file to compile other programs. Fortunately, it is
easy to create a batch file that will work with any single assembly source file
that compiles and links with the generic c.cpp program. Consider the follow-
ing build.bat batch file:

echo off
ml64 /nologo /c /Zi /Cp %1.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Fe%1.exe c.cpp %1.obj

The %1 item in these commands tells the Windows command line pro-
cessor to substitute a command line parameter (specifically, command line
parameter number 1) in place of the %1. If you type the following from the
command line

build listing1-8

then Windows executes the following three commands:

echo off
ml64 /nologo /c /Zi /Cp listing1-8.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Felisting1-8.exe c.cpp listing1-8.obj

With this build.bat file, you can compile several projects simply by speci-
fying the assembly language source file name (without the .asm suffix) on
the build command line.

The build.bat file does not run the program after compiling and linking
it. You could add this capability to the batch file by appending a single line
containing %1 to the end of the file. However, that would always attempt to
run the program, even if the compilation failed because of errors in the
C++ or assembly language source files. For that reason, it’s probably better
to run the program manually after building it with the batch file, as follows:

C:\>build listing1-8
C:\>listing1-8

A little extra typing, to be sure, but safer in the long run.
Microsoft provides another useful tool for controlling compilations

from the command line: makefiles. They are a better solution than batch
files because makefiles allow you to conditionally control steps in the pro-
cess (such as running the executable) based on the success of earlier steps.
However, using Microsoft’s make program (nmake.exe) is beyond the scope
of this chapter. It’s a good tool to learn (and Chapter 15 will teach you
the basics). However, batch files are sufficient for the simple projects appear-
ing throughout most of this book and require little extra knowledge or
training to use. If you are interested in learning more about makefiles, see
Chapter 15 or “For More Information” on page 39.

Hello, World of Assembly Language 35

 1.16 Microsoft ABI Notes
As noted earlier (see “Returning Function Results in Assembly Language”
on page 27), the Microsoft ABI is a contract between modules in a program
to ensure compatibility (between modules, especially modules written in
different programming languages).10 In this book, the C++ programs will be
calling assembly language code, and the assembly modules will be calling
C++ code, so it’s important that the assembly language code adhere to the
Microsoft ABI.

Even if you were to write stand-alone assembly language code, it would
still be calling C++ code, as it would (undoubtedly) need to make Windows
application programming interface (API) calls. The Windows API functions are
all written in C++, so calls to Windows must respect the Windows ABI.

Because following the Microsoft ABI is so important, each chapter in this
book (if appropriate) includes a section at the end discussing those compo-
nents of the Microsoft ABI that the chapter introduces or heavily uses. This
section covers several concepts from the Microsoft ABI: variable size, register
usage, and stack alignment.

1.16.1 Variable Size
Although dealing with different data types in assembly language is com-
pletely up to the assembly language programmer (and the choice of
machine instructions to use on that data), it’s crucial to maintain the size
of the data (in bytes) between the C++ and assembly language programs.
Table 1-6 lists several common C++ data types and the corresponding
assembly language types (that maintain the size information).

Table 1-6: C++ and Assembly Language Types

C++ type Size (in bytes) Assembly language type

char 1 sbyte

signed char 1 sbyte

unsigned char 1 byte

short int 2 sword

short unsigned 2 word

int 4 sdword

unsigned (unsigned int) 4 dword

long 4 sdword

long int 4 sdword

long unsigned 4 dword

long int 8 sqword

long unsigned 8 qword

10. Microsoft also refers to the ABI as the X64 Calling Conventions in its documentation.

(continued)

36 Chapter 1

C++ type Size (in bytes) Assembly language type

__int64 8 sqword

unsigned __int64 8 qword

Float 4 real4

double 8 real8

pointer (for example, void *) 8 qword

Although MASM provides signed type declarations (sbyte, sword, sdword,
and sqword), assembly language instructions do not differentiate between
the unsigned and signed variants. You could process a signed integer
(sdword) by using unsigned instruction sequences, and you could process
an unsigned integer (dword) by using signed instruction sequences. In an
assembly language source file, these different directives mainly serve as a
documentation aid to help describe the programmer’s intentions.11

Listing 1-9 is a simple program that verifies the sizes of each of these
C++ data types.

N O T E The %2zd format string displays size_t type values (the sizeof operator returns a
value of type size_t). This quiets down the MSVC compiler (which generates warn-
ings if you use only %2d). Most compilers are happy with %2d.

// Listing 1-9

// A simple C++ program that demonstrates Microsoft C++ data
// type sizes:

#include <stdio.h>

int main(void)
{
 char v1;
 unsigned char v2;
 short v3;
 short int v4;
 short unsigned v5;
 int v6;
 unsigned v7;
 long v8;
 long int v9;
 long unsigned v10;

11. Earlier 32-bit versions of MASM included some high-level language control statements
(for example, .if, .else, .endif) that made use of the signed versus unsigned declarations.
However, Microsoft no longer supports these high-level statements. As a result, MASM no
longer differentiates signed versus unsigned declarations.

Table 1-6: C++ and Assembly Language Types (continued)

Hello, World of Assembly Language 37

 long long int v11;
 long long unsigned v12;
 __int64 v13;
 unsigned __int64 v14;
 float v15;
 double v16;
 void * v17;

 printf
 (
 "Size of char: %2zd\n"
 "Size of unsigned char: %2zd\n"
 "Size of short: %2zd\n"
 "Size of short int: %2zd\n"
 "Size of short unsigned: %2zd\n"
 "Size of int: %2zd\n"
 "Size of unsigned: %2zd\n"
 "Size of long: %2zd\n"
 "Size of long int: %2zd\n"
 "Size of long unsigned: %2zd\n"
 "Size of long long int: %2zd\n"
 "Size of long long unsigned: %2zd\n"
 "Size of __int64: %2zd\n"
 "Size of unsigned __int64: %2zd\n"
 "Size of float: %2zd\n"
 "Size of double: %2zd\n"
 "Size of pointer: %2zd\n",
 sizeof v1,
 sizeof v2,
 sizeof v3,
 sizeof v4,
 sizeof v5,
 sizeof v6,
 sizeof v7,
 sizeof v8,
 sizeof v9,
 sizeof v10,
 sizeof v11,
 sizeof v12,
 sizeof v13,
 sizeof v14,
 sizeof v15,
 sizeof v16,
 sizeof v17
);
}

Listing 1-9: Output sizes of common C++ data types

Here’s the build command and output from Listing 1-9:

C:\>cl listing1-9.cpp
Microsoft (R) C/C++ Optimizing Compiler Version 19.15.26730 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

38 Chapter 1

listing1-9.cpp
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/out:listing1-9.exe
listing1-9.obj

C:\>listing1-9
Size of char: 1
Size of unsigned char: 1
Size of short: 2
Size of short int: 2
Size of short unsigned: 2
Size of int: 4
Size of unsigned: 4
Size of long: 4
Size of long int: 4
Size of long unsigned: 4
Size of long long int: 8
Size of long long unsigned: 8
Size of __int64: 8
Size of unsigned __int64: 8
Size of float: 4
Size of double: 8
Size of pointer: 8

1.16.2 Register Usage
Register usage in an assembly language procedure (including the main assem-
bly language function) is also subject to certain Microsoft ABI rules. Within
a procedure, the Microsoft ABI has this to say about register usage):12

•	 Code that calls a function can pass the first four (integer) arguments
to the function (procedure) in the RCX, RDX, R8, and R9 registers,
respectively. Programs pass the first four floating-point arguments in
XMM0, XMM1, XMM2, and XMM3.

•	 Registers RAX, RCX, RDX, R8, R9, R10, and R11 are volatile, which
means that the function/procedure does not need to save the registers’
values across a function/procedure call.

•	 XMM0/YMM0 through XMM5/YMM5 are also volatile. The function/
procedure does not need to preserve these registers across a call.

•	 RBX, RBP, RDI, RSI, RSP, R12, R13, R14, and R15 are nonvolatile
registers. A procedure/function must preserve these registers’ values
across a call. If a procedure modifies one of these registers, it must
save the register’s value before the first such modification and restore
the register’s value from the saved location prior to returning from
the function/procedure.

12. For more details, see the Microsoft documentation at https://docs.microsoft.com/en-us/cpp/
build/x64-calling-convention?view=msvc-160/.

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160/.
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160/.

Hello, World of Assembly Language 39

•	 XMM6 through XMM15 are nonvolatile. A function must preserve
these registers across a function/procedure call (that is, when a pro-
cedure returns, these registers must contain the same values they had
upon entry to that procedure).

•	 Programs that use the x86-64’s floating-point coprocessor instructions
must preserve the value of the floating-point control word across pro-
cedure calls. Such procedures should also leave the floating-point stack
cleared.

•	 Any procedure/function that uses the x86-64’s direction flag must leave
that flag cleared upon return from the procedure/function.

Microsoft C++ expects function return values to appear in one of two
places. Integer (and other non-scalar) results come back in the RAX register
(up to 64 bits). If the return type is smaller than 64 bits, the upper bits of the
RAX register are undefined—for example, if a function returns a short int
(16-bit) result, bits 16 to 63 in RAX may contain garbage. Microsoft’s ABI
specifies that floating-point (and vector) function return results shall come
back in the XMM0 register.

1.16.3 Stack Alignment
Some “magic” instructions appear in various source listings throughout this
chapter (they basically add or subtract values from the RSP register). These
instructions have to do with stack alignment (as required by the Microsoft
ABI). This chapter (and several that follow) supply these instructions in the
code without further explanation. For more details on the purpose of these
instructions, see Chapter 5.

 1.17 For More Information
This chapter has covered a lot of ground! While you still have a lot to learn
about assembly language programming, this chapter, combined with your
knowledge of HLLs (especially C/C++), provides just enough information
to let you start writing real assembly language programs.

Although this chapter covered many topics, the three primary ones of
interest are the x86-64 CPU architecture, the syntax for simple MASM pro-
grams, and interfacing with the C Standard Library.

The following resources provide more information about makefiles:

•	 Wikipedia: https://en.wikipedia.org/wiki/Make_(software)

•	 Managing Projects with GNU Make by Robert Mecklenburg (O’Reilly
Media, 2004)

•	 The GNU Make Book, First Edition, by John Graham-Cumming (No
Starch Press, 2015)

•	 Managing Projects with make, by Andrew Oram and Steve Talbott
(O’Reilly & Associates, 1993)

https://en.wikipedia.org/wiki/Make_(software)

40 Chapter 1

For more information about MVSC:

•	 Microsoft Visual Studio websites: https://visualstudio.microsoft.com/ and
https://visualstudio.microsoft.com/vs/

•	 Microsoft free developer offers: https://visualstudio.microsoft.com/
free-developer-offers/

For more information about MASM:

•	 Microsoft, C++, C, and Assembler documentation: https://docs.microsoft.com/
en-us/cpp/assembler/masm/masm-for-x64-ml64-exe?view=msvc-160/

•	 Waite Group MASM Bible (covers MASM 6, which is 32-bit only, but still
contains lots of useful information about MASM): https://www.amazon.com/
Waite-Groups-Microsoft-Macro-Assembler/dp/0672301555/

For more information about the ABI:

•	 The best documentation comes from Agner Fog’s website: https://www
.agner.org/optimize/.

•	 Microsoft’s website also has information on Microsoft ABI calling
conventions (see https://docs.microsoft.com/en-us/cpp/build/x64-calling-
convention?view=msvc-160 or search for Microsoft calling conventions).

 1.18 Test Yourself

1. What is the name of the Windows command line interpreter program?

2. What is the name of the MASM executable program file?

3. What are the names of the three main system buses?

4. Which register(s) overlap the RAX register?

5. Which register(s) overlap the RBX register?

6. Which register(s) overlap the RSI register?

7. Which register(s) overlap the R8 register?

8. Which register holds the condition code bits?

9. How many bytes are consumed by the following data types?

a. word

b. dword

c. oword

d. qword with a 4 dup (?) operand

e. real8

10. If an 8-bit (byte) memory variable is the destination operand of a mov
instruction, what source operands are legal?

11. If a mov instruction’s destination operand is the EAX register, what is the
largest constant (in bits) you can load into that register?

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/vs/
https://visualstudio.microsoft.com/free-developer-offers/
https://visualstudio.microsoft.com/free-developer-offers/
https://docs.microsoft.com/en-us/cpp/assembler/masm/masm-for-x64-ml64-exe?view=msvc-160/
https://docs.microsoft.com/en-us/cpp/assembler/masm/masm-for-x64-ml64-exe?view=msvc-160/
https://www.amazon.com/Waite-Groups-Microsoft-Macro-Assembler/dp/0672301555/
https://www.amazon.com/Waite-Groups-Microsoft-Macro-Assembler/dp/0672301555/
https://www.agner.org/optimize/
https://www.agner.org/optimize/
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160

Hello, World of Assembly Language 41

12. For the add instruction, fill in the largest constant size (in bits) for all
the destination operands specified in the following table:

Destination Constant size

RAX

EAX

AX

AL

AH

mem32

mem64

13. What is the destination (register) operand size for the lea instruction?

14. What is the source (memory) operand size of the lea instruction?

15. What is the name of the assembly language instruction you use to call a
procedure or function?

16. What is the name of the assembly language instruction you use to
return from a procedure or function?

17. What does ABI stand for?

18. In the Windows ABI, where do you return the following function return
results?

a. 8-bit byte values

b. 16-bit word values

c. 32-bit integer values

d. 64-bit integer values

e. Floating-point values

f. 64-bit pointer values

19. Where do you pass the first parameter to a Microsoft ABI–compatible
function?

20. Where do you pass the second parameter to a Microsoft ABI–compatible
function?

21. Where do you pass the third parameter to a Microsoft ABI–compatible
function?

22. Where do you pass the fourth parameter to a Microsoft ABI–compatible
function?

23. What assembly language data type corresponds to a C/C++ long int?

24. What assembly language data type corresponds to a C/C++ long long
unsigned?

2
C O M P U T E R D A T A

R E P R E S E N T A T I O N
A N D O P E R A T I O N S

A major stumbling block many beginners
encounter when attempting to learn assem-

bly language is the common use of the binary
and hexadecimal numbering systems. Although

hexadecimal numbers are a little strange, their advan-
tages outweigh their disadvantages by a large margin.
Understanding the binary and hexadecimal numbering
systems is important because their use simplifies the discussion of other topics,
including bit operations, signed numeric representation, character codes, and
packed data.

This chapter discusses several important concepts, including the following:

•	 The binary and hexadecimal numbering systems

•	 Binary data organization (bits, nibbles, bytes, words, and double words)

•	 Signed and unsigned numbering systems

•	 Arithmetic, logical, shift, and rotate operations on binary values

44 Chapter 2

•	 Bit fields and packed data

•	 Floating-point and binary-code decimal formats

•	 Character data

This is basic material, and the remainder of this text depends on your
understanding of these concepts. If you are already familiar with these terms
from other courses or study, you should at least skim this material before
proceeding to the next chapter. If you are unfamiliar with this material, or
only vaguely familiar with it, you should study it carefully before proceeding.
All of the material in this chapter is important! Do not skip over any material.

 2.1 Numbering Systems
Most modern computer systems do not represent numeric values using the
decimal (base-10) system. Instead, they typically use a binary, or two’s com-
plement, numbering system.

2.1.1 A Review of the Decimal System
You’ve been using the decimal numbering system for so long that you probably
take it for granted. When you see a number like 123, you don’t think about the
value 123; rather, you generate a mental image of how many items this value
represents. In reality, however, the number 123 represents the following:

(1 × 102) + (2 × 101) + (3 × 100)

or

100 + 20 + 3

In a decimal positional numbering system, each digit appearing to the left
of the decimal point represents a value between 0 and 9 times an increasing
power of 10. Digits appearing to the right of the decimal point represent a
value between 0 and 9 times an increasing negative power of 10. For exam-
ple, the value 123.456 means this:

(1 × 102) + (2 × 101) + (3 × 100) + (4 × 10-1) + (5 × 10-2) + (6 × 10-3)

or

100 + 20 + 3 + 0.4 + 0.05 + 0.006

2.1.2 The Binary Numbering System
Most modern computer systems operate using binary logic. The computer
represents values using two voltage levels (usually 0 V and +2.4 to 5 V).
These two levels can represent exactly two unique values. These could be
any two different values, but they typically represent the values 0 and 1, the
two digits in the binary numbering system.

The binary numbering system works just like the decimal numbering
system, except binary allows only the digits 0 and 1 (rather than 0 to 9) and

Computer Data Representation and Operations 45

uses powers of 2 rather than powers of 10. Therefore, converting a binary
number to decimal is easy. For each 1 in a binary string, add 2n, where n is
the zero-based position of the binary digit. For example, the binary value
110010102 represents the following:

(1 × 27) + (1 × 26) + (0 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (1 × 21)
+ (0 × 20)

=

12810 + 6410 + 810 + 210

=

20210

Converting decimal to binary is slightly more difficult. You must find
those powers of 2 that, when added together, produce the decimal result.

A simple way to convert decimal to binary is the even/odd—divide-by-two
algorithm. This algorithm uses the following steps:

1. If the number is even, emit a 0. If the number is odd, emit a 1.

2. Divide the number by 2 and throw away any fractional component or
remainder.

3. If the quotient is 0, the algorithm is complete.

4. If the quotient is not 0 and is odd, insert a 1 before the current string; if
the number is even, prefix your binary string with 0.

5. Go back to step 2 and repeat.

Binary numbers, although they have little importance in high-level lan-
guages, appear everywhere in assembly language programs. So you should
be comfortable with them.

2.1.3 Binary Conventions
In the purest sense, every binary number contains an infinite number of
digits (or bits, which is short for binary digits). For example, we can represent
the number 5 by any of the following:

101 00000101 0000000000101 . . . 000000000000101

Any number of leading-zero digits may precede the binary number with-
out changing its value. Because the x86-64 typically works with groups of 8
bits, we’ll zero-extend all binary numbers to a multiple of 4 or 8 bits. Following
this convention, we’d represent the number 5 as 01012 or 000001012.

To make larger numbers easier to read, we will separate each group
of 4 binary bits with an underscore. For example, we will write the binary
value 1010111110110010 as 1010_1111_1011_0010.

N O T E MASM does not allow you to insert underscores into the middle of a binary number.
This is a convention adopted in this book for readability purposes.

46 Chapter 2

We’ll number each bit as follows:

1. The rightmost bit in a binary number is bit position 0.

2. Each bit to the left is given the next successive bit number.

An 8-bit binary value uses bits 0 to 7:

X7 X6 X5 X4 X3 X2 X1 X0

A 16-bit binary value uses bit positions 0 to 15:

X15 X14 X13 X12 X11 X10 X9 X8 X7 X6 X5 X4 X3 X2 X1 X0

A 32-bit binary value uses bit positions 0 to 31, and so on.
Bit 0 is the low-order (LO) bit; some refer to this as the least significant bit.

The leftmost bit is called the high-order (HO) bit, or the most significant bit.
We’ll refer to the intermediate bits by their respective bit numbers.

In MASM, you can specify binary values as a string of 0 or 1 digits end-
ing with the character b. Remember, MASM doesn’t allow underscores in
binary numbers.

 2.2 The Hexadecimal Numbering System
Unfortunately, binary numbers are verbose. To represent the value 20210
requires eight binary digits, but only three decimal digits. When dealing
with large values, binary numbers quickly become unwieldy. Unfortunately,
the computer “thinks” in binary, so most of the time using the binary num-
bering system is convenient. Although we can convert between decimal and
binary, the conversion is not a trivial task.

The hexadecimal (base-16) numbering system solves many of the prob-
lems inherent in the binary system: hexadecimal numbers are compact, and
it’s simple to convert them to binary, and vice versa. For this reason, most
engineers use the hexadecimal numbering system.

Because the radix (base) of a hexadecimal number is 16, each hexa-
decimal digit to the left of the hexadecimal point represents a certain
value multiplied by a successive power of 16. For example, the number
123416 is equal to this:

(1 × 163) + (2 × 162) + (3 × 161) + (4 × 160)

or

4096 + 512 + 48 + 4 = 466010

Each hexadecimal digit can represent one of 16 values between 0 and 1510.
Because there are only 10 decimal digits, we need 6 additional digits to rep-
resent the values in the range 1010 to 1510. Rather than create new symbols for
these digits, we use the letters A to F. The following are all examples of valid
hexadecimal numbers:

123416 DEAD16 BEEF16 0AFB16 F00116 D8B416

Computer Data Representation and Operations 47

Because we’ll often need to enter hexadecimal numbers into the computer
system, and on most computer systems you cannot enter a subscript to denote
the radix of the associated value, we need a different mechanism for repre-
senting hexadecimal numbers. We’ll adopt the following MASM conventions:

1. All hexadecimal values begin with a numeric character and have an h
suffix; for example, 123A4h and 0DEADh.

2. All binary values end with a b character; for example, 10010b.

3. Decimal numbers do not have a suffix character.

4. If the radix is clear from the context, this book may drop the trailing h
or b character.

Here are some examples of valid hexadecimal numbers using MASM
notation:

1234h 0DEADh 0BEEFh 0AFBh 0F001h 0D8B4h

As you can see, hexadecimal numbers are compact and easy to read. In
addition, you can easily convert between hexadecimal and binary. Table 2-1
provides all the information you’ll ever need to convert any hexadecimal
number into a binary number, or vice versa.

Table 2-1: Binary/Hexadecimal
Conversion

Binary Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

To convert a hexadecimal number into a binary number, substitute
the corresponding 4 bits for each hexadecimal digit in the number. For

48 Chapter 2

example, to convert 0ABCDh into a binary value, convert each hexadecimal
digit according to Table 2-1, as shown here:

A B C D Hexadecimal

1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy:

1. Pad the binary number with 0s to make sure that the number contains a
multiple of 4 bits. For example, given the binary number 1011001010, add
2 bits to the left of the number so that it contains 12 bits: 001011001010.

2. Separate the binary value into groups of 4 bits; for example,
0010_1100_1010.

3. Look up these binary values in Table 2-1 and substitute the appropriate
hexadecimal digits: 2CAh.

Contrast this with the difficulty of conversion between decimal and
binary, or decimal and hexadecimal!

Because converting between hexadecimal and binary is an operation
you will need to perform over and over again, you should take a few min-
utes to memorize the conversion table. Even if you have a calculator that
will do the conversion for you, you’ll find manual conversion to be a lot
faster and more convenient.

 2.3 A Note About Numbers vs. Representation
Many people confuse numbers and their representation. A common ques-
tion beginning assembly language students ask is, “I have a binary number
in the EAX register. How do I convert that to a hexadecimal number in the
EAX register?” The answer is, “You don’t.”

Although a strong argument could be made that numbers in memory
or in registers are represented in binary, it is best to view values in memory
or in a register as abstract numeric quantities. Strings of symbols like 128,
80h, or 10000000b are not different numbers; they are simply different rep-
resentations for the same abstract quantity that we refer to as one hundred
twenty-eight. Inside the computer, a number is a number regardless of repre-
sentation; the only time representation matters is when you input or output
the value in a human-readable form.

Human-readable forms of numeric quantities are always strings of char-
acters. To print the value 128 in human-readable form, you must convert the
numeric value 128 to the three-character sequence 1 followed by 2 followed
by 8. This would provide the decimal representation of the numeric quantity.
If you prefer, you could convert the numeric value 128 to the three-character
sequence 80h. It’s the same number, but we’ve converted it to a different
sequence of characters because (presumably) we wanted to view the number
using hexadecimal representation rather than decimal. Likewise, if we want
to see the number in binary, we must convert this numeric value to a string
containing a 1 followed by seven 0 characters.

Computer Data Representation and Operations 49

Pure assembly language has no generic print or write functions you
can call to display numeric quantities as strings on your console. You could
write your own procedures to handle this process (and this book considers
some of those procedures later). For the time being, the MASM code in this
book relies on the C Standard Library printf() function to display numeric
values. Consider the program in Listing 2-1, which converts various values
to their hexadecimal equivalents.

; Listing 2-1

; Displays some numeric values on the console.

 option casemap:none

nl = 10 ; ASCII code for newline

 .data
i qword 1
j qword 123
k qword 456789

titleStr byte 'Listing 2-1', 0

fmtStrI byte "i=%d, converted to hex=%x", nl, 0
fmtStrJ byte "j=%d, converted to hex=%x", nl, 0
fmtStrK byte "k=%d, converted to hex=%x", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc

; Load address of "titleStr" into the RAX register (RAX holds
; the function return result) and return back to the caller:

 lea rax, titleStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Call printf three times to print the three values i, j, and k:

; printf("i=%d, converted to hex=%x\n", i, i);

50 Chapter 2

 lea rcx, fmtStrI
 mov rdx, i
 mov r8, rdx
 call printf

; printf("j=%d, converted to hex=%x\n", j, j);

 lea rcx, fmtStrJ
 mov rdx, j
 mov r8, rdx
 call printf

; printf("k=%d, converted to hex=%x\n", k, k);

 lea rcx, fmtStrK
 mov rdx, k
 mov r8, rdx
 call printf

; Another "magic" instruction that undoes the effect of the previous
; one before this procedure returns to its caller.

 add rsp, 56

 ret ; Returns to caller

asmMain endp
 end

Listing 2-1: Decimal-to-hexadecimal conversion program

Listing 2-1 uses the generic c.cpp program from Chapter 1 (and the
generic build.bat batch file as well). You can compile and run this program
by using the following commands at the command line:

C:\>build listing2-1

C:\>echo off
 Assembling: listing2-1.asm
c.cpp

C:\> listing2-1
Calling Listing 2-1:
i=1, converted to hex=1
j=123, converted to hex=7b
k=456789, converted to hex=6f855
Listing 2-1 terminated

 2.4 Data Organization
In pure mathematics, a value’s representation may require an arbitrary
number of bits. Computers, on the other hand, generally work with a

Computer Data Representation and Operations 51

specific number of bits. Common collections are single bits, groups of 4 bits
(called nibbles), 8 bits (bytes), 16 bits (words), 32 bits (double words, or dwords),
64 bits (quad words, or qwords), 128 bits (octal words, or owords), and more.

2.4.1 Bits
The smallest unit of data on a binary computer is a single bit. With a single
bit, you can represent any two distinct items. Examples include 0 or 1, true
or false, and right or wrong. However, you are not limited to representing
binary data types; you could use a single bit to represent the numbers 723
and 1245 or, perhaps, the colors red and blue, or even the color red and the
number 3256. You can represent any two different values with a single bit,
but only two values with a single bit.

Different bits can represent different things. For example, you could
use 1 bit to represent the values 0 and 1, while a different bit could repre-
sent the values true and false. How can you tell by looking at the bits? The
answer is that you can’t. This illustrates the whole idea behind computer
data structures: data is what you define it to be. If you use a bit to represent
a Boolean (true/false) value, then that bit (by your definition) represents
true or false. However, you must be consistent. If you’re using a bit to repre-
sent true or false at one point in your program, you shouldn’t use that value
to represent red or blue later.

2.4.2 Nibbles
A nibble is a collection of 4 bits. With a nibble, we can represent up to 16 dis-
tinct values because a string of 4 bits has 16 unique combinations:

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Nibbles are an interesting data structure because it takes 4 bits to rep-
resent a single digit in binary-coded decimal (BCD) numbers1 and hexadecimal
numbers. In the case of hexadecimal numbers, the values 0, 1, 2, 3, 4, 5, 6, 7,

1. Binary-coded decimal is a numeric scheme used to represent decimal numbers, using 4 bits
for each decimal digit.

52 Chapter 2

8, 9, A, B, C, D, E, and F are represented with 4 bits. BCD uses 10 different
digits (0, 1, 2, 3, 4, 5, 6, 7, 8 and 9) and also requires 4 bits (because we can
represent only eight different values with 3 bits, and the additional six values
we can represent with 4 bits are never used in BCD representation). In fact,
any 16 distinct values can be represented with a nibble, though hexadecimal
and BCD digits are the primary items we can represent with a single nibble.

2.4.3 Bytes
Without question, the most important data structure used by the x86-64
microprocessor is the byte, which consists of 8 bits. Main memory and I/O
addresses on the x86-64 are all byte addresses. This means that the small-
est item that can be individually accessed by an x86-64 program is an 8-bit
value. To access anything smaller requires that we read the byte containing
the data and eliminate the unwanted bits. The bits in a byte are normally
numbered from 0 to 7, as shown in Figure 2-1.

7 6 5 4 3 2 1 0

Figure 2-1: Bit numbering

Bit 0 is the LO bit, or least significant bit, and bit 7 is the HO bit, or most
significant bit of the byte. We’ll refer to all other bits by their number.

A byte contains exactly two nibbles (see Figure 2-2).

HO Nibble

7 6 5 4 3 2 1 0

LO Nibble

Figure 2-2: The two nibbles in
a byte

Bits 0 to 3 compose the low-order nibble, and bits 4 to 7 form the high-
order nibble. Because a byte contains exactly two nibbles, byte values require
two hexadecimal digits.

Because a byte contains 8 bits, it can represent 28 (256) different val-
ues. Generally, we’ll use a byte to represent numeric values in the range 0
through 255, signed numbers in the range –128 through +127 (see “Signed
and Unsigned Numbers” on page 62), ASCII IBM character codes, and
other special data types requiring no more than 256 different values. Many
data types have fewer than 256 items, so 8 bits are usually sufficient.

Because the x86-64 is a byte-addressable machine, it’s more efficient to
manipulate a whole byte than an individual bit or nibble. So it’s more effi-
cient to use a whole byte to represent data types that require no more than
256 items, even if fewer than 8 bits would suffice.

Probably the most important use for a byte is holding a character value.
Characters typed at the keyboard, displayed on the screen, and printed on

Computer Data Representation and Operations 53

the printer all have numeric values. To communicate with the rest of the
world, PCs typically use a variant of the ASCII character set or the Unicode
character set. The ASCII character set has 128 defined codes.

Bytes are also the smallest variable you can create in a MASM program. To
create an arbitrary byte variable, you should use the byte data type, as follows:

 .data
byteVar byte ?

The byte data type is a partially untyped data type. The only type
information associated with a byte object is its size (1 byte).2 You may store
any 8-bit value (small signed integers, small unsigned integers, characters,
and the like) into a byte variable. It is up to you to keep track of the type of
object you’ve put into a byte variable.

2.4.4 Words
A word is a group of 16 bits. We’ll number the bits in a word from 0 to 15, as
Figure 2-3 shows. Like the byte, bit 0 is the low-order bit. For words, bit 15
is the high-order bit. When referencing the other bits in a word, we’ll use
their bit position number.

7 6 5 4 3 2 1 089101112131415

Figure 2-3: Bit numbers in a word

A word contains exactly 2 bytes (and, therefore, four nibbles). Bits 0 to
7 form the low-order byte, and bits 8 to 15 form the high-order byte (see
Figures 2-4 and 2-5).

7 6 5 4 3 2 1 089101112131415

HO Byte LO Byte

Figure 2-4: The 2 bytes in a word

HO nibble

Nibble 3

7 6 5 4 3 2 1 089101112131415

LO nibble

Nibble 0Nibble 1Nibble 2

Figure 2-5: Nibbles in a word

2. For MASM’s HLL statements, the byte directive also notes that the value is an unsigned,
rather than signed, value. However, for most normal machine instructions, MASM ignores
this extra type information.

54 Chapter 2

With 16 bits, you can represent 216 (65,536) values. These could be the
values in the range 0 to 65,535 or, as is usually the case, the signed values
–32,768 to +32,767, or any other data type with no more than 65,536 values.

The three major uses for words are short signed integer values, short
unsigned integer values, and Unicode characters. Unsigned numeric values
are represented by the binary value corresponding to the bits in the word.
Signed numeric values use the two’s complement form for numeric values
(see “Sign Extension and Zero Extension” on page 67). As Unicode charac-
ters, words can represent up to 65,536 characters, allowing the use of non-
Roman character sets in a computer program. Unicode is an international
standard, like ASCII, that allows computers to process non-Roman charac-
ters such as Kanji, Greek, and Russian characters.

As with bytes, you can also create word variables in a MASM program.
To create an arbitrary word variable, use the word data type as follows:

 .data
w word ?

2.4.5 Double Words
A double word is exactly what its name indicates: a pair of words. Therefore,
a double-word quantity is 32 bits long, as shown in Figure 2-6.

31 24 16 8 071523

Figure 2-6: Bit numbers in a double word

Naturally, this double word can be divided into a high-order word and a
low-order word, 4 bytes, or eight different nibbles (see Figure 2-7).

Double words (dwords) can represent all kinds of things. A common item
you will represent with a double word is a 32-bit integer value (which allows
unsigned numbers in the range 0 to 4,294,967,295 or signed numbers in
the range –2,147,483,648 to 2,147,483,647). 32-bit floating-point values also
fit into a double word.

31 24 16 8 071523

HO word LO word

31 24 16 8 071523

Byte 3 Byte 2 Byte 1 Byte 0
HO byte LO byte

31 24 16 8 071523

Nibble 7 Nibble 6 Nibble 5 Nibble 4 Nibble 3 Nibble 2 Nibble 1 Nibble 0

HO nibble LO nibble
Figure 2-7: Nibbles, bytes, and words in a double word

Computer Data Representation and Operations 55

You can create an arbitrary double-word variable by using the dword data
type, as the following example demonstrates:

 .data
d dword ?

2.4.6 Quad Words and Octal Words
Quad-word (64-bit) values are also important because 64-bit integers, point-
ers, and certain floating-point data types require 64 bits. Likewise, the SSE/
MMX instruction set of modern x86-64 processors can manipulate 64-bit
values. In a similar vein, octal-word (128-bit) values are important because the
AVX/SSE instruction set can manipulate 128-bit values. MASM allows the dec-
laration of 64- and 128-bit values by using the qword and oword types, as follows:

 .data
o oword ?
q qword ?

You may not directly manipulate 128-bit integer objects using standard
instructions like mov, add, and sub because the standard x86-64 integer registers
process only 64 bits at a time. In Chapter 8, you will see how to manipulate
these extended-precision values; Chapter 11 describes how to directly manipu-
late oword values by using SIMD instructions.

 2.5 Logical Operations on Bits
We’ll do four primary logical operations (Boolean functions) with hexadec-
imal and binary numbers: AND, OR, XOR (exclusive-or), and NOT.

2.5.1 The AND Operation
The logical AND operation is a dyadic operation (meaning it accepts exactly
two operands).3 These operands are individual binary bits. The AND opera-
tion is shown here:

0 and 0 = 0
0 and 1 = 0
1 and 0 = 0
1 and 1 = 1

A compact way to represent the logical AND operation is with a truth
table. A truth table takes the form shown in Table 2-2.

Table 2-2: AND Truth
Table

AND 0 1

0 0 0

1 0 1

3. Many texts call this a binary operation. The term dyadic means the same thing and avoids the
confusion with the binary numbering system.

56 Chapter 2

This is just like the multiplication tables you’ve encountered in school.
The values in the left column correspond to the left operand of the AND
operation. The values in the top row correspond to the right operand of
the AND operation. The value located at the intersection of the row and
column (for a particular pair of input values) is the result of logically ANDing
those two values together.

In English, the logical AND operation is, “If the first operand is 1 and
the second operand is 1, the result is 1; otherwise, the result is 0.” We could
also state this as, “If either or both operands are 0, the result is 0.”

You can use the logical AND operation to force a 0 result: if one of
the operands is 0, the result is always 0 regardless of the other operand. In
Table 2-2, for example, the row labeled with a 0 input contains only 0s, and
the column labeled with a 0 contains only 0s. Conversely, if one operand
contains a 1, the result is exactly the value of the second operand. These
results of the AND operation are important, particularly when we want to
force bits to 0. We will investigate these uses of the logical AND operation
in the next section.

2.5.2 The OR Operation
The logical OR operation is also a dyadic operation. Its definition is as follows:

0 or 0 = 0
0 or 1 = 1
1 or 0 = 1
1 or 1 = 1

Table 2-3 shows the truth table for the OR operation.

Table 2-3: OR Truth
Table

OR 0 1

0 0 1

1 1 1

Colloquially, the logical OR operation is, “If the first operand or the
second operand (or both) is 1, the result is 1; otherwise, the result is 0.” This
is also known as the inclusive-or operation.

If one of the operands to the logical OR operation is a 1, the result
is always 1 regardless of the second operand’s value. If one operand is 0,
the result is always the value of the second operand. Like the logical AND
operation, this is an important side effect of the logical OR operation that
will prove quite useful.

Note that there is a difference between this form of the inclusive logical
OR operation and the standard English meaning. Consider the sentence “I am
going to the store or I am going to the park.” Such a statement implies that the
speaker is going to the store or to the park, but not to both places. Therefore,
the English version of logical OR is slightly different from the inclusive-or
operation; indeed, this is the definition of the exclusive-or operation.

Computer Data Representation and Operations 57

2.5.3 The XOR Operation
The logical XOR (exclusive-or) operation is also a dyadic operation. Its defini-
tion follows:

0 xor 0 = 0
0 xor 1 = 1
1 xor 0 = 1
1 xor 1 = 0

Table 2-4 shows the truth table for the XOR operation.

Table 2-4: XOR Truth
Table

XOR 0 1

0 0 1

1 1 0

In English, the logical XOR operation is, “If the first operand or the
second operand, but not both, is 1, the result is 1; otherwise, the result is 0.”
The exclusive-or operation is closer to the English meaning of the word or
than is the logical OR operation.

If one of the operands to the logical exclusive-or operation is a 1, the
result is always the inverse of the other operand; that is, if one operand is 1,
the result is 0 if the other operand is 1, and the result is 1 if the other oper-
and is 0. If the first operand contains a 0, the result is exactly the value of the
second operand. This feature lets you selectively invert bits in a bit string.

2.5.4 The NOT Operation
The logical NOT operation is a monadic operation (meaning it accepts only
one operand):

not 0 = 1
not 1 = 0

The truth table for the NOT operation appears in Table 2-5.

Table 2-5: NOT Truth
Table

NOT 0 1

1 0

 2.6 Logical Operations on Binary Numbers and Bit Strings
The previous section defines the logical functions for single-bit operands.
Because the x86-64 uses groups of 8, 16, 32, 64, or more bits,4 we need to
extend the definition of these functions to deal with more than 2 bits.

4. The XMM and YMM registers process up to 128 or 256 bits, respectively. If you have a CPU
that supports ZMM registers, it can process 512 bits at a time.

58 Chapter 2

Logical functions on the x86-64 operate on a bit-by-bit (or bitwise) basis.
Given two values, these functions operate on bit 0 of each value, producing
bit 0 of the result; then they operate on bit 1 of the input values, producing
bit 1 of the result, and so on. For example, if you want to compute the logi-
cal AND of the following two 8-bit numbers, you would perform the logical
AND operation on each column independently of the others:

1011_0101b
1110_1110b

1010_0100b

You may apply this bit-by-bit calculation to the other logical functions
as well.

To perform a logical operation on two hexadecimal numbers, you should
convert them to binary first.

The ability to force bits to 0 or 1 by using the logical AND/OR opera-
tions and the ability to invert bits using the logical XOR operation are very
important when working with strings of bits (for example, binary numbers).
These operations let you selectively manipulate certain bits within a bit
string while leaving other bits unaffected.

For example, if you have an 8-bit binary value X and you want to guar-
antee that bits 4 to 7 contain 0s, you could logically AND the value X with
the binary value 0000_1111b. This bitwise logical AND operation would
force the HO 4 bits to 0 and pass the LO 4 bits of X unchanged. Likewise,
you could force the LO bit of X to 1 and invert bit 2 of X by logically ORing
X with 0000_0001b and logically XORing X with 0000_0100b, respectively.

Using the logical AND, OR, and XOR operations to manipulate bit
strings in this fashion is known as masking bit strings. We use the term mask-
ing because we can use certain values (1 for AND, 0 for OR/XOR) to mask
out or mask in certain bits from the operation when forcing bits to 0, 1, or
their inverse.

The x86-64 CPUs support four instructions that apply these bitwise
logical operations to their operands. The instructions are and, or, xor, and
not. The and, or, and xor instructions use the same syntax as the add and sub
instructions:

and dest, source
or dest, source
xor dest, source

These operands have the same limitations as the add operands. Specifically,
the source operand has to be a constant, memory, or register operand, and
the dest operand must be a memory or register operand. Also, the operands
must be the same size and cannot both be memory operands. If the destina-
tion operand is 64 bits and the source operand is a constant, that constant
is limited to 32 bits (or fewer), and the CPU will sign-extend the value to
64 bits (see “Sign Extension and Zero Extension” on page 67).

Computer Data Representation and Operations 59

These instructions compute the obvious bitwise logical operation via
the following equation:

dest = dest operator source

The x86-64 logical not instruction, because it has only a single operand,
uses a slightly different syntax. This instruction takes the following form:

not dest

This instruction computes the following result:

dest = not(dest)

The dest operand must be a register or memory operand. This instruc-
tion inverts all the bits in the specified destination operand.

The program in Listing 2-2 inputs two hexadecimal values from the user
and calculates their logical and, or, xor, and not.

; Listing 2-2

; Demonstrate AND, OR, XOR, and NOT logical instructions.

 option casemap:none

nl = 10 ; ASCII code for newline

 .data
leftOp dword 0f0f0f0fh
rightOp1 dword 0f0f0f0f0h
rightOp2 dword 12345678h

titleStr byte 'Listing 2-2', 0

fmtStr1 byte "%lx AND %lx = %lx", nl, 0
fmtStr2 byte "%lx OR %lx = %lx", nl, 0
fmtStr3 byte "%lx XOR %lx = %lx", nl, 0
fmtStr4 byte "NOT %lx = %lx", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc

; Load address of "titleStr" into the RAX register (RAX holds the
; function return result) and return back to the caller:

 lea rax, titleStr
 ret
getTitle endp

60 Chapter 2

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Demonstrate the AND instruction:

 lea rcx, fmtStr1
 mov edx, leftOp
 mov r8d, rightOp1
 mov r9d, edx ; Compute leftOp
 and r9d, r8d ; AND rightOp1
 call printf

 lea rcx, fmtStr1
 mov edx, leftOp
 mov r8d, rightOp2
 mov r9d, r8d
 and r9d, edx
 call printf

; Demonstrate the OR instruction:

 lea rcx, fmtStr2
 mov edx, leftOp
 mov r8d, rightOp1
 mov r9d, edx ; Compute leftOp
 or r9d, r8d ; OR rightOp1
 call printf

 lea rcx, fmtStr2
 mov edx, leftOp
 mov r8d, rightOp2
 mov r9d, r8d
 or r9d, edx
 call printf

; Demonstrate the XOR instruction:

 lea rcx, fmtStr3
 mov edx, leftOp
 mov r8d, rightOp1
 mov r9d, edx ; Compute leftOp
 xor r9d, r8d ; XOR rightOp1
 call printf

 lea rcx, fmtStr3
 mov edx, leftOp
 mov r8d, rightOp2
 mov r9d, r8d

Computer Data Representation and Operations 61

 xor r9d, edx
 call printf

; Demonstrate the NOT instruction:

 lea rcx, fmtStr4
 mov edx, leftOp
 mov r8d, edx ; Compute not leftOp
 not r8d
 call printf

 lea rcx, fmtStr4
 mov edx, rightOp1
 mov r8d, edx ; Compute not rightOp1
 not r8d
 call printf

 lea rcx, fmtStr4
 mov edx, rightOp2
 mov r8d, edx ; Compute not rightOp2
 not r8d
 call printf

; Another "magic" instruction that undoes the effect of the previous
; one before this procedure returns to its caller.

 add rsp, 56

 ret ; Returns to caller

asmMain endp
 end

Listing 2-2: and, or, xor, and not example

Here’s the result of building and running this code:

C:\MASM64>build listing2-2

C:\MASM64>ml64 /nologo /c /Zi /Cp listing2-2.asm
 Assembling: listing2-2.asm

C:\MASM64>cl /nologo /O2 /Zi /utf-8 /Fe listing2-2.exe c.cpp listing2-2.obj
c.cpp

C:\MASM64> listing2-2
Calling Listing 2-2:
f0f0f0f AND f0f0f0f0 = 0
f0f0f0f AND 12345678 = 2040608
f0f0f0f OR f0f0f0f0 = ffffffff
f0f0f0f OR 12345678 = 1f3f5f7f
f0f0f0f XOR f0f0f0f0 = ffffffff
f0f0f0f XOR 12345678 = 1d3b5977
NOT f0f0f0f = f0f0f0f0
NOT f0f0f0f0 = f0f0f0f

62 Chapter 2

NOT 12345678 = edcba987
Listing 2-2 terminated

By the way, you will often see the following “magic” instruction:

xor reg, reg

XORing a register with itself sets that register to 0. Except for 8-bit
registers, the xor instruction is usually more efficient than moving the
immediate constant into the register. Consider the following:

xor eax, eax ; Just 2 bytes long in machine code
mov eax, 0 ; Depending on register, often 6 bytes long

The savings are even greater when dealing with 64-bit registers (as the
immediate constant 0 is 8 bytes long by itself).

 2.7 Signed and Unsigned Numbers
Thus far, we’ve treated binary numbers as unsigned values. The binary
number . . . 00000 represents 0, . . . 00001 represents 1, . . . 00010 represents 2,
and so on toward infinity. With n bits, we can represent 2n unsigned numbers.
What about negative numbers? If we assign half of the possible combina-
tions to the negative values, and half to the positive values and 0, with n bits
we can represent the signed values in the range –2n-1 to +2n-1 –1. So we can
represent the negative values –128 to –1 and the non-negative values 0 to
127 with a single 8-bit byte. With a 16-bit word, we can represent values in
the range –32,768 to +32,767. With a 32-bit double word, we can represent
values in the range –2,147,483,648 to +2,147,483,647.

In mathematics (and computer science), the complement method encodes
negative and non-negative (positive plus zero) numbers into two equal sets
in such a way that they can use the same algorithm (or hardware) to perform
addition and produce the correct result regardless of the sign.

The x86-64 microprocessor uses the two’s complement notation to represent
signed numbers. In this system, the HO bit of a number is a sign bit (dividing
the integers into two equal sets). If the sign bit is 0, the number is positive (or
zero); if the sign bit is 1, the number is negative (taking a complement form,
which I’ll describe in a moment). Following are some examples.

For 16-bit numbers:

•	 8000h is negative because the HO bit is 1.

•	 100h is positive because the HO bit is 0.

•	 7FFFh is positive.

•	 0FFFFh is negative.

•	 0FFFh is positive.

If the HO bit is 0, the number is positive (or 0) and uses the standard
binary format. If the HO bit is 1, the number is negative and uses the two’s

Computer Data Representation and Operations 63

complement form (which is the magic form that supports addition of nega-
tive and non-negative numbers with no special hardware).

To convert a positive number to its negative, two’s complement form,
you use the following algorithm:

1. Invert all the bits in the number; that is, apply the logical NOT function.

2. Add 1 to the inverted result and ignore any carry out of the HO bit.

This produces a bit pattern that satisfies the mathematical definition
of the complement form. In particular, adding negative and non-negative
numbers using this form produces the expected result.

For example, to compute the 8-bit equivalent of –5:

•	 0000_0101b 5 (in binary).

•	 1111_1010b Invert all the bits.

•	 1111_1011b Add 1 to obtain result.

If we take –5 and perform the two’s complement operation on it, we get
our original value, 0000_0101b, back again:

•	 1111_1011b Two’s complement for –5.

•	 0000_0100b Invert all the bits.

•	 0000_0101b Add 1 to obtain result (+5).

Note that if we add +5 and –5 together (ignoring any carry out of the
HO bit), we get the expected result of 0:

 1111_1011b Two's complement for -5
 + 0000_0101b Invert all the bits and add 1

 (1) 0000_0000b Sum is zero, if we ignore carry

The following examples provide some positive and negative 16-bit
signed values:

•	 7FFFh: +32767, the largest 16-bit positive number

•	 8000h: –32768, the smallest 16-bit negative number

•	 4000h: +16384

To convert the preceding numbers to their negative counterpart (that
is, to negate them), do the following:

7FFFh: 0111_1111_1111_1111b +32,767
 1000_0000_0000_0000b Invert all the bits (8000h)
 1000_0000_0000_0001b Add 1 (8001h or -32,767)

4000h: 0100_0000_0000_0000b 16,384
 1011_1111_1111_1111b Invert all the bits (0BFFFh)
 1100_0000_0000_0000b Add 1 (0C000h or -16,384)

64 Chapter 2

8000h: 1000_0000_0000_0000b -32,768
 0111_1111_1111_1111b Invert all the bits (7FFFh)
 1000_0000_0000_0000b Add one (8000h or -32,768)

8000h inverted becomes 7FFFh. After adding 1, we obtain 8000h! Wait,
what’s going on here? – (–32,768) is –32,768? Of course not. But the value
+32,768 cannot be represented with a 16-bit signed number, so we cannot
negate the smallest negative value.

Usually, you will not need to perform the two’s complement operation
by hand. The x86-64 microprocessor provides an instruction, neg (negate),
that performs this operation for you:

neg dest

This instruction computes dest = -dest; and the operand must be a mem-
ory location or a register. neg operates on byte-, word-, dword-, and qword-sized
objects. Because this is a signed integer operation, it only makes sense to oper-
ate on signed integer values. The program in Listing 2-3 demonstrates the two’s
complement operation and the neg instruction on signed 8-bit integer values.

; Listing 2-3

; Demonstrate two's complement operation and input of numeric values.

 option casemap:none

nl = 10 ; ASCII code for newline
maxLen = 256

 .data
titleStr byte 'Listing 2-3', 0

prompt1 byte "Enter an integer between 0 and 127:", 0
fmtStr1 byte "Value in hexadecimal: %x", nl, 0
fmtStr2 byte "Invert all the bits (hexadecimal): %x", nl, 0
fmtStr3 byte "Add 1 (hexadecimal): %x", nl, 0
fmtStr4 byte "Output as signed integer: %d", nl, 0
fmtStr5 byte "Using neg instruction: %d", nl, 0

intValue sqword ?
input byte maxLen dup (?)

 .code
 externdef printf:proc
 externdef atoi:proc
 externdef readLine:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, titleStr

Computer Data Representation and Operations 65

 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without explanation at this point:

 sub rsp, 56

; Read an unsigned integer from the user: This code will blindly
; assume that the user's input was correct. The atoi function returns
; zero if there was some sort of error on the user input. Later
; chapters in Ao64A will describe how to check for errors from the
; user.

 lea rcx, prompt1
 call printf

 lea rcx, input
 mov rdx, maxLen
 call readLine

; Call C stdlib atoi function.

; i = atoi(str)

 lea rcx, input
 call atoi
 and rax, 0ffh ; Only keep LO 8 bits
 mov intValue, rax

; Print the input value (in decimal) as a hexadecimal number:

 lea rcx, fmtStr1
 mov rdx, rax
 call printf

; Perform the two's complement operation on the input number.
; Begin by inverting all the bits (just work with a byte here).

 mov rdx, intValue
 not dl ; Only work with 8-bit values!
 lea rcx, fmtStr2
 call printf

; Invert all the bits and add 1 (still working with just a byte).

 mov rdx, intValue
 not rdx
 add rdx, 1
 and rdx, 0ffh ; Only keep LO eight bits

66 Chapter 2

 lea rcx, fmtStr3
 call printf

; Negate the value and print as a signed integer (work with a full
; integer here, because C++ %d format specifier expects a 32-bit
; integer). HO 32 bits of RDX get ignored by C++.

 mov rdx, intValue
 not rdx
 add rdx, 1
 lea rcx, fmtStr4
 call printf

; Negate the value using the neg instruction.

 mov rdx, intValue
 neg rdx
 lea rcx, fmtStr5
 call printf

; Another "magic" instruction that undoes the effect of the previous
; one before this procedure returns to its caller.

 add rsp, 56
 ret ; Returns to caller
asmMain endp
 end

Listing 2-3: Two’s complement example

The following commands build and run the program in Listing 2-3:

C:\>build listing2-3

C:\>echo off
 Assembling: listing2-3.asm
c.cpp

C:\> listing2-3
Calling Listing 2-3:
Enter an integer between 0 and 127:123
Value in hexadecimal: 7b
Invert all the bits (hexadecimal): 84
Add 1 (hexadecimal): 85
Output as signed integer: -123
Using neg instruction: -123
Listing 2-3 terminated

Beyond the two’s complement operation (both by inversion/add 1 and
using the neg instruction), this program demonstrates one new feature: user
numeric input. Numeric input is accomplished by reading an input string
from the user (using the readLine() function that is part of the c.cpp source
file) and then calling the C Standard Library atoi() function. This function

Computer Data Representation and Operations 67

requires a single parameter (passed in RCX) that points to a string contain-
ing an integer value. It translates that string to the corresponding integer
and returns the integer value in RAX.5

 2.8 Sign Extension and Zero Extension
Converting an 8-bit two’s complement value to 16 bits, and conversely con-
verting a 16-bit value to 8 bits, can be accomplished via sign extension and
contraction operations.

To extend a signed value from a certain number of bits to a greater
number of bits, copy the sign bit into all the additional bits in the new
format. For example, to sign-extend an 8-bit number to a 16-bit number,
copy bit 7 of the 8-bit number into bits 8 to 15 of the 16-bit number. To
sign-extend a 16-bit number to a double word, copy bit 15 into bits 16 to
31 of the double word.

You must use sign extension when manipulating signed values of vary-
ing lengths. For example, to add a byte quantity to a word quantity, you
must sign-extend the byte quantity to a word before adding the two values.
Other operations (multiplication and division, in particular) may require a
sign extension to 32 bits; see Table 2-6.

Table 2-6: Sign Extension

8 Bits 16 Bits 32 Bits

80h 0FF80h 0FFFFFF80h

28h 0028h 00000028h

9Ah 0FF9Ah 0FFFFFF9Ah

7Fh 007Fh 0000007Fh

1020h 00001020h

8086h 0FFFF8086h

To extend an unsigned value to a larger one, you must zero-extend the
value, as shown in Table 2-7. Zero extension is easy—just store a 0 into the HO
byte(s) of the larger operand. For example, to zero-extend the 8-bit value
82h to 16 bits, you prepend a 0 to the HO byte, yielding 0082h.

Table 2-7: Zero Extension

8 Bits 16 Bits 32 Bits

80h 0080h 00000080h

28h 0028h 00000028h

5. Technically, atoi() returns a 32-bit integer in EAX. This code goes ahead and uses 64-bit
values; the C Standard Library code ignores the HO 32 bits in RAX.

(continued)

68 Chapter 2

8 Bits 16 Bits 32 Bits

9Ah 009Ah 0000009Ah

7Fh 007Fh 0000007Fh

1020h 00001020h

8086h 00008086h

 2.9 Sign Contraction and Saturation
Sign contraction, converting a value with a certain number of bits to the
identical value with a fewer number of bits, is a little more troublesome.
Given an n-bit number, you cannot always convert it to an m -bit number if
m < n. For example, consider the value –448. As a 16-bit signed number, its
hexadecimal representation is 0FE40h. The magnitude of this number is
too large for an 8-bit value, so you cannot sign-contract it to 8 bits (doing
so would create an overflow condition).

To properly sign-contract a value, the HO bytes to discard must all con-
tain either 0 or 0FFh, and the HO bit of your resulting value must match
every bit you’ve removed from the number. Here are some examples (16 bits
to 8 bits):

•	 0FF80h can be sign-contracted to 80h.

•	 0040h can be sign-contracted to 40h.

•	 0FE40h cannot be sign-contracted to 8 bits.

•	 0100h cannot be sign-contracted to 8 bits.

If you must convert a larger object to a smaller object, and you’re will-
ing to live with loss of precision, you can use saturation. To convert a value
via saturation, you copy the larger value to the smaller value if it is not out-
side the range of the smaller object. If the larger value is outside the range
of the smaller value, you clip the value by setting it to the largest (or small-
est) value within the range of the smaller object.

For example, when converting a 16-bit signed integer to an 8-bit signed
integer, if the 16-bit value is in the range –128 to +127, you copy the LO byte
of the 16-bit object to the 8-bit object. If the 16-bit signed value is greater
than +127, then you clip the value to +127 and store +127 into the 8-bit
object. Likewise, if the value is less than –128, you clip the final 8-bit object
to –128.

Although clipping the value to the limits of the smaller object results in
loss of precision, sometimes this is acceptable because the alternative is to
raise an exception or otherwise reject the calculation. For many applications,
such as audio or video processing, the clipped result is still recognizable, so
this is a reasonable conversion.

Table 2-7: Zero Extension (continued)

Computer Data Representation and Operations 69

 2.10 Brief Detour: An Introduction to Control Transfer
Instructions
The assembly language examples thus far have limped along without mak-
ing use of conditional execution (that is, the ability to make decisions while
executing code). Indeed, except for the call and ret instructions, you
haven’t seen any way to affect the straight-line execution of assembly code.

However, this book is rapidly approaching the point where meaningful
examples require the ability to conditionally execute different sections of
code. This section provides a brief introduction to the subject of conditional
execution and transferring control to other sections of your program.

2.10.1 The jmp Instruction
Perhaps the best place to start is with a discussion of the x86-64 unconditional
transfer-of-control instruction—the jmp instruction. The jmp instruction takes
several forms, but the most common form is

jmp statement_label

where statement_label is an identifier attached to a machine instruction in
your .code section. The jmp instruction immediately transfers control to the
statement prefaced by the label. This is semantically equivalent to a goto state-
ment in an HLL.

Here is an example of a statement label in front of a mov instruction:

stmtLbl: mov eax, 55

Like all MASM symbols, statement labels have two major attributes asso-
ciated with them: an address (which is the memory address of the machine
instruction following the label) and a type. The type is label, which is the
same type as a proc directive’s identifier.

Statement labels don’t have to be on the same physical source line as a
machine instruction. Consider the following example:

anotherLabel:
 mov eax, 55

This example is semantically equivalent to the previous one. The value
(address) bound to anotherLabel is the address of the machine instruction
following the label. In this case, it’s still the mov instruction even though that
mov instruction appears on the next line (it still follows the label without any
other MASM statements that would generate code occurring between the
label and the mov statement).

Technically, you could also jump to a proc label instead of a statement
label. However, the jmp instruction does not set up a return address, so if the
procedure executes a ret instruction, the return location may be undefined.
(Chapter 5 explores return addresses in greater detail.)

70 Chapter 2

2.10.2 The Conditional Jump Instructions
Although the common form of the jmp instruction is indispensable in assem-
bly language programs, it doesn’t provide any ability to conditionally execute
different sections of code—hence the name unconditional jump.6 Fortunately,
the x86-64 CPUs provide a wide array of conditional jump instructions that, as
their name suggests, allow conditional execution of code.

These instructions test the condition code bits (see “An Introduction to
the Intel x86-64 CPU Family” in Chapter 1) in the FLAGS register to deter-
mine whether a branch should be taken. There are four condition code
bits in the FLAGs register that these conditional jump instructions test: the
carry, sign, overflow, and zero flags.7

The x86-64 CPUs provide eight instructions that test each of these four
flags (see Table 2-8). The basic operation of the conditional jump instruc-
tions is that they test a flag to see if it is set (1) or clear (0) and branch to a
target label if the test succeeds. If the test fails, the program continues exe-
cution with the next instruction following the conditional jump instruction.

Table 2-8: Conditional Jump Instructions That Test the Condition Code Flags

Instruction Explanation

jc label Jump if carry set. Jump to label if the carry flag is set (1); fall through if
carry is clear (0).

jnc label Jump if no carry. Jump to label if the carry flag is clear (0); fall through if
carry is set (1).

jo label Jump if overflow. Jump to label if the overflow flag is set (1); fall through
if overflow is clear (0).

jno label Jump if no overflow. Jump to label if the overflow flag is clear (0); fall
through if overflow is set (1).

js label Jump if sign (negative). Jump to label if the sign flag is set (1); fall
through if sign is clear (0).

jns label Jump if not sign. Jump to label if the sign flag is clear (0); fall through if
sign is set (1).

jz label Jump if zero. Jump to label if the zero flag is set (1); fall through if zero
is clear (0).

jnz label Jump if not zero. Jump to label if the zero flag is clear (0); fall through if
zero is set (1).

To use a conditional jump instruction, you must first execute an
instruction that affects one (or more) of the condition code flags. For
example, an unsigned arithmetic overflow will set the carry flag (and

6. Note that variants of the jmp instruction, known as indirect jumps, can provide conditional
execution capabilities. For more information, see Chapter 7.

7. Technically, you can test a fifth condition code flag: the parity flag. This book does not
cover its use. See the Intel documentation for more details about the parity flag.

Computer Data Representation and Operations 71

likewise, if overflow does not occur, the carry flag will be clear). Therefore,
you could use the jc and jnc instructions after an add instruction to see if an
(unsigned) overflow occurred during the calculation. For example:

 mov eax, int32Var
 add eax, anotherVar
 jc overflowOccurred

; Continue down here if the addition did not
; produce an overflow.

 .
 .
 .

overflowOccurred:

; Execute this code if the sum of int32Var and anotherVar
; does not fit into 32 bits.

Not all instructions affect the flags. Of all the instructions we’ve looked
at thus far (mov, add, sub, and, or, not, xor, and lea), only the add, sub, and, or,
xor, and not instructions affect the flags. The add and sub instructions affect
the flags as shown in Table 2-9.

Table 2-9: Flag Settings After Executing add or sub

Flag Explanation

Carry Set if an unsigned overflow occurs (for example, adding the byte values
0FFh and 01h). Clear if no overflow occurs. Note that subtracting 1 from 0
will also clear the carry flag (that is, 0 – 1 is equivalent to 0 + (–1), and –1
is 0FFh in two’s complement form).

Overflow Set if a signed overflow occurs (for example, adding the byte values 07Fh
and 01h). Signed overflow occurs when the next-to-HO-bit overflows into
the HO bit (for example, 7Fh becomes 80h, or 0FFh becomes 0, when
dealing with byte-sized calculations).

Sign The sign flag is set if the HO bit of the result is set. The sign flag is clear
otherwise (that is, the sign flag reflects the state of the HO bit of the result).

Zero The zero flag is set if the result of a computation produces 0; it is clear
otherwise.

The logical instructions (and, or, xor, and not) always clear the carry and
overflow flags. They copy the HO bit of their result into the sign flag and
set/clear the zero flag if they produce a zero/nonzero result.

In addition to the conditional jump instructions, the x86-64 CPUs
also provide a set of conditional move instructions. Chapter 7 covers those
instructions.

72 Chapter 2

2.10.3 The cmp Instruction and Corresponding Conditional Jumps
The cmp (compare) instruction is probably the most useful instruction to
execute prior to a conditional jump. The compare instruction has the same
syntax as the sub instruction and, in fact, it also subtracts the second operand
from the first operand and sets the condition code flags based on the result of
the subtraction.8 But the cmp instruction doesn’t store the difference back into
the first (destination) operand. The whole purpose of the cmp instruction is to
set the condition code flags based on the result of the subtraction.

Though you could use the jc/jnc, jo/jno, js/jns, and jz/jnz instructions
immediately after a cmp instruction (to test how cmp has set the individual flags),
the flag names don’t really mean much in the context of the cmp instruction.
Logically, when you see the following instruction (note that the cmp instruc-
tion’s operand syntax is identical to the add, sub, and mov instructions),

cmp left_operand, right_operand

you read this instruction as “compare the left_operand to the right_operand.”
Questions you would normally ask after such a comparison are as follows:

•	 Is the left_operand equal to the right_operand?

•	 Is the left_operand not equal to the right_operand?

•	 Is the left_operand less than the right_operand?

•	 Is the left_operand less than or equal to the right_operand?

•	 Is the left_operand greater than the right_operand?

•	 Is the left_operand greater than or equal to the right_operand?

The conditional jump instructions presented thus far don’t (intuitively)
answer any of these questions.

The x86-64 CPUs provide an additional set of conditional jump instruc-
tions, shown in Table 2-10, that allow you to test for comparison conditions.

Table 2-10: Conditional Jump Instructions for Use After a cmp Instruction

Instruction Flags tested Explanation

je label ZF == 1 Jump if equal. Transfers control to target label if the
left_operand is equal to the right_operand. This is a
synonym for jz, as the zero flag will be set if the two
operands are equal (their subtraction produces a 0 result
in that case).

jne label ZF == 0 Jump if not equal. Transfers control to target label if the
left_operand is not equal to the right_operand. This is
a synonym for jnz, as the zero flag will be clear if the two
operands are not equal (their subtraction produces a non-
zero result in that case).

8. Immediate operands for 64-bit instructions are also limited to 32 bits, which the CPU sign
extends to 64 bits.

Computer Data Representation and Operations 73

Instruction Flags tested Explanation

ja label CF == 0
and
ZF == 0

Jump if above. Transfers control to target label if the
unsigned left_operand is greater than the unsigned
right_operand.

jae label CF == 0 Jump if above or equal. Transfers control to target label if
the unsigned left_operand is greater than or equal to the
unsigned right_operand. This is a synonym for jnc, as it
turns out that an unsigned overflow (well, underflow, actu-
ally) will not occur if the left_operand is greater than or
equal to the right_operand.

jb label CF == 1 Jump if below. Transfers control to target label if the
unsigned left_operand is less than the unsigned right_
operand. This is a synonym for jc, as it turns out that an
unsigned overflow (well, underflow, actually) occurs if the
left_operand is less than the right_operand.

jbe label CF == 1
or
ZF == 1

Jump if below or equal. Transfers control to target label
if the unsigned left_operand is less than or equal to the
unsigned right_operand.

jg label SF == OF
and
ZF == 0

Jump if greater. Transfers control to target label if
the signed left_operand is greater than the signed
right_operand.

jge label SF == OF Jump if greater or equal. Transfers control to target label
if the signed left_operand is greater than or equal to the
signed right_operand.

jl label SF ≠ OF Jump if less. Transfers control to target label if the signed
left_operand is less than the signed right_operand.

jle label ZF == 1
or
SF ≠ OF

Jump if less or equal. Transfers control to target label if the
signed left_operand is less than or equal to the signed
right_operand.

Perhaps the most important thing to note in Table 2-10 is that separate
conditional jump instructions test for signed and unsigned comparisons.
Consider the two byte values 0FFh and 01h. From an unsigned perspective,
0FFh is greater than 01h. However, when we treat these as signed numbers
(using the two’s complement numbering system), 0FFh is actually –1, which
is clearly less than 1. They have the same bit representations but two com-
pletely different comparison results when treating these values as signed or
unsigned numbers.

2.10.4 Conditional Jump Synonyms
Some of the instructions are synonyms for other instructions. For example,
jb and jc are the same instruction (that is, they have the same numeric
machine code encoding). This is done for convenience and readability’s sake.
After a cmp instruction, jb is much more meaningful than jc, for example.
MASM defines several synonyms for various conditional branch instructions
that make coding a little easier. Table 2-11 lists many of these synonyms.

74 Chapter 2

Table 2-11: Conditional Jump Synonyms

Instruction Equivalents Description

ja jnbe Jump if above, jump if not below or equal.

jae jnb, jnc Jump if above or equal, jump if not below, jump if no carry.

jb jc, jnae Jump if below, jump if carry, jump if not above or equal.

jbe jna Jump if below or equal, jump if not above.

jc jb, jnae Jump if carry, jump if below, jump if not above or equal.

je jz Jump if equal, jump if zero.

jg jnle Jump if greater, jump if not less or equal.

jge jnl Jump if greater or equal, jump if not less.

jl jnge Jump if less, jump if not greater or equal.

jle jng Jump if less or equal, jump if not greater.

jna jbe Jump if not above, jump if below or equal.

jnae jb, jc Jump if not above or equal, jump if below, jump if carry.

jnb jae, jnc Jump if not below, jump if above or equal, jump if no carry.

jnbe ja Jump if not below or equal, jump if above.

jnc jnb, jae Jump if no carry, jump if no below, jump if above or equal.

jne jnz Jump if not equal, jump if not zero.

jng jle Jump if not greater, jump if less or equal.

jnge jl Jump if not greater or equal, jump if less.

jnl jge Jump if not less, jump if greater or equal.

jnle jg Jump if not less or equal, jump if greater.

jnz jne Jump if not zero, jump if not equal.

jz je Jump if zero, jump if equal.

There is a very important thing to note about the cmp instruction: it sets
the flags only for integer comparisons (which will also cover characters and
other types you can encode with an integer number). Specifically, it does
not compare floating-point values and set the flags as appropriate for a
floating-point comparison. To learn more about floating-point arithmetic
(and comparisons), see “Floating-Point Arithmetic” in Chapter 6.

 2.11 Shifts and Rotates
Another set of logical operations that apply to bit strings is the shift and
rotate operations. These two categories can be further broken down into left
shifts, left rotates, right shifts, and right rotates.

Computer Data Representation and Operations 75

The shift-left operation moves each bit in a bit string one position to the
left, as shown in Figure 2-8.

7 6 5 4 3 2 1 0

Figure 2-8: Shift-left operation

Bit 0 moves into bit position 1, the previous value in bit position 1 moves
into bit position 2, and so on. We’ll shift a 0 into bit 0, and the previous value
of the high-order bit will become the carry out of this operation.

The x86-64 provides a shift-left instruction, shl, that performs this use-
ful operation. The syntax for the shl instruction is shown here:

shl dest, count

The count operand is either the CL register or a constant in the range 0
to n, where n is one less than the number of bits in the destination operand
(for example, n = 7 for 8-bit operands, n = 15 for 16-bit operands, n = 31 for
32-bit operands, and n = 63 for 64-bit operands). The dest operand is a typi-
cal destination operand. It can be either a memory location or a register.

When the count operand is the constant 1, the shl instruction does the
operation shown in Figure 2-9.

HO bit 4 3 2 1 0

0...C

Figure 2-9: shl by 1 operation

In Figure 2-9, the C represents the carry flag—that is, the HO bit shifted
out of the operand moves into the carry flag. Therefore, you can test for
overflow after a shl dest, 1 instruction by testing the carry flag immediately
after executing the instruction (for example, by using jc and jnc).

The shl instruction sets the zero flag based on the result (z=1 if the
result is zero, z=0 otherwise). The shl instruction sets the sign flag if the HO
bit of the result is 1. If the shift count is 1, then shl sets the overflow flag if
the HO bit changes (that is, you shift a 0 into the HO bit when it was previ-
ously 1, or shift a 1 in when it was previously 0); the overflow flag is unde-
fined for all other shift counts.

Shifting a value to the left one digit is the same thing as multiplying it
by its radix (base). For example, shifting a decimal number one position to
the left (adding a 0 to the right of the number) effectively multiplies it by 10
(the radix):

1234 shl 1 = 12340

(shl 1 means shift one digit position to the left.)

76 Chapter 2

 Because the radix of a binary number is 2, shifting it left multiplies it
by 2. If you shift a value to the left n times, you multiply that value by 2n.

A shift-right operation works the same way, except we’re moving the data
in the opposite direction. For a byte value, bit 7 moves into bit 6, bit 6 moves
into bit 5, bit 5 moves into bit 4, and so on. During a right shift, we’ll move a
0 into bit 7, and bit 0 will be the carry out of the operation (see Figure 2-10).

7 4 3 2 1 056

0 C

Figure 2-10: Shift-right operation

As you would probably expect, the x86-64 provides a shr instruction
that will shift the bits to the right in a destination operand. The syntax is
similar to that of the shl instruction:

shr dest, count

This instruction shifts a 0 into the HO bit of the destination operand;
it shifts the other bits one place to the right (from a higher bit number to a
lower bit number). Finally, bit 0 is shifted into the carry flag. If you specify a
count of 1, the shr instruction does the operation shown in Figure 2-11.

. . . C

HO bit

0

45 3 2 1 0

Figure 2-11: shr by 1 operation

The shr instruction sets the zero flag based on the result (ZF=1 if the result
is zero, ZF=0 otherwise). The shr instruction clears the sign flag (because the
HO bit of the result is always 0). If the shift count is 1, shl sets the overflow flag
if the HO bit changes (that is, you shift a 0 into the HO bit when it was previ-
ously 1, or shift a 1 in when it was previously 0); the overflow flag is undefined
for all other shift counts.

Because a left shift is equivalent to a multiplication by 2, it should come
as no surprise that a right shift is roughly comparable to a division by 2 (or,
in general, a division by the radix of the number). If you perform n right
shifts, you will divide that number by 2n.

However, a shift right is equivalent to only an unsigned division by 2. For
example, if you shift the unsigned representation of 254 (0FEh) one place
to the right, you get 127 (7Fh), exactly what you would expect. However,
if you shift the two’s complement representation of –2 (0FEh) to the right
one position, you get 127 (7Fh), which is not correct. This problem occurs
because we’re shifting a 0 into bit 7. If bit 7 previously contained a 1, we’re

Computer Data Representation and Operations 77

changing it from a negative to a positive number. Not a good thing to do
when dividing by 2.

To use the shift right as a division operator, we must define a third shift
operation: arithmetic shift right.9 This works just like the normal shift-right oper-
ation (a logical shift right) except, instead of shifting a 0 into the high-order
bit, an arithmetic shift-right operation copies the HO bit back into itself; that
is, during the shift operation, it does not modify the HO bit, as Figure 2-12
shows.

4567 3 2 1 0

Figure 2-12: Arithmetic shift-right operation

An arithmetic shift right generally produces the result you expect. For
example, if you perform the arithmetic shift-right operation on –2 (0FEh),
you get –1 (0FFh). However, this operation always rounds the numbers to
the closest integer that is less than or equal to the actual result. For example, if
you apply the arithmetic shift-right operation on –1 (0FFh), the result is –1,
not 0. Because –1 is less than 0, the arithmetic shift-right operation rounds
toward –1. This is not a bug in the arithmetic shift-right operation; it just
uses a different (though valid) definition of integer division.

The x86-64 provides an arithmetic shift-right instruction, sar (shift arith-
metic right). This instruction’s syntax is nearly identical to that of shl and shr:

sar dest, count

The usual limitations on the count and destination operands apply.
This instruction operates as shown in Figure 2-13 if the count is 1.

C

45

. . .

HO bit 3 2 1 0

Figure 2-13: sar dest, 1 operation

The sar instruction sets the zero flag based on the result (z=1 if the
result is zero, and z=0 otherwise). The sar instruction sets the sign flag to
the HO bit of the result. The overflow flag should always be clear after a sar
instruction, as signed overflow is impossible with this operation.

The rotate-left and rotate-right operations behave like the shift-left and
shift-right operations, except the bit shifted out from one end is shifted
back in at the other end. Figure 2-14 diagrams these operations.

9. There is no need for an arithmetic shift left. The standard shift-left operation works for
both signed and unsigned numbers, assuming no overflow occurs.

78 Chapter 2

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Figure 2-14: Rotate-left and rotate-right operations

The x86-64 provides rol (rotate left) and ror (rotate right) instructions
that do these basic operations on their operands. The syntax for these two
instructions is similar to the shift instructions:

rol dest, count
ror dest, count

If the shift count is 1, these two instructions copy the bit shifted out of
the destination operand into the carry flag, as Figures 2-15 and 2-16 show.

45HO bit

. . .

3

C

2 1 0

Figure 2-15: rol dest, 1 operation

45HO bit

. . .

3

C

2 1 0

Figure 2-16: ror dest, 1 operation

Unlike the shift instructions, the rotate instructions do not affect the set-
tings of the sign or zero flags. The OF flag is defined only for the 1-bit rotates;
it is undefined in all other cases (except RCL and RCR instructions only: a
zero-bit rotate does nothing—that is, it affects no flags). For left rotates, the
OF flag is set to the exclusive-or of the original HO 2 bits. For right rotates,
the OF flag is set to the exclusive-or of the HO 2 bits after the rotate.

It is often more convenient for the rotate operation to shift the output
bit through the carry and to shift the previous carry value back into the
input bit of the shift operation. The x86-64 rcl (rotate through carry left) and

Computer Data Representation and Operations 79

rcr (rotate through carry right) instructions achieve this for you. These instruc-
tions use the following syntax:

rcl dest, count
rcr dest, count

The count operand is either a constant or the CL register, and the dest
operand is a memory location or register. The count operand must be a value
that is less than the number of bits in the dest operand. For a count value of
1, these two instructions do the rotation shown in Figure 2-17.

45HO bit

. . .

3 2 1 0

C

45HO bit

. . .

3 2 1 0

C

Figure 2-17: rcl dest, 1 and rcr dest, 1 operations

Unlike the shift instructions, the rotate-through-carry instructions do
not affect the settings of the sign or zero flags. The OF flag is defined only
for the 1-bit rotates. For left rotates, the OF flag is set if the original HO
2 bits change. For right rotates, the OF flag is set to the exclusive OR of the
resultant HO 2 bits.

 2.12 Bit Fields and Packed Data
Although the x86-64 operates most efficiently on byte, word, dword, and qword
data types, occasionally you’ll need to work with a data type that uses a
number of bits other than 8, 16, 32, or 64. You can also zero-extend a non-
standard data size to the next larger power of 2 (such as extending a 22-bit
value to a 32-bit value). This turns out to be fast, but if you have a large
array of such values, slightly more than 31 percent of the memory is going
to waste (10 bits in every 32-bit value). However, suppose you were to repur-
pose those 10 bits for something else? By packing the separate 22-bit and
10-bit values into a single 32-bit value, you don’t waste any space.

For example, consider a date of the form 04/02/01. Representing this
date requires three numeric values: month, day, and year values. Months,
of course, take on the values 1 to 12. At least 4 bits (a maximum of 16 dif-
ferent values) are needed to represent the month. Days range from 1 to 31.
So it will take 5 bits (a maximum of 32 different values) to represent the day
entry. The year value, assuming that we’re working with values in the range

80 Chapter 2

0 to 99, requires 7 bits (which can be used to represent up to 128 different
values). So, 4 + 5 + 7 = 16 bits, or 2 bytes.

In other words, we can pack our date data into 2 bytes rather than the
3 that would be required if we used a separate byte for each of the month,
day, and year values. This saves 1 byte of memory for each date stored, which
could be a substantial savings if you need to store many dates. The bits could
be arranged as shown in Figure 2-18.

15 14 13 12 11 10 9 7 6 5 4 3 2 1

D YD D D D Y Y Y Y Y Y

08

MMM M

Figure 2-18: Short packed date format (2 bytes)

MMMM represents the 4 bits making up the month value, DDDDD rep-
resents the 5 bits making up the day, and YYYYYYY is the 7 bits composing
the year. Each collection of bits representing a data item is a bit field. For
example, April 2, 2001, would be represented as 4101h:

0100 00010 0000001 = 0100_0001_0000_0001b or 4101h
 4 2 01

Although packed values are space-efficient (that is, they make efficient
use of memory), they are computationally inefficient (slow!). The reason?
It takes extra instructions to unpack the data packed into the various bit
fields. These extra instructions take additional time to execute (and addi-
tional bytes to hold the instructions); hence, you must carefully consider
whether packed data fields will save you anything. The sample program in
Listing 2-4 demonstrates the effort that must go into packing and unpack-
ing this 16-bit date format.

; Listing 2-4

; Demonstrate packed data types.

 option casemap:none

NULL = 0
nl = 10 ; ASCII code for newline
maxLen = 256

; New data declaration section.
; .const holds data values for read-only constants.

 .const
ttlStr byte 'Listing 2-4', 0
moPrompt byte 'Enter current month: ', 0
dayPrompt byte 'Enter current day: ', 0
yearPrompt byte 'Enter current year '
 byte '(last 2 digits only): ', 0

packed byte 'Packed date is %04x', nl, 0

Computer Data Representation and Operations 81

theDate byte 'The date is %02d/%02d/%02d'
 byte nl, 0

badDayStr byte 'Bad day value was entered '
 byte '(expected 1-31)', nl, 0

badMonthStr byte 'Bad month value was entered '
 byte '(expected 1-12)', nl, 0
badYearStr byte 'Bad year value was entered '
 byte '(expected 00-99)', nl, 0

 .data
month byte ?
day byte ?
year byte ?
date word ?

input byte maxLen dup (?)

 .code
 externdef printf:proc
 externdef readLine:proc
 externdef atoi:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here's a user-written function that reads a numeric value from the
; user:

; int readNum(char *prompt);

; A pointer to a string containing a prompt message is passed in the
; RCX register.

; This procedure prints the prompt, reads an input string from the
; user, then converts the input string to an integer and returns the
; integer value in RAX.

readNum proc

; Must set up stack properly (using this "magic" instruction) before
; we can call any C/C++ functions:

 sub rsp, 56

; Print the prompt message. Note that the prompt message was passed to
; this procedure in RCX, we're just passing it on to printf:

 call printf

82 Chapter 2

; Set up arguments for readLine and read a line of text from the user.
; Note that readLine returns NULL (0) in RAX if there was an error.

 lea rcx, input
 mov rdx, maxLen
 call readLine

; Test for a bad input string:

 cmp rax, NULL
 je badInput

; Okay, good input at this point, try converting the string to an
; integer by calling atoi. The atoi function returns zero if there was
; an error, but zero is a perfectly fine return result, so we ignore
; errors.

 lea rcx, input ; Ptr to string
 call atoi ; Convert to integer

badInput:
 add rsp, 56 ; Undo stack setup
 ret
readNum endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 sub rsp, 56

; Read the date from the user. Begin by reading the month:

 lea rcx, moPrompt
 call readNum

; Verify the month is in the range 1..12:

 cmp rax, 1
 jl badMonth
 cmp rax, 12
 jg badMonth

; Good month, save it for now:

 mov month, al ; 1..12 fits in a byte

; Read the day:

 lea rcx, dayPrompt
 call readNum

Computer Data Representation and Operations 83

; We'll be lazy here and verify only that the day is in the range
; 1..31.

 cmp rax, 1
 jl badDay
 cmp rax, 31
 jg badDay

; Good day, save it for now:

 mov day, al ; 1..31 fits in a byte

; Read the year:

 lea rcx, yearPrompt
 call readNum

; Verify that the year is in the range 0..99.

 cmp rax, 0
 jl badYear
 cmp rax, 99
 jg badYear

; Good year, save it for now:

 mov year, al ; 0..99 fits in a byte

; Pack the data into the following bits:

; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
; m m m m d d d d d y y y y y y y

 movzx ax, month
 shl ax, 5
 or al, day
 shl ax, 7
 or al, year
 mov date, ax

; Print the packed date:

 lea rcx, packed
 movzx rdx, date
 call printf

; Unpack the date and print it:

 movzx rdx, date
 mov r9, rdx
 and r9, 7fh ; Keep LO 7 bits (year)
 shr rdx, 7 ; Get day in position
 mov r8, rdx

84 Chapter 2

 and r8, 1fh ; Keep LO 5 bits
 shr rdx, 5 ; Get month in position
 lea rcx, theDate
 call printf

 jmp allDone

; Come down here if a bad day was entered:

badDay:
 lea rcx, badDayStr
 call printf
 jmp allDone

; Come down here if a bad month was entered:

badMonth:
 lea rcx, badMonthStr
 call printf
 jmp allDone

; Come down here if a bad year was entered:

badYear:
 lea rcx, badYearStr
 call printf

allDone:
 add rsp, 56
 ret ; Returns to caller
asmMain endp
 end

Listing 2-4: Packing and unpacking date data

Here’s the result of building and running this program:

C:\>build listing2-4

C:\>echo off
 Assembling: listing2-4.asm
c.cpp

C:\> listing2-4
Calling Listing 2-4:
Enter current month: 2
Enter current day: 4
Enter current year (last 2 digits only): 68
Packed date is 2244
The date is 02/04/68
Listing 2-4 terminated

Computer Data Representation and Operations 85

Of course, having gone through the problems with Y2K (Year 2000),10
you know that using a date format that limits you to 100 years (or even 127
years) would be quite foolish. To future-proof the packed date format, we
can extend it to 4 bytes packed into a double-word variable, as shown in
Figure 2-19. (As you will see in Chapter 4, you should always try to create
data objects whose length is an even power of 2—1 byte, 2 bytes, 4 bytes,
8 bytes, and so on—or you will pay a performance penalty.)

151631 8 7 0

Month (1-12)Year (0-65535) Day (1-31)

Figure 2-19: Long packed date format (4 bytes)

The Month and Day fields now consist of 8 bits each, so they can be
extracted as a byte object from the double word. This leaves 16 bits for the
year, with a range of 65,536 years. By rearranging the bits so the Year field is
in the HO bit positions, the Month field is in the middle bit positions, and
the Day field is in the LO bit positions, the long date format allows you to
easily compare two dates to see if one date is less than, equal to, or greater
than another date. Consider the following code:

 mov eax, Date1 ; Assume Date1 and Date2 are dword variables
 cmp eax, Date2 ; using the Long Packed Date format
 jna d1LEd2

 Do something if Date1 > Date2

d1LEd2:

Had you kept the different date fields in separate variables, or orga-
nized the fields differently, you would not have been able to compare Date1
and Date2 as easily as for the short packed data format. Therefore, this
example demonstrates another reason for packing data even if you don’t
realize any space savings—it can make certain computations more conve-
nient or even more efficient (contrary to what normally happens when you
pack data).

Examples of practical packed data types abound. You could pack eight
Boolean values into a single byte, you could pack two BCD digits into a byte,
and so on.

A classic example of packed data is the RFLAGS register. This register
packs nine important Boolean objects (along with seven important system
flags) into a single 16-bit register. You will commonly need to access many of
these flags. You can test many of the condition code flags by using the con-
ditional jump instructions and manipulate the individual bits in the FLAGS
register with the instructions in Table 2-12 that directly affect certain flags.

10. If you’re too young to remember this fiasco, programmers in the middle to late 1900s
used to encode only the last two digits of the year in their dates. When the year 2000
rolled around, the programs were incapable of distinguishing dates like 2019 and 1919.

86 Chapter 2

Table 2-12: Instructions That Affect Certain Flags

Instruction Explanation

cld Clears (sets to 0) the direction flag.

std Sets (to 1) the direction flag.

cli Clears the interrupt disable flag.

sti Sets the interrupt disable flag.

clc Clears the carry flag.

stc Sets the carry flag.

cmc Complements (inverts) the carry flag.

sahf Stores the AH register into the LO 8 bits of the FLAGS register. (Warning:
certain early x86-64 CPUs do not support this instruction.)

lahf Loads AH from the LO 8 bits of the FLAGS register. (Warning: certain
early x86-64 CPUs do not support this instruction.)

The lahf and sahf instructions provide a convenient way to access the
LO 8 bits of the FLAGS register as an 8-bit byte (rather than as eight sepa-
rate 1-bit values). See Figure 2-20 for a layout of the FLAGS register.

Overflow
Direction
Interrupt
Trace
Sign
Zero

Auxiliary carry

Parity

Carry

Reserved
for system
purposes

Figure 2-20: FLAGS register as packed Boolean data

The lahf (load AH with the LO eight bits of the FLAGS register) and the sahf
(store AH into the LO byte of the RFLAGS register) use the following syntax:

 lahf
 sahf

 2.13 IEEE Floating-Point Formats
When Intel planned to introduce a floating-point unit (the 8087 FPU)
for its new 8086 microprocessor, it hired the best numerical analyst it
could find to design a floating-point format. That person then hired two
other experts in the field, and the three of them (William Kahan, Jerome
Coonen, and Harold Stone) designed Intel’s floating-point format. They

Computer Data Representation and Operations 87

did such a good job designing the KCS Floating-Point Standard that the
Institute of Electrical and Electronics Engineers (IEEE) adopted this for-
mat for its floating-point format.11

To handle a wide range of performance and accuracy requirements,
Intel actually introduced three floating-point formats: single-precision, double-
precision, and extended-precision. The single- and double-precision formats
corresponded to C’s float and double types or FORTRAN’s real and double-
precision types. The extended-precision format contains 16 extra bits that
long chains of computations could use as guard bits before rounding down to
a double-precision value when storing the result.

2.13.1 Single-Precision Format
The single-precision format uses a one’s complement 24-bit mantissa, an 8-bit
excess-127 exponent, and a single sign bit. The mantissa usually represents
a value from 1.0 to just under 2.0. The HO bit of the mantissa is always
assumed to be 1 and represents a value just to the left of the binary point.12
The remaining 23 mantissa bits appear to the right of the binary point.
Therefore, the mantissa represents the value:

1.mmmmmmm mmmmmmmm

The mmmm characters represent the 23 bits of the mantissa. Note that
because the HO bit of the mantissa is always 1, the single-precision format
doesn’t actually store this bit within the 32 bits of the floating-point num-
ber. This is known as an implied bit.

Because we are working with binary numbers, each position to the right
of the binary point represents a value (0 or 1) times a successive negative
power of 2. The implied 1 bit is always multiplied by 20, which is 1. This is
why the mantissa is always greater than or equal to 1. Even if the other man-
tissa bits are all 0, the implied 1 bit always gives us the value 1.13 Of course,
even if we had an almost infinite number of 1 bits after the binary point,
they still would not add up to 2. This is why the mantissa can represent val-
ues in the range 1 to just under 2.

Although there is an infinite number of values between 1 and 2, we can
represent only 8 million of them because we use a 23-bit mantissa (with
the implied 24th bit always 1). This is the reason for inaccuracy in floating-
point arithmetic—we are limited to a fixed number of bits in computations
involving single-precision floating-point values.

The mantissa uses a one’s complement format rather than two’s comple-
ment to represent signed values. The 24-bit value of the mantissa is simply

11. Minor changes were made to the way certain degenerate operations were handled, but the
bit representation remained essentially unchanged.

12. The binary point is the same thing as the decimal point except it appears in binary numbers
rather than decimal numbers.

13. This isn’t necessarily true. The IEEE floating-point format supports denormalized values
where the HO bit is not 0. However, we will ignore denormalized values in our discussion.

88 Chapter 2

an unsigned binary number, and the sign bit determines whether that value
is positive or negative. One’s complement numbers have the unusual prop-
erty that there are two representations for 0 (with the sign bit set or clear).
Generally, this is important only to the person designing the floating-point
software or hardware system. We will assume that the value 0 always has the
sign bit clear.

To represent values outside the range 1.0 to just under 2.0, the expo-
nent portion of the floating-point format comes into play. The floating-
point format raises 2 to the power specified by the exponent and then
multiplies the mantissa by this value. The exponent is 8 bits and is stored
in an excess-127 format. In excess-127 format, the exponent 0 is represented
by the value 127 (7Fh), negative exponents are values in the range 0 to
126, and positive exponents are values in the range 128 to 255. To convert
an exponent to excess-127 format, add 127 to the exponent value. The use
of excess-127 format makes it easier to compare floating-point values. The
single-precision floating-point format takes the form shown in Figure 2-21.

31 23 16 8 071522

Sign
bit

Exponent bits

The 23rd mantissa bit is
implied and is always 1

Mantissa bits1

Figure 2-21: Single-precision (32-bit) floating-point format

With a 24-bit mantissa, you will get approximately six and a half (decimal)
digits of precision (half a digit of precision means that the first six digits can
all be in the range 0 to 9, but the seventh digit can be only in the range 0 to x,
where x < 9 and is generally close to 5). With an 8-bit excess-127 exponent, the
dynamic range14 of single-precision floating-point numbers is approximately
2±127, or about 10±38.

Although single-precision floating-point numbers are perfectly suitable
for many applications, the precision and dynamic range are somewhat lim-
ited and unsuitable for many financial, scientific, and other applications.
Furthermore, during long chains of computations, the limited accuracy of
the single-precision format may introduce serious error.

2.13.2 Double-Precision Format
The double-precision format helps overcome the problems of single-precision
floating-point. Using twice the space, the double-precision format has an
11-bit excess-1023 exponent and a 53-bit mantissa (with an implied HO bit
of 1) plus a sign bit. This provides a dynamic range of about 10±308 and
14.5 digits of precision, sufficient for most applications. Double-precision
floating-point values take the form shown in Figure 2-22.

14. The dynamic range is the difference in size between the smallest and largest positive
values.

Computer Data Representation and Operations 89

63 52 8 0751

Sign
bit

Exponent bits

The 52nd mantissa bit is
implied and is always 1

Mantissa bits1

......

Figure 2-22: 64-bit double-precision floating-point format

2.13.3 Extended-Precision Format
To ensure accuracy during long chains of computations involving double-
precision floating-point numbers, Intel designed the extended-precision format. It
uses 80 bits. Twelve of the additional 16 bits are appended to the mantissa, and
4 of the additional bits are appended to the end of the exponent. Unlike the
single- and double-precision values, the extended-precision format’s mantissa
does not have an implied HO bit. Therefore, the extended-precision format
provides a 64-bit mantissa, a 15-bit excess-16383 exponent, and a 1-bit sign.
Figure 2-23 shows the format for the extended-precision floating-point value.

79 65 8 0764

Sign
bit

Exponent bits Mantissa bits

......

Figure 2-23: 80-bit extended-precision floating-point format

On the x86-64 FPU, all computations are done using the extended-
precision format. Whenever you load a single- or double-precision value,
the FPU automatically converts it to an extended-precision value. Likewise,
when you store a single- or double-precision value to memory, the FPU
automatically rounds the value down to the appropriate size before storing
it. By always working with the extended-precision format, Intel guarantees
that a large number of guard bits are present to ensure the accuracy of your
computations.

2.13.4 Normalized Floating-Point Values
To maintain maximum precision during computation, most computations
use normalized values. A normalized floating-point value is one whose HO
mantissa bit contains 1. Almost any non-normalized value can be normal-
ized: shift the mantissa bits to the left and decrement the exponent until a 1
appears in the HO bit of the mantissa.

Remember, the exponent is a binary exponent. Each time you incre-
ment the exponent, you multiply the floating-point value by 2. Likewise,
whenever you decrement the exponent, you divide the floating-point value
by 2. By the same token, shifting the mantissa to the left one bit position
multiplies the floating-point value by 2; likewise, shifting the mantissa to the
right divides the floating-point value by 2. Therefore, shifting the mantissa

90 Chapter 2

to the left one position and decrementing the exponent does not change the
value of the floating-point number at all.

Keeping floating-point numbers normalized is beneficial because it
maintains the maximum number of bits of precision for a computation. If
the HO n bits of the mantissa are all 0, the mantissa has that many fewer
bits of precision available for computation. Therefore, a floating-point
computation will be more accurate if it involves only normalized values.

In two important cases, a floating-point number cannot be normal-
ized. Zero is one of these special cases. Obviously, it cannot be normalized
because the floating-point representation for 0 has no 1 bits in the man-
tissa. This, however, is not a problem because we can exactly represent the
value 0 with only a single bit.

In the second case, we have some HO bits in the mantissa that are 0, but
the biased exponent is also 0 (and we cannot decrement it to normalize the
mantissa). Rather than disallow certain small values, whose HO mantissa
bits and biased exponent are 0 (the most negative exponent possible), the
IEEE standard allows special denormalized values to represent these smaller
values.15 Although the use of denormalized values allows IEEE floating-point
computations to produce better results than if underflow occurred, keep in
mind that denormalized values offer fewer bits of precision.

2.13.5 Non-Numeric Values
The IEEE floating-point standard recognizes three special non-numeric
values: –infinity, +infinity, and a special not-a-number (NaN). For each of
these special numbers, the exponent field is filled with all 1 bits.

If the exponent is all 1 bits and the mantissa is all 0 bits, then the value
is infinity. The sign bit will be 0 for +infinity, and 1 for –infinity.

If the exponent is all 1 bits and the mantissa is not all 0 bits, then the
value is an invalid number (known as a not-a-number in IEEE 754 terminol-
ogy). NaNs represent illegal operations, such as trying to take the square
root of a negative number.

Unordered comparisons occur whenever either operand (or both) is a
NaN. As NaNs have an indeterminate value, they cannot be compared (that
is, they are incomparable). Any attempt to perform an unordered comparison
typically results in an exception or some sort of error. Ordered comparisons,
on the other hand, involve two operands, neither of which are NaNs.

2.13.6 MASM Support for Floating-Point Values
MASM provides several data types to support the use of floating-point data
in your assembly language programs. MASM floating-point constants allow
the following syntax:

•	 An optional + or - symbol, denoting the sign of the mantissa (if this is
not present, MASM assumes that the mantissa is positive)

•	 Followed by one or more decimal digits

15. The alternative would be to underflow the values to 0.

Computer Data Representation and Operations 91

•	 Followed by a decimal point and zero or more decimal digits

•	 Optionally followed by an e or E, optionally followed by a sign (+ or -)
and one or more decimal digits

The decimal point or the e/E must be present in order to differenti-
ate this value from an integer or unsigned literal constant. Here are some
examples of legal literal floating-point constants:

1.234 3.75e2 -1.0 1.1e-1 1.e+4 0.1 -123.456e+789 +25.0e0 1.e3

A floating-point literal constant must begin with a decimal digit, so you
must use, for example, 0.1 to represent .1 in your programs.

To declare a floating-point variable, you use the real4, real8, or real10
data types. The number at the end of these data type declarations specifies
the number of bytes used for each type’s binary representation. Therefore,
you use real4 to declare single-precision real values, real8 to declare double-
precision floating-point values, and real10 to declare extended-precision
floating-point values. Aside from using these types to declare floating-point
variables rather than integers, their use is nearly identical to that of byte,
word, dword, and so on. The following examples demonstrate these declara-
tions and their syntax:

 .data

fltVar1 real4 ?
fltVar1a real4 2.7
pi real4 3.14159
DblVar real8 ?
DblVar2 real8 1.23456789e+10
XPVar real10 ?
XPVar2 real10 -1.0e-104

As usual, this book uses the C/C++ printf() function to print floating-
point values to the console output. Certainly, an assembly language routine
could be written to do this same thing, but the C Standard Library provides
a convenient way to avoid writing that (complex) code, at least for the time
being.

N O T E Floating-point arithmetic is different from integer arithmetic; you cannot use the
x86-64 add and sub instructions to operate on floating-point values. Floating-point
arithmetic is covered in Chapter 6.

 2.14 Binary-Coded Decimal Representation
Although the integer and floating-point formats cover most of the numeric
needs of an average program, in some special cases other numeric rep-
resentations are convenient. In this section, we’ll discuss the binary-coded
decimal (BCD) format because the x86-64 CPU provides a small amount of
hardware support for this data representation.

92 Chapter 2

BCD values are a sequence of nibbles, with each nibble representing a
value in the range 0 to 9. With a single byte, we can represent values con-
taining two decimal digits, or values in the range 0 to 99 (see Figure 2-24).

7 6 5 4 3 2 1 0

HO nibble
(HO digits 0–9)

LO nibble
(LO digits 0–9)

Figure 2-24: BCD data representation in memory

As you can see, BCD storage isn’t particularly memory efficient. For
example, an 8-bit BCD variable can represent values in the range 0 to 99,
while that same 8 bits, when holding a binary value, can represent values
in the range 0 to 255. Likewise, a 16-bit binary value can represent values
in the range 0 to 65,535, while a 16-bit BCD value can represent only about
one-sixth of those values (0 to 9999).

However, it’s easy to convert BCD values between the internal numeric
representation and their string representation, and to encode multi-digit
decimal values in hardware (for example, using a thumb wheel or dial)
using BCD. For these two reasons, you’re likely to see people using BCD in
embedded systems (such as toaster ovens, alarm clocks, and nuclear reac-
tors) but rarely in general-purpose computer software.

The Intel x86-64 floating-point unit supports a pair of instructions
for loading and storing BCD values. Internally, however, the FPU converts
these BCD values to binary and performs all calculations in binary. It uses
BCD only as an external data format (external to the FPU, that is). This
generally produces more-accurate results and requires far less silicon than
having a separate coprocessor that supports decimal arithmetic.

 2.15 Characters
Perhaps the most important data type on a personal computer is the
character data type. The term character refers to a human or machine-
readable symbol that is typically a non-numeric entity, specifically any
symbol that you can normally type on a keyboard (including some sym-
bols that may require multiple keypresses to produce) or display on a
video display. Letters (alphabetic characters), punctuation symbols, numeric
digits, spaces, tabs, carriage returns (ENTER), other control characters,
and other special symbols are all characters.

N O T E Numeric characters are distinct from numbers: the character "1" is different from
the value 1. The computer (generally) uses two different internal representations for
numeric characters ("0", "1", . . . , "9") versus the numeric values 0 to 9.

Computer Data Representation and Operations 93

Most computer systems use a 1- or 2-byte sequence to encode the vari-
ous characters in binary form. Windows, macOS, FreeBSD, and Linux use
either the ASCII or Unicode encodings for characters. This section dis-
cusses the ASCII and Unicode character sets and the character declaration
facilities that MASM provides.

2.15.1 The ASCII Character Encoding
The American Standard Code for Information Interchange (ASCII) character set maps
128 textual characters to the unsigned integer values 0 to 127 (0 to 7Fh).
Although the exact mapping of characters to numeric values is arbitrary
and unimportant, using a standardized code for this mapping is important
because when you communicate with other programs and peripheral devices,
you all need to speak the same “language.” ASCII is a standardized code
that nearly everyone has agreed on: if you use the ASCII code 65 to represent
the character A, then you know that a peripheral device (such as a printer)
will correctly interpret this value as the character A whenever you transmit
data to that device.

Despite some major shortcomings, ASCII data has become the stan-
dard for data interchange across computer systems and programs.16 Most
programs can accept ASCII data; likewise, most programs can produce
ASCII data. Because you will be dealing with ASCII characters in assem-
bly language, it would be wise to study the layout of the character set and
memorize a few key ASCII codes (for example, for 0, A, a, and so on). See
Appendix A for a list of all the ASCII character codes.

The ASCII character set is divided into four groups of 32 characters.
The first 32 characters, ASCII codes 0 to 1Fh (31), form a special set of non-
printing characters, the control characters. We call them control characters
because they perform various printer/display control operations rather than
display symbols. Examples include carriage return, which positions the cursor
to the left side of the current line of characters;17 line feed, which moves the
cursor down one line on the output device; and backspace, which moves
the cursor back one position to the left.

Unfortunately, different control characters perform different opera-
tions on different output devices. Little standardization exists among
output devices. To find out exactly how a control character affects a par-
ticular device, you will need to consult its manual.

The second group of 32 ASCII character codes contains various punctua-
tion symbols, special characters, and the numeric digits. The most notable
characters in this group include the space character (ASCII code 20h) and
the numeric digits (ASCII codes 30h to 39h).

16. Today, Unicode (especially the UTF-8 encoding) is rapidly replacing ASCII because the
ASCII character set is insufficient for handling international alphabets and other special
characters.

17. Historically, carriage return refers to the paper carriage used on typewriters: physically
moving the carriage all the way to the right enabled the next character typed to appear at
the left side of the paper.

94 Chapter 2

The third group of 32 ASCII characters contains the uppercase alpha-
betic characters. The ASCII codes for the characters A to Z lie in the range
41h to 5Ah (65 to 90). Because there are only 26 alphabetic characters, the
remaining 6 codes hold various special symbols.

The fourth, and final, group of 32 ASCII character codes represents
the lowercase alphabetic symbols, 5 additional special symbols, and another
control character (delete). The lowercase character symbols use the ASCII
codes 61h to 7Ah. If you convert the codes for the upper- and lowercase
characters to binary, you will notice that the uppercase symbols differ from
their lowercase equivalents in exactly one bit position. For example, con-
sider the character codes for E and e appearing in Figure 2-25.

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1

0 1 1 0 0 1 0 1

E

e
7 6 5 4 3 2 1 0

Figure 2-25: ASCII codes for E and e

The only place these two codes differ is in bit 5. Uppercase characters
always contain a 0 in bit 5; lowercase alphabetic characters always contain
a 1 in bit 5. You can use this fact to quickly convert between upper- and
lowercase. If you have an uppercase character, you can force it to lower-
case by setting bit 5 to 1. If you have a lowercase character, you can force it
to uppercase by setting bit 5 to 0. You can toggle an alphabetic character
between upper- and lowercase by simply inverting bit 5.

Indeed, bits 5 and 6 determine which of the four groups in the ASCII
character set you’re in, as Table 2-13 shows.

Table 2-13: ASCII Groups

Bit 6 Bit 5 Group

0 0 Control characters

0 1 Digits and punctuation

1 0 Uppercase and special

1 1 Lowercase and special

So you could, for instance, convert any upper- or lowercase (or corre-
sponding special) character to its equivalent control character by setting
bits 5 and 6 to 0.

Consider, for a moment, the ASCII codes of the numeric digit charac-
ters appearing in Table 2-14.

Computer Data Representation and Operations 95

Table 2-14: ASCII Codes for Numeric Digits

Character Decimal Hexadecimal

0 48 30h

1 49 31h

2 50 32h

3 51 33h

4 52 34h

5 53 35h

6 54 36h

7 55 37h

8 56 38h

9 57 39h

The LO nibble of the ASCII code is the binary equivalent of the repre-
sented number. By stripping away (that is, setting to 0) the HO nibble of a
numeric character, you can convert that character code to the correspond-
ing binary representation. Conversely, you can convert a binary value in the
range 0 to 9 to its ASCII character representation by simply setting the HO
nibble to 3. You can use the logical AND operation to force the HO bits
to 0; likewise, you can use the logical OR operation to force the HO
bits to 0011b (3).

Unfortunately, you cannot convert a string of numeric characters to
their equivalent binary representation by simply stripping the HO nibble
from each digit in the string. Converting 123 (31h 32h 33h) in this fashion
yields 3 bytes, 010203h, but the correct value for 123 is 7Bh. The conversion
described in the preceding paragraph works only for single digits.

2.15.2 MASM Support for ASCII Characters
MASM provides support for character variables and literals in your assembly
language programs. Character literal constants in MASM take one of two
forms: a single character surrounded by apostrophes or a single character
surrounded by quotes, as follows:

'A' "A"

Both forms represent the same character (A).
If you wish to represent an apostrophe or a quote within a string, use

the other character as the string delimiter. For example:

'A "quotation" appears within this string'
"Can't have quotes in this string"

96 Chapter 2

Unlike the C/C++ language, MASM doesn’t use different delimiters
for single-character objects versus string objects, or differentiate between a
character constant and a string constant with a single character. A character
literal constant has a single character between the quotes (or apostrophes);
a string literal has multiple characters between the delimiters.

To declare a character variable in a MASM program, you use the byte
data type. For example, the following declaration demonstrates how to
declare a variable named UserInput:

 .data
UserInput byte ?

This declaration reserves 1 byte of storage that you could use to store
any character value (including 8-bit extended ASCII/ANSI characters). You
can also initialize character variables as follows:

 .data
TheCharA byte 'A'
ExtendedChar byte 128 ; Character code greater than 7Fh

Because character variables are 8-bit objects, you can manipulate them
using 8-bit registers. You can move character variables into 8-bit registers,
and you can store the value of an 8-bit register into a character variable.

 2.16 The Unicode Character Set
The problem with ASCII is that it supports only 128 character codes. Even
if you extend the definition to 8 bits (as IBM did on the original PC), you’re
limited to 256 characters. This is way too small for modern multinational/
multilingual applications. Back in the 1990s, several companies developed
an extension to ASCII, known as Unicode, using a 2-byte character size.
Therefore, (the original) Unicode supported up to 65,536 character codes.

Alas, as well-thought-out as the original Unicode standard could be,
systems engineers discovered that even 65,536 symbols were insufficient.
Today, Unicode defines 1,112,064 possible characters, encoded using a
variable-length character format.

2.16.1 Unicode Code Points
A Unicode code point is an integer value that Unicode associates with a
particular character symbol. The convention for Unicode code points is to
specify the value in hexadecimal with a preceding U+ prefix; for example,
U+0041 is the Unicode code point for the A character (41h is also the ASCII
code for A; Unicode code points in the range U+0000 to U+007F corre-
spond to the ASCII character set).

Computer Data Representation and Operations 97

2.16.2 Unicode Code Planes
The Unicode standard defines code points in the range U+000000 to
U+10FFFF (10FFFFh is 1,114,111, which is where most of the 1,112,064 char-
acters in the Unicode character set come from; the remaining 2047 code
points are reserved for use as surrogates, which are Unicode extensions).18
The Unicode standard breaks this range up into 17 multilingual planes, each
supporting up to 65,536 code points. The HO two hexadecimal digits of the
six-digit code point value specify the multilingual plane, and the remaining
four digits specify the character within the plane.

The first multilingual plane, U+000000 to U+00FFFF, roughly corre-
sponds to the original 16-bit Unicode definition; the Unicode standard calls
this the Basic Multilingual Plane (BMP). Planes 1 (U+010000 to U+01FFFF),
2 (U+020000 to U+02FFFF), and 14 (U+0E0000 to U+0EFFFF) are supple-
mentary (extension) planes. Unicode reserves planes 3 to 13 for future
expansion, and planes 15 and 16 for user-defined character sets.

Obviously, representing Unicode code points outside the BMP requires
more than 2 bytes. To reduce memory usage, Unicode (specifically the UTF-
16 encoding; see the next section) uses 2 bytes for the Unicode code points
in the BMP, and uses 4 bytes to represent code points outside the BMP. Within
the BMP, Unicode reserves the surrogate code points (U+D800–U+DFFF) to
specify the 16 planes after the BMP. Figure 2-26 shows the encoding.

1 1 0 1 1

Unit 1

0 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10

1 1 0 1 1 1 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Unit 2

Figure 2-26: Surrogate code point encoding for Unicode
planes 1 to 16

Note that the two words (unit 1 and unit 2) always appear together. The
unit 1 value (with HO bits 110110b) specifies the upper 10 bits (b10 to b19)
of the Unicode scalar, and the unit 2 value (with HO bits 110111b) specifies
the lower 10 bits (b0 to b9) of the Unicode scalar. Therefore, bits b16 to b19
(plus one) specify Unicode plane 1 to 16. Bits b0 to b15 specify the Unicode
scalar value within the plane.

2.16.3 Unicode Encodings
As of Unicode v2.0, the standard supports a 21-bit character space capable
of handling over a million characters (though most of the code points
remain reserved for future use). Rather than use a 3-byte (or worse, 4-byte)
encoding to allow the larger character set, Unicode, Inc., allowed different
encodings, each with its own advantages and disadvantages.

18. Unicode scalars is another term you might hear. A Unicode scalar is a value from the set of
all Unicode code points except the 2047 surrogate code points.

98 Chapter 2

UTF-32 uses 32-bit integers to hold Unicode scalars.19 The advantage
to this scheme is that a 32-bit integer can represent every Unicode scalar
value (which requires only 21 bits). Programs that require random access
to characters in strings (without having to search for surrogate pairs) and
other constant-time operations are (mostly) possible when using UTF-32.
The obvious drawback to UTF-32 is that each Unicode scalar value requires
4 bytes of storage (twice that of the original Unicode definition and four
times that of ASCII characters).

The second encoding format the Unicode supports is UTF-16. As the
name suggests, UTF-16 uses 16-bit (unsigned) integers to represent Unicode
values. To handle scalar values greater than 0FFFFh, UTF-16 uses the surro-
gate pair scheme to represent values in the range 010000h to 10FFFFh (see the
discussion of code planes and surrogate code points in the previous section).
Because the vast majority of useful characters fit into 16 bits, most UTF-16 char-
acters require only 2 bytes. For those rare cases where surrogates are necessary,
UTF-16 requires two words (32 bits) to represent the character.

The last encoding, and unquestionably the most popular, is UTF-8. The
UTF-8 encoding is upward compatible from the ASCII character set. In
particular, all ASCII characters have a single-byte representation (their
original ASCII code, where the HO bit of the byte containing the character
contains a 0 bit). If the UTF-8 HO bit is 1, UTF-8 requires additional bytes
(1 to 3 additional bytes) to represent the Unicode code point. Table 2-15
provides the UTF-8 encoding schema.

Table 2-15: UTF-8 Encoding

Bytes
Bits for code
point

First code
point

Last code
point Byte 1 Byte 2 Byte 3 Byte 4

1 7 U+00 U+7F 0xxxxxxx

2 11 U+80 U+7FF 110xxxxx 10xxxxxx

3 16 U+800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

The xxx... bits are the Unicode code point bits. For multi-byte
sequences, byte 1 contains the HO bits, byte 2 contains the next HO bits,
and so on. For example, the 2-byte sequence 11011111b, 10000001b corre-
sponds to the Unicode scalar 0000_0111_1100_0001b (U+07C1).

 2.17 MASM Support for Unicode
Unfortunately, MASM provides almost zero support for Unicode text in a
source file. Fortunately, MASM’s macro facilities provide a way for you to
create your own Unicode support for strings in MASM. See Chapter 13 for
more details on MASM macros. I will also return to this subject in The Art of

19. UTF stands for Universal Transformation Format, if you were wondering.

Computer Data Representation and Operations 99

64-Bit Assembly, Volume 2, where I will spend considerable time describing
how to force MASM to accept and process Unicode strings in source and
resource files.

 2.18 For More Information
For general information about data representation and Boolean functions,
consider reading my book Write Great Code, Volume 1, Second Edition (No
Starch Press, 2020), or a textbook on data structures and algorithms (avail-
able at any bookstore).

ASCII, EBCDIC, and Unicode are all international standards. You can
find out more about the Extended Binary Coded Decimal Interchange Code
(EBCDIC) character set families on IBM’s website (http://www.ibm.com/).
ASCII and Unicode are both International Organization for Standardization
(ISO) standards, and ISO provides reports for both character sets. Generally,
those reports cost money, but you can also find out lots of information about
the ASCII and Unicode character sets by searching for them by name on the
internet. You can also read about Unicode at http://www.unicode.org/. Write
Great Code also contains additional information on the history, use, and
encoding of the Unicode character set.

 2.19 Test Yourself

1. What does the decimal value 9384.576 represent (in terms of powers
of 10)?

2. Convert the following binary values to decimal:

a. 1010

b. 1100

c. 0111

d. 1001

e. 0011

f. 1111

3. Convert the following binary values to hexadecimal:

a. 1010

b. 1110

c. 1011

d. 1101

e. 0010

f. 1100

g. 1100_1111

h. 1001_1000_1101_0001

http://www.ibm.com/
http://www.unicode.org/

100 Chapter 2

4. Convert the following hexadecimal values to binary:

a. 12AF

b. 9BE7

c. 4A

d. 137F

e. F00D

f. BEAD

g. 4938

5. Convert the following hexadecimal values to decimal:

a. A

b. B

c. F

d. D

e. E

f. C

6. How many bits are there in a

a. Word

b. Qword

c. Oword

d. Dword

e. BCD digit

f. Byte

g. Nibble

7. How many bytes are there in a

a. Word

b. Dword

c. Qword

d. Oword

8. How different values can you represent with a

a. Nibble

b. Byte

c. Word

d. Bit

9. How many bits does it take to represent a hexadecimal digit?

10. How are the bits in a byte numbered?

Computer Data Representation and Operations 101

11. Which bit number is the LO bit of a word?

12. Which bit number is the HO bit of a dword?

13. Compute the logical AND of the following binary values:

a. 0 and 0

b. 0 and 1

c. 1 and 0

d. 1 and 1

14. Compute the logical OR of the following binary values:

a. 0 and 0

b. 0 and 1

c. 1 and 0

d. 1 and 1

15. Compute the logical XOR of the following binary values:

a. 0 and 0

b. 0 and 1

c. 1 and 0

d. 1 and 1

16. The logical NOT operation is the same as XORing with what value?

17. Which logical operation would you use to force bits to 0 in a bit string?

18. Which logical operation would you use to force bits to 1 in a bit string?

19. Which logical operation would you use to invert all the bits in a bit
string?

20. Which logical operation would you use to invert selected bits in a bit
string?

21. Which machine instruction will invert all the bits in a register?

22. What is the two’s complement of the 8-bit value 5 (00000101b)?

23. What is the two’s complement of the signed 8-bit value –2 (11111110)?

24. Which of the following signed 8-bit values are negative?

a. 1111_1111b

b. 0111_0001b

c. 1000_0000b

d. 0000_0000b

e. 1000_0001b

f. 0000_0001b

25. Which machine instruction takes the two’s complement of a value in a
register or memory location?

102 Chapter 2

26. Which of the following 16-bit values can be correctly sign-contracted to
8 bits?

a. 1111_1111_1111_1111

b. 1000_0000_0000_0000

c. 000_0000_0000_0001

d. 1111_1111_1111_0000

e. 1111_1111_0000_0000

f. 0000_1111_0000_1111

g. 0000_0000_1111_1111

h. 0000_0001_0000_0000

27. What machine instruction provides the equivalent of an HLL goto
statement?

28. What is the syntax for a MASM statement label?

29. What flags are the condition codes?

30. JE is a synonym for what instruction that tests a condition code?

31. JB is a synonym for what instruction that tests a condition code?

32. Which conditional jump instructions transfer control based on an
unsigned comparison?

33. Which conditional jump instructions transfer control based on a signed
comparison?

34. How does the SHL instruction affect the zero flag?

35. How does the SHL instruction affect the carry flag?

36. How does the SHL instruction affect the overflow flag?

37. How does the SHL instruction affect the sign flag?

38. How does the SHR instruction affect the zero flag?

39. How does the SHR instruction affect the carry flag?

40. How does the SHR instruction affect the overflow flag?

41. How does the SHR instruction affect the sign flag?

42. How does the SAR instruction affect the zero flag?

43. How does the SAR instruction affect the carry flag?

44. How does the SAR instruction affect the overflow flag?

45. How does the SAR instruction affect the sign flag?

46. How does the RCL instruction affect the carry flag?

47. How does the RCL instruction affect the zero flag?

48. How does the RCR instruction affect the carry flag?

49. How does the RCR instruction affect the sign flag?

50. A shift left is equivalent to what arithmetic operation?

51. A shift right is equivalent to what arithmetic operation?

Computer Data Representation and Operations 103

52. When performing a chain of floating-point addition, subtraction, mul-
tiplication, and division operations, which operations should you try to
do first?

53. How should you compare floating-point values for equality?

54. What is a normalized floating-point value?

55. How many bits does a (standard) ASCII character require?

56. What is the hexadecimal representation of the ASCII characters 0
through 9?

57. What delimiter character(s) does MASM use to define character
constants?

58. What are the three common encodings for Unicode characters?

59. What is a Unicode code point?

60. What is a Unicode code plane?

104 Chapter

3
M E M O R Y A C C E S S A N D

O R G A N I Z A T I O N

Chapters 1 and 2 showed you how to declare
and access simple variables in an assem-

bly language program. This chapter fully
explains x86-64 memory access. In this chapter,

you will learn how to efficiently organize your variable
declarations to speed up access to their data. You’ll also
learn about the x86-64 stack and how to manipulate
data on it.

This chapter discusses several important concepts, including the
following:

•	 Memory organization

•	 Memory allocation by program

•	 x86-64 memory addressing modes

106 Chapter 3

•	 Indirect and scaled-indexed addressing modes

•	 Data type coercion

•	 The x86-64 stack

This chapter will teach to you make efficient use of your computer’s
memory resources.

 3.1 Runtime Memory Organization
A running program uses memory in many ways, depending on the data’s
type. Here are some common data classifications you’ll find in an assembly
language program:

Code

Memory values that encode machine instructions.

Uninitialized static data

An area in memory that the program sets aside for uninitialized vari-
ables that exist the whole time the program runs; Windows will initial-
ize this storage area to 0s when it loads the program into memory.

Initialized static data

A section of memory that also exists the whole time the program runs.
However, Windows loads values for all the variables appearing in this
section from the program’s executable file so they have an initial value
when the program first begins execution.

Read-only data

Similar to initialized static data insofar as Windows loads initial data
for this section of memory from the executable file. However, this sec-
tion of memory is marked read-only to prevent inadvertent modification
of the data. Programs typically store constants and other unchanging
data in this section of memory (by the way, note that the code section is
also marked read-only by the operating system).

Heap

This special section of memory is designated to hold dynamically
allocated storage. Functions such as C’s malloc() and free() are respon-
sible for allocating and deallocating storage in the heap area. “Pointer
Variables and Dynamic Memory Allocation” in Chapter 4 discusses
dynamic storage allocation in greater detail.

Stack

In this special section in memory, the program maintains local vari-
ables for procedures and functions, program state information, and
other transient data. See “The Stack Segment and the push and pop
Instructions” on page 134 for more information about the stack section.

Memory Access and Organization 107

These are the typical sections you will find in common programs (assem-
bly language or otherwise). Smaller programs won’t use all of these sections
(code, stack, and data sections are a good minimum number). Complex
programs may create additional sections in memory for their own purposes.
Some programs may combine several of these sections together. For example,
many programs will combine the code and read-only sections into the same
section in memory (as the data in both sections gets marked as read-only).
Some programs combine the uninitialized and initialized data sections
together (initializing the uninitialized variables to 0). Combining sections is
generally handled by the linker program. See the Microsoft linker documen-
tation for more details on combining sections.1

Windows tends to put different types of data into different sections (or
segments) of memory. Although it is possible to reconfigure memory as you
choose by running the linker and specifying various parameters, by default
Windows loads a MASM program into memory by using an organization
similar to that in Figure 3-1.2

High addresses

Adrs = $0

Stack (default size = 1MB)

Heap (default size = 1MB)

Code (program instructions)

Read-only data

Static variables

Storage (uninitialized) variables

Reserved by OS
(typically 128KB)

Figure 3-1: MASM typical runtime memory organization

Windows reserves the lowest memory addresses. Generally, your appli-
cation cannot access data (or execute instructions) at these low addresses.
One reason the operating system reserves this space is to help trap NULL
pointer references: if you attempt to access memory location 0 (NULL),
the operating system will generate a general protection fault (also known as a
segmentation fault), meaning you’ve accessed a memory location that doesn’t
contain valid data.

The remaining six areas in the memory map hold different types of
data associated with your program. These sections of memory include the
stack section, the heap section, the .code section, the .data (static) section,

1. The Microsoft linker documentation can be accessed at https://docs.microsoft.com/en-us/cpp/
build/reference/linking?view=msvc-160/.

2. This is, of course, subject to change over time at the whims of Microsoft.

https://docs.microsoft.com/en-us/cpp/build/reference/linking?view=msvc-160/
https://docs.microsoft.com/en-us/cpp/build/reference/linking?view=msvc-160/

108 Chapter 3

the .const section, and the .data? (storage) section. Each corresponds to
a type of data you can create in your MASM programs. The .code, .data,
.const, and .data? sections are described next in detail.3

3.1.1 The .code Section
The .code section contains the machine instructions that appear in a
MASM program. MASM translates each machine instruction you write
into a sequence of one or more byte values. The CPU interprets these
byte values as machine instructions during program execution.

By default, when MASM links your program, it tells the system that
your program can execute instructions and read data from the code seg-
ment but cannot write data to the code segment. The operating system will
generate a general protection fault if you attempt to store any data into the
code segment.

3.1.2 The .data Section
The .data section is where you will typically put your variables. In addition
to declaring static variables, you can also embed lists of data into the .data
declaration section. You use the same technique to embed data into your
.data section that you use to embed data into the .code section: you use
the byte, word, dword, qword, and so on, directives. Consider the following
example:

 .data
b byte 0
 byte 1,2,3

u dword 1
 dword 5,2,10;

c byte ?
 byte 'a', 'b', 'c', 'd', 'e', 'f';

bn byte ?
 byte true ; Assumes true is defined as "1"

Values that MASM places in the .data memory segment by using these
directives are written to the segment after the preceding variables. For
example, the byte values 1, 2, and 3 are emitted to the .data section after b’s
0 byte. Because there aren’t any labels associated with these values, you do
not have direct access to them in your program. You can use the indexed
addressing modes to access these extra values.

In the preceding examples, note that the c and bn variables do not
have an (explicit) initial value. However, if you don’t provide an initial

3. The OS provides the stack and heap sections; you don’t normally declare these two in an
assembly language program. Therefore, there isn’t anything more to discuss about them
here.

Memory Access and Organization 109

value, MASM will initialize the variables in the .data section to 0, so
MASM assigns the NULL character (ASCII code 0) to c as its initial value.
Likewise, MASM assigns false as the initial value for bn (assuming false is
defined as 0). Variable declarations in the .data section always consume
memory, even if you haven’t assigned them an initial value.

3.1.3 The .const Section
The .const data section holds constants, tables, and other data that your
program cannot change during execution. You create read-only objects by
declaring them in the .const declaration section. The .const section is simi-
lar to the .data section, with three differences:

•	 The .const section begins with the reserved word .const rather than .data.

•	 All declarations in the .const section have an initializer.

•	 The system does not allow you to write data to variables in a .const
object while the program is running.

Here’s an example:

 .const
pi real4 3.14159
e real4 2.71
MaxU16 word 65535
MaxI16 sword 32767

All .const object declarations must have an initializer because you can-
not initialize the value under program control. For many purposes, you can
treat .const objects as literal constants. However, because they are actually
memory objects, they behave like (read-only) .data objects. You cannot use a
.const object anywhere a literal constant is allowed; for example, you cannot
use them as displacements in addressing modes (see “The x86-64 Addressing
Modes” on page 122), and you cannot use them in constant expressions. In
practice, you can use them anywhere that reading a .data variable is legal.

As with the .data section, you may embed data values in the .const sec-
tion by using the byte, word, dword, and so on, data declarations, though all
declarations must be initialized. For example:

 .const
roArray byte 0
 byte 1, 2, 3, 4, 5
qwVal qword 1
 qword 0

Note that you can also declare constant values in the .code section. Data
values you declare in this section are also read-only objects, as Windows
write-protects the .code section. If you do place constant declarations in
the .code section, you should take care to place them in a location that
the program will not attempt to execute as code (such as after a jmp or ret

110 Chapter 3

instruction). Unless you’re manually encoding x86 machine instructions
using data declarations (which would be rare, and done only by expert
programmers), you don’t want your program to attempt to execute data as
machine instructions; the result is usually undefined.4

3.1.4 The .data? Section
The .const section requires that you initialize all objects you declare. The
.data section lets you optionally initialize objects (or leave them uninitial-
ized, in which case they have the default initial value of 0). The .data?
section lets you declare variables that are always uninitialized when
the program begins running. The .data? section begins with the .data?
reserved word and contains variable declarations without initializers.
Here is an example:

 .data?
UninitUns32 dword ?
i sdword ?
character byte ?
b byte ?

Windows will initialize all .data? objects to 0 when it loads your pro-
gram into memory. However, it’s probably not a good idea to depend on
this implicit initialization. If you need an object initialized with 0, declare it
in a .data section and explicitly set it to 0.

Variables you declare in the .data? section may consume less disk space
in the executable file for the program. This is because MASM writes out
initial values for .const and .data objects to the executable file, but it may
use a compact representation for uninitialized variables you declare in the
.data? section; note, however, that this behavior is dependent on the OS ver-
sion and object-module format.

3.1.5 Organization of Declaration Sections Within Your Programs
The .data, .const, .data?, and .code sections may appear zero or more times
in your program. The declaration sections may appear in any order, as the
following example demonstrates:

 .data
i_static sdword 0

 .data?
i_uninit sdword ?

 .const
i_readonly dword 5

4. Technically, it is well defined: the machine will decode whatever bit pattern you place in
memory as a machine instruction. However, few people will be able to look at a piece of
data and interpret its meaning as a machine instruction.

Memory Access and Organization 111

 .data
j dword ?

 .const
i2 dword 9

 .data?
c byte ?

 .data?
d dword ?

 .code

 Code goes here

 end

The sections may appear in an arbitrary order, and a given declaration
section may appear more than once in your program. As noted previously,
when multiple declaration sections of the same type (for example, the three
.data? sections in the preceding example) appear in a declaration section
of your program, MASM combines them into a single group (in any order it
pleases).

3.1.6 Memory Access and 4K Memory Management Unit Pages
The x86-64’s memory management unit (MMU) divides memory into blocks
known as pages.5 The operating system is responsible for managing pages
in memory, so application programs don’t typically worry about page
organization. However, you should be aware of a couple of issues when
working with pages in memory: specifically, whether the CPU even allows
access to a given memory location and whether it is read/write or read-only
(write-protected).

Each program section appears in memory in contiguous MMU pages.
That is, the .const section begins at offset 0 in an MMU page and sequentially
consumes pages in memory for all the data appearing in that section. The
next section in memory (perhaps .data) begins at offset 0 in the next MMU
page following the last page of the previous section. If that previous section
(for example, .const) did not consume an integral multiple of 4096 bytes,
padding space will be present between the end of that section’s data to the
end of its last page (to guarantee that the next section begins on an MMU
page boundary).

Each new section starts in its own MMU page because the MMU con-
trols access to memory by using page granularity. For example, the MMU
controls whether a page in memory is readable/writable or read-only. For

5. Unfortunately, early Intel documentation called 256-byte blocks pages, and some early
MMUs used 512-byte pages, so this term elicits a lot of confusion. In memory, however,
pages are always 4096-byte blocks on the x86-64.

112 Chapter 3

.const sections, you want the memory to be read-only. For the .data section,
you want to allow reads and writes. Because the MMU can enforce these
attributes only on a page-by-page basis, you cannot have .data section infor-
mation in the same MMU page as a .const section.

Normally, all of this is completely transparent to your code. Data you
declare in a .data (or .data?) section is readable and writable, and data in a
.const section (and .code section) is read-only (.code sections are also execut-
able). Beyond placing data in a particular section, you don’t have to worry
too much about the page attributes.

You do have to worry about MMU page organization in memory in one
situation. Sometimes it is convenient to access (read) data beyond the end of
a data structure in memory (for legitimate reasons—see Chapter 11 on SIMD
instructions and Chapter 14 on string instructions). However, if that data
structure is aligned with the end of an MMU page, accessing the next page
in memory could be problematic. Some pages in memory are inaccessible; the
MMU does not allow reading, writing, or execution to occur on that page.

Attempting to do so will generate an x86-64 general protection (segmentation)
fault and abort the normal execution of your program.6 If you have a data
access that crosses a page boundary, and the next page in memory is inacces-
sible, this will crash your program. For example, consider a word access to a
byte object at the very end of an MMU page, as shown in Figure 3-2.

Offset 0FFFh
in page xxxx

Page boundary

Word access crossing
page boundary

Offset 0FFFh
in page xxxx + 1

Figure 3-2: Word access at the end of an MMU page

As a general rule, you should never read data beyond the end of a data
structure.7 If for some reason you need to do so, you should ensure that
it is legal to access the next page in memory (alas, there is no instruction
on modern x86-64 CPUs to allow this; the only way to be sure that access
is legal is to make sure there is valid data after the data structure you are
accessing).

6. This will typically crash your program unless you have an exception handler in place to
handle general protection faults.

7. It goes without saying that you should never write data beyond the end of a given data
structure; this is always incorrect and can create far more problems than just crashing your
program (including severe security issues).

Memory Access and Organization 113

 3.2 How MASM Allocates Memory for Variables
MASM associates a current location counter with each of the four declaration
sections (.code, .data, .const, and .data?). These location counters initially
contain 0, and whenever you declare a variable in one of these sections (or
write code in a code section), MASM associates the current value of that
section’s location counter with the variable; MASM also bumps up the value
of that location counter by the size of the object you’re declaring. As an
example, assume that the following is the only .data declaration section in a
program:

 .data
b byte ? ; Location counter = 0, size = 1
w word ? ; Location counter = 1, size = 2
d dword ? ; Location counter = 3, size = 4
q qword ? ; Location counter = 7, size = 8
o oword ? ; Location counter = 15, size = 16
 ; Location counter is now 31

As you can see, the variable declarations appearing in a (single) .data
section have contiguous offsets (location counter values) into the .data sec-
tion. Given the preceding declaration, w will immediately follow b in memory,
d will immediately follow w in memory, q will immediately follow d, and so
on. These offsets aren’t the actual runtime address of the variables. At
runtime, the system loads each section to a (base) address in memory. The
linker and Windows add the base address of the memory section to each of
these location counter values (which we call displacements, or offsets) to pro-
duce the actual memory address of the variables.

Keep in mind that you may link other modules with your program
(for example, from the C Standard Library) or even additional .data sec-
tions in the same source file, and the linker has to merge the .data sections
together. Each section has its own location counter that also starts from
zero when allocating storage for the variables in the section. Hence, the
offset of an individual variable may have little bearing on its final memory
address.

Remember that MASM allocates memory objects you declare in .const,
.data, and .data? sections in completely different regions of memory.
Therefore, you cannot assume that the following three memory objects
appear in adjacent memory locations (indeed, they probably will not):

 .data
b byte ?

 .const
w word 1234h

 .data?
d dword ?

114 Chapter 3

In fact, MASM will not even guarantee that variables you declare in
separate .data (or whatever) sections are adjacent in memory, even if there
is nothing between the declarations in your code. For example, you cannot
assume that b, w, and d are in adjacent memory locations in the following
declarations, nor can you assume that they won’t be adjacent in memory:

 .data
b byte ?

 .data
w word 1234h

 .data
d dword ?

If your code requires these variables to consume adjacent memory loca-
tions, you must declare them in the same .data section.

 3.3 The Label Declaration
The label declaration lets you declare variables in a section (.code, .data,
.const, and .data?) without allocating memory for the variable. The label
directive tells MASM to assign the current address in a declaration section
to a variable but not to allocate any storage for the object. That variable
shares the same memory address as the next object appearing in the vari-
able declaration section. Here is the syntax for the label declaration:

variable_name label type

The following code sequence provides an example of using the label
declaration in the .const section:

 .const
abcd label dword
 byte 'a', 'b', 'c', 'd'

In this example, abcd is a double word whose LO byte contains 97 (the
ASCII code for a), byte 1 contains 98 (b), byte 2 contains 99 (c), and the
HO byte contains 100 (d). MASM does not reserve storage for the abcd vari-
able, so MASM associates the following 4 bytes in memory (allocated by the
byte directive) with abcd.

 3.4 Little-Endian and Big-Endian Data Organization
Back in “The Memory Subsystem” in Chapter 1, this book pointed out that
the x86-64 stores multi-byte data types in memory with the LO byte at the
lowest address in memory and the HO byte at the highest address in mem-
ory (see Figure 1-5 in Chapter 1). This type of data organization in memory
is known as little endian. Little-endian data organization (in which the LO

Memory Access and Organization 115

byte comes first and the HO byte comes last) is a common memory organi-
zation shared by many modern CPUs. It is not, however, the only possible
data organization.

The big-endian data organization reverses the order of the bytes in mem-
ory. The HO byte of the data structure appears first (in the lowest memory
address), and the LO byte appears in the highest memory address. Tables 3-1,
3-2, and 3-3 describe the memory organization for words, double words, and
quad words, respectively.

Table 3-1: Word Object Little- and Big-Endian Data Organizations

Data byte
Memory organization for
little endian

Memory organization for
big endian

0 (LO byte) base + 0 base + 1

1 (HO byte) base + 1 base + 0

Table 3-2: Double-Word Object Little- and Big-Endian Data Organizations

Data byte
Memory organization for
little endian

Memory organization for
big endian

0 (LO byte) base + 0 base + 3

1 base + 1 base + 2

2 base + 2 base + 1

3 (HO byte) base + 3 base + 0

Table 3-3: Quad-Word Object Little- and Big-Endian Data Organizations

Data byte
Memory organization for
little endian

Memory organization for
big endian

0 (LO byte) base + 0 base + 7

1 base + 1 base + 6

2 base + 2 base + 5

3 base + 3 base + 4

4 base + 4 base + 3

5 base + 5 base + 2

6 base + 6 base + 1

7 (HO byte) base + 7 base + 0

Normally, you wouldn’t be too concerned with big-endian memory
organization on an x86-64 CPU. However, on occasion you may need to
deal with data produced by a different CPU (or by a protocol, such as TCP/
IP, that uses big-endian organization as its canonical integer format). If you
were to load a big-endian value in memory into a CPU register, your calcu-
lations would be incorrect.

116 Chapter 3

If you have a 16-bit big-endian value in memory and you load it into a
16-bit register, it will have its bytes swapped. For 16-bit values, you can cor-
rect this issue by using the xchg instruction. It has the syntax

xchg reg, reg
xchg reg, mem

where reg is any 8-, 16-, 32-, or 64-bit general-purpose register, and mem is any
appropriate memory location. The reg operands in the first instruction, or the
reg and mem operands in the second instruction, must both be the same size.

Though you can use the xchg instruction to exchange the values between
any two arbitrary (like-sized) registers, or a register and a memory location,
it is also useful for converting between (16-bit) little- and big-endian for-
mats. For example, if AX contains a big-endian value that you would like to
convert to little-endian form prior to some calculations, you can use the fol-
lowing instruction to swap the bytes in the AX register to convert the value
to little-endian form:

xchg al, ah

You can use the xchg instruction to convert between little- and big-
endian form for any of the 16-bit registers AX, BX, CX, and DX by using
the low/high register designations (AL/AH, BL/BH, CL/CH, and DL/DH).

Unfortunately, the xchg trick doesn’t work for registers other than AX,
BX, CX, and DX. To handle larger values, Intel introduced the bswap (byte
swap) instruction. As its name suggests, this instruction swaps the bytes in a
32- or 64-bit register. It swaps the HO and LO bytes, and the (HO – 1) and
(LO + 1) bytes (plus all the other bytes, in opposing pairs, for 64-bit regis-
ters). The bswap instruction works for all general-purpose 32-bit and 64-bit
registers.

 3.5 Memory Access
As you saw in “The Memory Subsystem” in Chapter 1, the x86-64 CPU
fetches data from memory on the data bus. In an idealized CPU, the data
bus is the size of the standard integer registers on the CPU; therefore, you
would expect the x86-64 CPUs to have a 64-bit data bus. In practice, mod-
ern CPUs often make the physical data bus connection to main memory
much larger in order to improve system performance. The bus brings in
large chunks of data from memory in a single operation and places that
data in the CPU’s cache, which acts as a buffer between the CPU and physi-
cal memory.

From the CPU’s point of view, the cache is memory. Therefore, when
the remainder of this section discusses memory, it’s generally talking about
data sitting in the cache. As the system transparently maps memory accesses
into the cache, we can discuss memory as though the cache were not pres-
ent and discuss the advantages of the cache as necessary.

Memory Access and Organization 117

On early x86 processors, memory was arranged as an array of bytes
(8-bit machines such as the 8088), words (16-bit machines such as the 8086
and 80286), or double words (on 32-bit machines such as the 80386). On
a 16-bit machine, the LO bit of the address did not physically appear on
the address bus. So the addresses 126 and 127 put the same bit pattern
on the address bus (126, with an implicit 0 in bit position 0), as shown in
Figure 3-3.8

16-bit
CPU

Memory

Address = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-3: Address and data bus for 16-bit processors

When reading a byte, the CPU uses the LO bit of the address to select
the LO byte or HO byte on the data bus. Figure 3-4 shows the process when
accessing a byte at an even address (126 in this figure). Figure 3-5 shows
the same operation when reading a byte from an odd address (127 in this
figure). Note that in both Figures 3-4 and 3-5, the address appearing on the
address bus is 126.

16-bit
CPU

Memory

Address = 126

Byte data = Memory[126]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-4: Reading a byte from an even address on a 16-bit CPU

8. 32-bit processors did not put the LO 2 bits onto the address bus, so addresses 124, 125, 126,
and 127 would all have the value 124 on the address bus.

118 Chapter 3

16-bit
CPU

Memory

Address = 126

Byte data = Memory[127]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-5: Reading a byte from an odd address on a 16-bit CPU

So, what happens when this 16-bit CPU wants to access 16 bits of data
at an odd address? For example, suppose in these figures the CPU reads
the word at address 125. When the CPU puts address 125 on the address
bus, the LO bit doesn’t physically appear. Therefore, the actual address on
the bus is 124. If the CPU were to read the LO 8 bits off the data bus at this
point, it would get the data at address 124, not address 125.

Fortunately, the CPU is smart enough to figure out what is going on
here, and extracts the data from the HO 8 bits on the address bus and uses
this as the LO 8 bits of the data operand. However, the HO 8 bits that the
CPU needs are not found on the data bus. The CPU has to initiate a second
read operation, placing address 126 on the address bus, to get the HO 8 bits
(which will be sitting in the LO 8 bits of the data bus, but the CPU can
figure that out). The bottom line is that it takes two memory cycles for this
read operation to complete. Therefore, the instruction reading the data
from memory will take longer to execute than had the data been read from
an address that was an integral multiple of two.

The same problem exists on 32-bit processors, except the 32-bit data
bus allows the CPU to read 4 bytes at a time. Reading a 32-bit value at an
address that is not an integral multiple of four incurs the same perfor-
mance penalty. Note, however, that accessing a 16-bit operand at an odd
address doesn’t always guarantee an extra memory cycle—only addresses
whose remainder when divided by four is 3 incur the penalty. In particular,
if you access a 16-bit value (on a 32-bit bus) at an address where the LO 2
bits contain 01b, the CPU can read the word in a single memory cycle, as
shown in Figure 3-6.

Modern x86-64 CPUs, with cache systems, have largely eliminated this
problem. As long as the data (1, 2, 4, 8, or 10 bytes in size) is fully within a
cache line, there is no memory cycle penalty for an unaligned access. If the
access does cross a cache line boundary, the CPU will run a bit slower while
it executes two memory operations to get (or store) the data.

Memory Access and Organization 119

32-bit
CPU

Memory

Address = 124

32-bit data bus
Word data = Memory[125]

120
121
122
123
124
125
126
127
128
129

LO 8 bits
HO 8 bits

Figure 3-6: Accessing a word on a 32-bit data bus

 3.6 MASM Support for Data Alignment
To write fast programs, you need to ensure that you properly align data
objects in memory. Proper alignment means that the starting address for
an object is a multiple of a certain size, usually the size of an object if the
object’s size is a power of 2 for values up to 32 bytes in length. For objects
greater than 32 bytes, aligning the object on an 8-, 16-, or 32-byte address
boundary is probably sufficient. For objects fewer than 16 bytes, aligning the
object at an address that is the next power of 2 greater than the object’s size
is usually fine. Accessing data that is not aligned at an appropriate address
may require extra time (as noted in the previous section); so, if you want to
ensure that your program runs as rapidly as possible, you should try
to align data objects according to their size.

Data becomes misaligned whenever you allocate storage for different-
sized objects in adjacent memory locations. For example, if you declare
a byte variable, it will consume 1 byte of storage, and the next variable
you declare in that declaration section will have the address of that byte
object plus 1. If the byte variable’s address happens to be an even address,
the variable following that byte will start at an odd address. If that follow-
ing variable is a word or double-word object, its starting address will not
be optimal. In this section, we’ll explore ways to ensure that a variable is
aligned at an appropriate starting address based on that object’s size.

Consider the following MASM variable declarations:

 .data
dw dword ?
b byte ?
w word ?
dw2 dword ?
w2 word ?
b2 byte ?
dw3 dword ?

120 Chapter 3

The first .data declaration in a program (running under Windows)
places its variables at an address that is an even multiple of 4096 bytes.
Whatever variable first appears in that .data declaration is guaranteed to be
aligned on a reasonable address. Each successive variable is allocated at an
address that is the sum of the sizes of all the preceding variables plus the
starting address of that .data section. Therefore, assuming MASM allocates
the variables in the previous example at a starting address of 4096, MASM
will allocate them at the following addresses:

 ; Start Adrs Length
dw dword ? ; 4096 4
b byte ? ; 4100 1
w word ? ; 4101 2
dw2 dword ? ; 4103 4
w2 word ? ; 4107 2
b2 byte ? ; 4109 1
dw3 dword ? ; 4110 4

With the exception of the first variable (which is aligned on a 4KB
boundary) and the byte variables (whose alignment doesn’t matter), all
of these variables are misaligned. The w, w2, and dw2 variables start at odd
addresses, and the dw3 variable is aligned on an even address that is not a
multiple of four.

An easy way to guarantee that your variables are aligned properly is to
put all the double-word variables first, the word variables second, and the
byte variables last in the declaration, as shown here:

 .data
dw dword ?
dw2 dword ?
dw3 dword ?
w word ?
w2 word ?
b byte ?
b2 byte ?

This organization produces the following addresses in memory:

 ; Start Adrs Length
dw dword ? ; 4096 4
dw2 dword ? ; 4100 4
dw3 dword ? ; 4104 4
w word ? ; 4108 2
w2 word ? ; 4110 2
b byte ? ; 4112 1
b2 byte ? ; 4113 1

As you can see, these variables are all aligned at reasonable addresses.
Unfortunately, it is rarely possible for you to arrange your variables in this

Memory Access and Organization 121

manner. While many technical reasons make this alignment impossible, a
good practical reason for not doing this is that it doesn’t let you organize
your variable declarations by logical function (that is, you probably want to
keep related variables next to one another regardless of their size).

To resolve this problem, MASM provides the align directive, which uses
the following syntax:

align integer_constant

The integer constant must be one of the following small unsigned
integer values: 1, 2, 4, 8, or 16. If MASM encounters the align directive in
a .data section, it will align the very next variable on an address that is an
even multiple of the specified alignment constant. The previous example
could be rewritten, using the align directive, as follows:

 .data
 align 4
dw dword ?
b byte ?
 align 2
w word ?
 align 4
dw2 dword ?
w2 word ?
b2 byte ?
 align 4
dw3 dword ?

If MASM determines that the current address (location counter value)
of an align directive is not an integral multiple of the specified value, MASM
will quietly emit extra bytes of padding after the previous variable declaration
until the current address in the .data section is a multiple of the specified
value. This makes your program slightly larger (by a few bytes) in exchange
for faster access to your data. Given that your program will grow by only a few
bytes when you use this feature, this is probably a good trade-off.

As a general rule, if you want the fastest possible access, you should
choose an alignment value that is equal to the size of the object you want
to align. That is, you should align words to even boundaries by using an
align 2 statement, double words to 4-byte boundaries by using align 4, quad
words to 8-byte boundaries by using align 8, and so on. If the object’s size is
not a power of 2, align it to the next higher power of 2 (up to a maximum of
16 bytes). Note, however, that you need only align real80 (and tbyte) objects
on an 8-byte boundary.

Note that data alignment isn’t always necessary. The cache architecture
of modern x86-64 CPUs actually handles most misaligned data. Therefore,
you should use the alignment directives only with variables for which speedy
access is absolutely critical. This is a reasonable space/speed trade-off.

122 Chapter 3

 3.7 The x86-64 Addressing Modes
Until now, you’ve seen only a single way to access a variable: the PC-relative
addressing mode. In this section, you’ll see additional ways your programs
can access memory by using x86-64 memory addressing modes. An address-
ing mode is a mechanism the CPU uses to determine the address of a mem-
ory location an instruction will access.

The x86-64 memory addressing modes provide flexible access to mem-
ory, allowing you to easily access variables, arrays, records, pointers, and
other complex data types. Mastery of the x86-64 addressing modes is the
first step toward mastering x86-64 assembly language.

The x86-64 provides several addressing modes:

•	 Register addressing modes

•	 PC-relative memory addressing modes

•	 Register-indirect addressing modes: [reg64]

•	 Indirect-plus-offset addressing modes: [reg64 + expression]

•	 Scaled-indexed addressing modes: [reg64 + reg64 * scale] and
[reg64 + expression + reg64 * scale]

The following sections describe each of these modes.

3.7.1 x86-64 Register Addressing Modes
The register addressing modes provide access to the x86-64’s general-purpose
register set. By specifying the name of the register as an operand to the
instruction, you can access the contents of that register. This section uses
the x86-64 mov (move) instruction to demonstrate the register addressing
mode. The generic syntax for the mov instruction is shown here:

mov destination, source

The mov instruction copies the data from the source operand to the
destination operand. The 8-, 16-, 32-, and 64-bit registers are all valid
operands for this instruction. The only restriction is that both operands
must be the same size. The following mov instructions demonstrate the
use of various registers:

mov ax, bx ; Copies the value from BX into AX
mov dl, al ; Copies the value from AL into DL
mov esi, edx ; Copies the value from EDX into ESI
mov rsp, rbp ; Copies the value from RBP into RSP
mov ch, cl ; Copies the value from CL into DH
mov ax, ax ; Yes, this is legal! (Though not very useful)

The registers are the best place to keep variables. Instructions using the
registers are shorter and faster than those that access memory. Because most
computations require at least one register operand, the register addressing
mode is popular in x86-64 assembly code.

Memory Access and Organization 123

3.7.2 x86-64 64-Bit Memory Addressing Modes
The addressing modes provided by the x86-64 family include PC-relative,
register-indirect, indirect-plus-offset, and scaled-indexed. Variations on
these four forms provide all the addressing modes on the x86-64.

3.7.2.1 The PC-Relative Addressing Mode

The most common addressing mode, and the one that’s easiest to under-
stand, is the PC-relative (or RIP-relative) addressing mode. This mode
consists of a 32-bit constant that the CPU adds with the current value of
the RIP (instruction pointer) register to specify the address of the target
location.

The syntax for the PC-relative addressing mode is to use the name of a
symbol you declare in one of the many MASM sections (.data, .data?, .const,
.code, etc.), as this book has been doing all along:

mov al, symbol ; PC-relative addressing mode automatically provides [RIP]

Assuming that variable j is an int8 variable appearing at offset 8088h
from RIP, the instruction mov al, j loads the AL register with a copy of
the byte at memory location RIP + 8088h. Likewise, if int8 variable K is at
address RIP + 1234h in memory, then the instruction mov K, dl stores the
value in the DL register to memory location RIP + 1234h (see Figure 3-7).

AL RIP + 8088h (address of j)

RIP + 1234h (address of K)

mov al, j

mov K, dl

DL

Figure 3-7: PC-relative addressing mode

MASM does not directly encode the address of j or K into the instruction’s
operation code (or opcode, the numeric machine encoding of the instruction).
Instead, it encodes a signed displacement from the end of the current instruc-
tion’s address to the variable’s address in memory. For example, if the next
instruction’s opcode is sitting in memory at location 8000h (the end of the
current instruction), then MASM will encode the value 88h as a 32-bit signed
constant for j in the instruction opcode.

You can also access words and double words on the x86-64 processors
by specifying the address of their first byte (see Figure 3-8).

124 Chapter 3

AX RIP + 1235h
RIP + 1234 (address of K)

RIP + 1003h
RIP + 1002h
RIP + 1001h
RIP + 1000h (address of M)

mov ax, K

EDX

mov M, edx

Figure 3-8: Accessing a word or dword by using the PC-relative addressing mode

3.7.2.2 The Register-Indirect Addressing Modes

The x86-64 CPUs let you access memory indirectly through a register by
using the register-indirect addressing modes. The term indirect means that the
operand is not the actual address, but the operand’s value specifies the mem-
ory address to use. In the case of the register-indirect addressing modes, the
value held in the register is the address of the memory location to access. For
example, the instruction mov [rbx], eax tells the CPU to store EAX’s value at
the location whose address is currently in RBX (the square brackets around
RBX tell MASM to use the register-indirect addressing mode).

The x86-64 has 16 forms of this addressing mode. The following
instructions provide examples of these 16 forms:

mov [reg64], al

where reg64 is one of the 64-bit general-purpose registers: RAX, RBX, RCX,
RDX, RSI, RDI, RBP, RSP, R8, R9, R10, R11, R12, R13, R14, or R15. This
addressing mode references the memory location at the offset found in the
register enclosed by brackets.

The register-indirect addressing modes require a 64-bit register. You
cannot specify a 32-, 16-, or 8-bit register in the square brackets when using
an indirect addressing mode. Technically, you could load a 64-bit register
with an arbitrary numeric value and access that location indirectly using
the register-indirect addressing mode:

mov rbx, 12345678
mov [rbx], al ; Attempts to access location 12345678

Unfortunately (or fortunately, depending on how you look at it), this will
probably cause the operating system to generate a protection fault because
it’s not always legal to access arbitrary memory locations. As it turns out,
there are better ways to load the address of an object into a register, and
you’ll see those shortly.

Memory Access and Organization 125

You can use the register-indirect addressing modes to access data ref-
erenced by a pointer, you can use them to step through array data, and, in
general, you can use them whenever you need to modify the address of a
variable while your program is running.

The register-indirect addressing mode provides an example of an anon-
ymous variable; when using a register-indirect addressing mode, you refer to
the value of a variable by its numeric memory address (the value you load
into a register) rather than by the name of the variable.

MASM provides a simple instruction that you can use to take the
address of a variable and put it into a 64-bit register, the lea (load effective
address) instruction:

lea rbx, j

After executing this lea instruction, you can use the [rbx] register-indirect
addressing mode to indirectly access the value of j.

3.7.2.3 Indirect-Plus-Offset Addressing Mode

The indirect-plus-offset addressing modes compute an effective address by add-
ing a 32-bit signed constant to the value of a 64-bit register.9 The instruction
then uses the data at this effective address in memory.

The indirect-plus-offset addressing modes use the following syntax:

mov [reg64 + constant], source
mov [reg64 - constant], source

where reg64 is a 64-bit general-purpose register, constant is a 4-byte constant
(±2 billion), and source is a register or constant value.

If constant is 1100h and RBX contains 12345678h, then

mov [rbx + 1100h], al

stores AL into the byte at address 12346778h in memory (see Figure 3-9).

RBX: 12345678h 12345678h (RBX points here)

12346778h

AL
mov al, [rbx + 1100h]

+ 1100h

Figure 3-9: Indirect-plus-offset addressing mode

9. The effective address is the ultimate address in memory that an instruction will access, once
all the address calculations are complete.

126 Chapter 3

The indirect-plus-offset addressing modes are really handy for access-
ing fields of classes and records/structures. You will see how to use these
addressing modes for that purpose in Chapter 4.

3.7.2.4 Scaled-Indexed Addressing Modes

The scaled-indexed addressing modes are similar to the indexed addressing
modes, except the scaled-indexed addressing modes allow you to combine
two registers plus a displacement, and multiply the index register by a (scal-
ing) factor of 1, 2, 4, or 8 to compute the effective address by adding in the
value of the second register multiplied by the scaling factor. (Figure 3-10
shows an example involving RBX as the base register and RSI as the index
register.)

The syntax for the scaled-indexed addressing modes is shown here:

[base_reg64 + index_reg64*scale]
[base_reg64 + index_reg64*scale + displacement]
[base_reg64 + index_reg64*scale - displacement]

base_reg64 represents any general-purpose 64-bit register, index_reg64
represents any general-purpose 64-bit register except RSP, and scale must
be one of the constants 1, 2, 4, or 8.

RBX

+ RSI*scale

+ const

AL

mov al, [rbx + rsi*scale + const]

Figure 3-10: Scaled-indexed addressing mode

In Figure 3-10, suppose that RBX contains 1000FF00h, RSI contains
20h, and const is 2000h; then the instruction

mov al, [rbx + rsi*4 + 2000h]

will move the byte at address 10011F80h—1000FF00h + (20h × 4) + 2000—
into the AL register.

Memory Access and Organization 127

The scaled-indexed addressing modes are useful for accessing array ele-
ments that are 2, 4, or 8 bytes each. These addressing modes are also useful
for accessing elements of an array when you have a pointer to the beginning
of the array.

3.7.3 Large Address Unaware Applications
One advantage of 64-bit addresses is that they can access a frightfully large
amount of memory (something like 8TB under Windows). By default, the
Microsoft linker (when it links together the C++ and assembly language
code) sets a flag named LARGEADDRESSAWARE to true (yes). This makes it possible
for your programs to access a huge amount of memory. However, there is a
price to be paid for operating in LARGEADDRESSAWARE mode: the const compo-
nent of the [reg64 + const] addressing mode is limited to 32 bits and cannot
span the entire address space.

Because of instruction-encoding limitations, the const value is limited
to a signed value in the range ±2GB. This is probably far more than enough
when the register contains a 64-bit base address and you want to access
a memory location at a fixed offset (less than ±2GB) around that base
address. A typical way you would use this addressing mode is as follows:

lea rcx, someStructure
mov al, [rcx+fieldOffset]

Prior to the introduction of 64-bit addresses, the const offset appearing
in the (32-bit) indirect-plus-offset addressing mode could span the entire
(32-bit) address space. So if you had an array declaration such as

 .data
buf byte 256 dup (?)

you could access elements of this array by using the following addressing
mode form:

mov al, buf[ebx] ; EBX was used on 32-bit processors

If you were to attempt to assemble the instruction mov al, buf[rbx] in
a 64-bit program (or any other addressing mode involving buf other than
PC-relative), MASM would assemble the code properly, but the linker would
report an error:

error LNK2017: 'ADDR32' relocation to 'buf' invalid without /LARGEADDRESSAWARE:NO

The linker is complaining that in an address space exceeding 32 bits,
it is impossible to encode the offset to the buf buffer because the machine
instruction opcodes provide only a 32-bit offset to hold the address of buf.

128 Chapter 3

However, if we were to artificially limit the amount of memory that our
application uses to 2GB, then MASM can encode the 32-bit offset to buf into
the machine instruction. As long as we kept our promise and never used any
more memory than 2GB, several new variations on the indirect-plus-offset
and scaled-indexed addressing modes become possible.

To turn off the large address–aware flag, you need to add an extra com-
mand line option to the ml64 command. This is easily done in the build.bat
file; let’s create a new build.bat file and call it sbuild.bat. This file will have
the following lines:

echo off
ml64 /nologo /c /Zi /Cp %1.asm
cl /nologo /O2 /Zi /utf-8 /EHa /Fe%1.exe c.cpp %1.obj /link /largeaddressaware:no

This set of commands (sbuild.bat for small build) tells MASM to pass a
command to the linker that turns off the large address–aware file. MASM,
MSVC, and the Microsoft linker will construct an executable file that
requires only 32-bit addresses (ignoring the 32 HO bits in the 64-bit regis-
ters appearing in addressing modes).

Once you’ve disabled LARGEADDRESSAWARE, several new variants of the
indirect-plus-offset and scaled-indexed addressing modes become available
to your programs:

variable[reg64]
variable[reg64 + const]
variable[reg64 - const]
variable[reg64 * scale]
variable[reg64 * scale + const]
variable[reg64 * scale - const]
variable[reg64 + reg_not_RSP64 * scale]
variable[reg64 + reg_not_RSP64 * scale + const]
variable[reg64 + reg_not_RSP64 * scale - const]

where variable is the name of an object you’ve declared in your source file
by using directives like byte, word, dword, and so on; const is a (maximum
32-bit) constant expression; and scale is 1, 2, 4, or 8. These addressing mode
forms use the address of variable as the base address and add in the current
value of the 64-bit registers (see Figures 3-11 through 3-16 for examples).

+

AL

RBX

variable

mov al, variable[rbx]

Address of variable

Figure 3-11: Base address form of indirect-plus-offset addressing mode

Memory Access and Organization 129

Although the small address forms (LARGEADDRESSAWARE:NO) are convenient
and efficient, they can fail spectacularly if your program ever uses more
than 2GB of memory. Should your programs ever grow beyond that point,
you will have to completely rewrite every instruction that uses one of these
addresses (that uses a global data object as the base address rather than
loading the base address into a register). This can be very painful and error
prone. Think twice before ever using the LARGEADDRESSAWARE:NO option.

+

AL

RBX

variable

+ const

mov al, variable[rbx + const]

Address of variable

Figure 3-12: Small address plus constant form of indirect-plus-offset
addressing mode

+

AL

RBX

variable

+ RSI*scale

mov al, variable[rbx + rsi*scale]

Address of variable

Figure 3-13: Small address form of base-plus-scaled-indexed addressing mode

+RBX

variable

+ RSI*scale

mov al, variable[rbx + rsi*scale + const]

Address of variable

+ const
AL

Figure 3-14: Small address form of base-plus-scaled-indexed-plus-constant
addressing mode

130 Chapter 3

variable

+ RSI*scale

mov al, variable[rsi*scale]

Address of variable

AL

Figure 3-15: Small address form of scaled-indexed addressing mode

variable

+ RSI*scale

mov al, variable[rsi*scale + const]

Address of variable

AL
+ const

Figure 3-16: Small address form of scaled-indexed-plus-constant
addressing mode

 3.8 Address Expressions
Often, when accessing variables and other objects in memory, we need to
access memory locations immediately before or after a variable rather than
the memory at the address specified by the variable. For example, when
accessing an element of an array or a field of a structure/record, the exact
element or field is probably not at the address of the variable itself. Address
expressions provide a mechanism to attach an arithmetic expression to an
address to access memory around a variable’s address.

This book considers an address expression to be any legal x86-64 address-
ing mode that includes a displacement (that is, variable name) or an offset.
For example, the following are legal address expressions:

[reg64 + offset]
[reg64 + reg_not_RSP64 * scale + offset]

Memory Access and Organization 131

Consider the following legal MASM syntax for a memory address,
which isn’t actually a new addressing mode but simply an extension of the
PC-relative addressing mode:

variable_name[offset]

This extended form computes its effective address by adding the con-
stant offset within the brackets to the variable’s address. For example, the
instruction mov al, Address[3] loads the AL register with the byte in memory
that is 3 bytes beyond the Address object (see Figure 3-17).

The offset value in these examples must be a constant. If index is an
int32 variable, then variable[index] is not a legal address expression. If you
wish to specify an index that varies at runtime, you must use one of the
indirect or scaled-indexed addressing modes.

Another important thing to remember is that the offset in Address[offset]
is a byte address. Although this syntax is reminiscent of array indexing in a
high-level language like C/C++ or Java, this does not properly index into an
array of objects unless Address is an array of bytes.

1003h (i + 3)
1002h
1001h
1000h (address of i)

AL

mov al, i[3]

Figure 3-17: Using an address expression to access data beyond a variable

Until this point, the offset in all the addressing mode examples has
always been a single numeric constant. However, MASM also allows a con-
stant expression anywhere an offset is legal. A constant expression consists
of one or more constant terms manipulated by operators such as addi-
tion, subtraction, multiplication, division, modulo, and a wide variety of
others. Most address expressions, however, will involve only addition, sub-
traction, multiplication, and sometimes division. Consider the following
example:

mov al, X[2*4 + 1]

This instruction will move the byte at address X + 9 into the AL register.
The value of an address expression is always computed at compile

time, never while the program is running. When MASM encounters the

132 Chapter 3

preceding instruction, it calculates 2 × 4 + 1 on the spot and adds this
result to the base address of X in memory. MASM encodes this single sum
(base address of X plus 9) as part of the instruction; MASM does not emit
extra instructions to compute this sum for you at runtime (which is good,
because doing so would be less efficient). Because MASM computes the
value of address expressions at compile time, all components of the expres-
sion must be constants because MASM cannot know the runtime value of a
variable while it is compiling the program.

Address expressions are useful for accessing the data in memory beyond
a variable, particularly when you’ve used the byte, word, dword, and so on,
statements in a .data or .const section to tack on additional bytes after a
data declaration. For example, consider the program in Listing 3-1 that
uses address expressions to access the four consecutive bytes associated
with variable i.

; Listing 3-1

; Demonstrate address expressions.

 option casemap:none

nl = 10 ; ASCII code for newline

 .const
ttlStr byte 'Listing 3-1', 0
fmtStr1 byte 'i[0]=%d ', 0
fmtStr2 byte 'i[1]=%d ', 0
fmtStr3 byte 'i[2]=%d ', 0
fmtStr4 byte 'i[3]=%d',nl, 0

 .data
i byte 0, 1, 2, 3

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

Memory Access and Organization 133

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

 lea rcx, fmtStr1
 movzx rdx, i[0]
 call printf

 lea rcx, fmtStr2
 movzx rdx, i[1]
 call printf

 lea rcx, fmtStr3
 movzx rdx, i[2]
 call printf

 lea rcx, fmtStr4
 movzx rdx, i[3]
 call printf

 add rsp, 48
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 3-1: Demonstration of address expressions

Here’s the output from the program:

C:\>build listing3-1

C:\>echo off
 Assembling: listing3-1.asm
c.cpp

C:\>listing3-1
Calling Listing 3-1:
i[0]=0 i[1]=1 i[2]=2 i[3]=3
Listing 3-1 terminated

The program in Listing 3-1 displays the four values 0, 1, 2, and 3 as
though they were array elements. This is because the value at the address of
i is 0. The address expression i[1] tells MASM to fetch the byte appearing
at i’s address plus 1. This is the value 1, because the byte statement in this
program emits the value 1 to the .data segment immediately after the value
0. Likewise for i[2] and i[3], this program displays the values 2 and 3.

Note that MASM also provides a special operator, this, that returns the
current location counter (current position) within a section. You can use
the this operator to represent the address of the current instruction in an
address expression. See “Constant Expressions” in Chapter 4 for more details.

134 Chapter 3

 3.9 The Stack Segment and the push and pop
Instructions
The x86-64 maintains the stack in the stack segment of memory. The stack
is a dynamic data structure that grows and shrinks according to certain
needs of the program. The stack also stores important information about
the program, including local variables, subroutine information, and tempo-
rary data.

The x86-64 controls its stack via the RSP (stack pointer) register. When
your program begins execution, the operating system initializes RSP with
the address of the last memory location in the stack memory segment. Data
is written to the stack segment by “pushing” data onto the stack and “pop-
ping” data off the stack.

3.9.1 The Basic push Instruction
Here’s the syntax for the x86-64 push instruction:

push reg16
push reg64
push memory16
push memory64
pushw constant16
push constant32 ; Sign extends constant32 to 64 bits

These six forms allow you to push 16-bit or 64-bit registers, 16-bit or
64-bit memory locations, and 16-bit or 64-bit constants, but not 32-bit regis-
ters, memory locations, or constants.

The push instruction does the following:

RSP := RSP - size_of_register_or_memory_operand (2 or 8)
[RSP] := operand's_value

For example, assuming that RSP contains 00FF_FFFCh, the instruction
push rax will set RSP to 00FF_FFE4h and store the current value of RAX
into memory location 00FF_FFE04, as Figures 3-18 and 3-19 show.

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4

Before

instruction
push rax

RAX

RSP

Figure 3-18: Stack segment before the push rax operation

Memory Access and Organization 135

RAX
value
on stk

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4
00FF_FFF3
00FF_FFF2

RSP

RAX

After

instruction
push rax

Figure 3-19: Stack segment after the push rax operation

Although the x86-64 supports 16-bit push operations, their primary use
is in 16-bit environments such as Microsoft Disk Operating System (MS-DOS).
For maximum performance, the stack pointer’s value should always be a multi-
ple of eight; indeed, your program may malfunction under a 64-bit OS if RSP
contains a value that is not a multiple of eight. The only practical reason for
pushing fewer than 8 bytes at a time on the stack is to build up a quad word
via four successive word pushes.

3.9.2 The Basic pop Instruction
To retrieve data you’ve pushed onto the stack, you use the pop instruction.
The basic pop instruction allows the following forms:

pop reg16
pop reg64
pop memory16
pop memory64

Like the push instruction, the pop instruction supports only 16-bit and
64-bit operands; you cannot pop an 8-bit or 32-bit value from the stack. As
with the push instruction, you should avoid popping 16-bit values (unless you
do four 16-bit pops in a row) because 16-bit pops may leave the RSP regis-
ter containing a value that is not a multiple of eight. One major difference
between push and pop is that you cannot pop a constant value (which makes
sense, because the operand for push is a source operand, while the operand
for pop is a destination operand).

Formally, here’s what the pop instruction does:

operand := [RSP]
RSP := RSP + size_of_operand (2 or 8)

136 Chapter 3

As you can see, the pop operation is the converse of the push operation.
Note that the pop instruction copies the data from memory location [RSP]
before adjusting the value in RSP. See Figures 3-20 and 3-21 for details
on this operation.

RAX
value
on stk

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4
00FF_FFF3
00FF_FFF2

pop rax

RSP

RAX

Before

instruction

Figure 3-20: Memory before a pop rax operation

RAX
value
on stk

00FF_FFFF
00FF_FFFE
00FF_FFFD
00FF_FFFC
00FF_FFFB
00FF_FFFA
00FF_FFF9
00FF_FFF8
00FF_FFF7
00FF_FFF6
00FF_FFF5
00FF_FFF4
00FF_FFF3
00FF_FFF2

RSP

RAX value from the stack

pop rax
After

instruction

Figure 3-21: Memory after the pop rax operation

The value popped from the stack is still present in memory. Popping a
value does not erase the value in memory; it just adjusts the stack pointer so
that it points at the next value above the popped value. However, you should
never attempt to access a value you’ve popped off the stack. The next time
something is pushed onto the stack, the popped value will be obliterated.
Because your code isn’t the only thing that uses the stack (for example, the
operating system uses the stack, as do subroutines), you cannot rely on data
remaining in stack memory once you’ve popped it off the stack.

Memory Access and Organization 137

3.9.3 Preserving Registers with the push and pop Instructions
Perhaps the most common use of the push and pop instructions is to save reg-
ister values during intermediate calculations. Because registers are the best
place to hold temporary values, and registers are also needed for the vari-
ous addressing modes, it is easy to run out of registers when writing code
that performs complex calculations. The push and pop instructions can come
to your rescue when this happens.

Consider the following program outline:

 Some instructions that use the RAX register

 Some instructions that need to use RAX, for a
 different purpose than the above instructions

 Some instructions that need the original value in RAX

The push and pop instructions are perfect for this situation. By insert-
ing a push instruction before the middle sequence and a pop instruction
after the middle sequence, you can preserve the value in RAX across those
calculations:

 Some instructions that use the RAX register

 push rax

 Some instructions that need to use RAX, for a
 different purpose than the above instructions

 pop rax

 Some instructions that need the original value in RAX

This push instruction copies the data computed in the first sequence of
instructions onto the stack. Now the middle sequence of instructions can
use RAX for any purpose it chooses. After the middle sequence of instruc-
tions finishes, the pop instruction restores the value in RAX so the last
sequence of instructions can use the original value in RAX.

 3.10 The Stack Is a LIFO Data Structure
You can push more than one value onto the stack without first popping
previous values off the stack. However, the stack is a last-in, first-out (LIFO)
data structure, so you must be careful how you push and pop multiple
values. For example, suppose you want to preserve RAX and RBX across a

138 Chapter 3

block of instructions; the following code demonstrates the obvious way to
handle this:

push rax
push rbx
 Code that uses RAX and RBX goes here
pop rax
pop rbx

Unfortunately, this code will not work properly! Figures 3-22 through 3-25
show the problem. Because this code pushes RAX first and RBX second,
the stack pointer is left pointing at RBX’s value on the stack. When the pop
rax instruction comes along, it removes the value that was originally in RBX
from the stack and places it in RAX! Likewise, the pop rbx instruction pops
the value that was originally in RAX into the RBX register. The result is that
this code manages to swap the values in the registers by popping them in the
same order that it pushes them.

Each box in this diagram represents 8 bytes
on the stack (note the addresses).

RAX value

RSP

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

push rax
After

instruction

Figure 3-22: Stack after pushing RAX

To rectify this problem, you must note that the stack is a LIFO data
structure, so the first thing you must pop is the last thing you push onto the
stack. Therefore, you must always observe the following maxim: always pop
values in the reverse order that you push them.

The correction to the previous code is shown here:

push rax
push rbx
 Code that uses RAX and RBX goes here
pop rbx
pop rax

Memory Access and Organization 139

Each box in this diagram represents 8 bytes
on the stack (note the addresses).

RAX value
RBX valueRSP

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

push rbx

After

instruction

Figure 3-23: Stack after pushing RBX

RAX value

Notice how this instruction pops RBX‘s saved
value into the RAX register.

RBX value
RSP

RAX

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

pop rax

After

instruction

Figure 3-24: Stack after popping RAX

Another important maxim to remember is this: always pop exactly the
same number of bytes that you push. This generally means that the number of
pushes and pops must exactly agree. If you have too few pops, you will leave
data on the stack, which may confuse the running program. If you have too
many pops, you will accidentally remove previously pushed data, often with
disastrous results.

A corollary to the preceding maxim is be careful when pushing and popping
data within a loop. Often it is quite easy to put the pushes in a loop and leave the
pops outside the loop (or vice versa), creating an inconsistent stack. Remember,
it is the execution of the push and pop instructions that matters, not the number
of push and pop instructions that appear in your program. At runtime, the num-
ber (and order) of the push instructions the program executes must match the
number (and reverse order) of the pop instructions.

140 Chapter 3

RAX value

Notice how this instruction pops RAX‘s saved
value into the RBX register.

RBX value

RSP

RBX

00FF_FFF8
00FF_FFF0
00FF_FFE8
00FF_FFE0
00FF_FFD8
00FF_FFD0
00FF_FFC8
00FF_FFC0
00FF_FFB8
00FF_FFB0
00FF_FFA8
00FF_FFA0

pop rbx

After

instruction

Figure 3-25: Stack after popping RBX

One final thing to note: the Microsoft ABI requires the stack to be aligned on
a 16-byte boundary. If you push and pop items on the stack, make sure that
the stack is aligned on a 16-byte boundary before calling any functions or
procedures that adhere to the Microsoft ABI (and require the stack to be
aligned on a 16-byte boundary).

 3.11 Other push and pop Instructions
The x86-64 provides four additional push and pop instructions in addition to
the basic ones:

pushf popf

pushfq popfq

The pushf, pushfq, popf, and popfq instructions push and pop the RFLAGS
register. These instructions allow you to preserve condition code and other
flag settings across the execution of a sequence of instructions. Unfortunately,
unless you go to a lot of trouble, it is difficult to preserve individual flags.
When using the pushf(q) and popf(q) instructions, it’s an all-or-nothing propo-
sition: you preserve all the flags when you push them; you restore all the flags
when you pop them.

You should really use the pushfq and popfq instructions to push the full
64-bit version of the RFLAGS register (rather than pushing only the 16-bit
FLAGs portion). Although the extra 48 bits you push and pop are essen-
tially ignored when writing applications, you still want to keep the stack
aligned by pushing and popping only quad words.

 3.12 Removing Data from the Stack Without Popping It
Quite often you may discover that you’ve pushed data onto the stack that
you no longer need. Although you could pop the data into an unused

Memory Access and Organization 141

register or memory location, there is an easier way to remove unwanted
data from the stack—simply adjust the value in the RSP register to skip over
the unwanted data on the stack.

Consider the following dilemma (in pseudocode, not actual assembly
language):

push rax
push rbx

 Some code that winds up computing some values we want to keep
 in RAX and RBX

if(Calculation_was_performed) then

 ; Whoops, we don't want to pop RAX and RBX!
 ; What to do here?

else

 ; No calculation, so restore RAX, RBX.

 pop rbx
 pop rax

endif;

Within the then section of the if statement, this code wants to remove
the old values of RAX and RBX without otherwise affecting any registers or
memory locations. How can we do this?

Because the RSP register contains the memory address of the item on
the top of the stack, we can remove the item from the top of the stack by
adding the size of that item to the RSP register. In the preceding example,
we wanted to remove two quad-word items from the top of the stack. We
can easily accomplish this by adding 16 to the stack pointer (see Figures
3-26 and 3-27 for the details):

push rax
push rbx

 Some code that winds up computing some values we want to keep
 in RAX and RBX

if(Calculation_was_performed) then

 ; Remove unneeded RAX/RBX values
 ; from the stack.

 add rsp, 16

else

142 Chapter 3

 ; No calculation, so restore RAX, RBX.

 pop rbx
 pop rax

endif;

RSP

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP − 8
RSP − 16

RAX value
RBX value

Figure 3-26: Removing data from the stack, before
add rsp, 16

RSP

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP – 8
RSP – 16

RAX value
RBX value

Figure 3-27: Removing data from the stack, after
add rsp, 16

Effectively, this code pops the data off the stack without moving it any-
where. Also note that this code is faster than two dummy pop instructions
because it can remove any number of bytes from the stack with a single add
instruction.

N O T E Remember to keep the stack aligned on a quad-word boundary. Therefore, you should
always add a constant that is a multiple of eight to RSP when removing data from
the stack.

 3.13 Accessing Data You’ve Pushed onto the Stack
Without Popping It
Once in a while, you will push data onto the stack and will want to get a
copy of that data’s value, or perhaps you will want to change that data’s
value without actually popping the data off the stack (that is, you wish
to pop the data off the stack at a later time). The x86-64 [reg64 ± offset]
addressing mode provides the mechanism for this.

Memory Access and Organization 143

Consider the stack after the execution of the following two instructions
(see Figure 3-28):

push rax
push rbx

RSP

RSP + 40
RSP + 32
RSP + 24
RSP + 16
RSP + 8
RSP + 0
RSP − 8
RSP − 16

RAX value
RBX value

Figure 3-28: Stack after pushing RAX and RBX

If you wanted to access the original RBX value without removing it
from the stack, you could cheat and pop the value and then immediately
push it again. Suppose, however, that you wish to access RAX’s old value
or another value even further up the stack. Popping all the intermediate
values and then pushing them back onto the stack is problematic at best,
impossible at worst. However, as you will notice from Figure 3-28, each
value pushed on the stack is at a certain offset from the RSP register in
memory. Therefore, we can use the [rsp ± offset] addressing mode to gain
direct access to the value we are interested in. In the preceding example,
you can reload RAX with its original value by using this single instruction:

mov rax, [rsp + 8]

This code copies the 8 bytes starting at memory address rsp + 8 into the
RAX register. This value just happens to be the previous value of RAX that
was pushed onto the stack. You can use this same technique to access other
data values you’ve pushed onto the stack.

N O T E Don’t forget that the offsets of values from RSP into the stack change every time you
push or pop data. Abusing this feature can create code that is hard to modify; if you use
this feature throughout your code, it will make it difficult to push and pop other data
items between the point where you first push data onto the stack and the point where you
decide to access that data again using the [rsp + offset] memory addressing mode.

The previous section pointed out how to remove data from the stack
by adding a constant to the RSP register. That pseudocode example could
probably be written more safely as this:

push rax
push rbx

144 Chapter 3

 Some code that winds up computing some values we want to keep
 in RAX and RBX

if(Calculation_was_performed) then

 Overwrite saved values on stack with
 new RAX/RBX values (so the pops that
 follow won't change the values in RAX/RBX)

 mov [rsp + 8], rax
 mov [rsp], rbx

endif
pop rbx
pop rax

In this code sequence, the calculated result was stored over the top of
the values saved on the stack. Later, when the program pops the values, it
loads these calculated values into RAX and RBX.

 3.14 Microsoft ABI Notes
About the only feature this chapter introduces that affects the Microsoft
ABI is data alignment. As a general rule, the Microsoft ABI requires all
data to be aligned on a natural boundary for that data object. A natural
boundary is an address that is a multiple of the object’s size (up to 16 bytes).
Therefore, if you intend to pass a word/sword, dword/sdword, or qword/
sqword value to a C++ procedure, you should attempt to align that object
on a 2-, 4-, or 8-byte boundary, respectively.

When calling code written in a Microsoft ABI–aware language, you
must ensure that the stack is aligned on a 16-byte boundary before issuing
a call instruction. This can severely limit the usefulness of the push and pop
instructions. If you use the push instructions to save a register’s value prior
to a call, you must make sure you push two (64-bit) values, or otherwise
make sure the RSP address is a multiple of 16 bytes, prior to making the
call. Chapter 5 explores this issue in greater detail.

 3.15 For More Information
An older, 16-bit version of my book The Art of Assembly Language Programming
can be found at https://artofasm.randallhyde.com/. In that text, you will find infor-
mation about the 8086 16-bit addressing modes and segmentation. The pub-
lished edition of that book (No Starch Press, 2010) covers the 32-bit addressing
modes. Of course, the Intel x86 documentation (found at http://www.intel
.com/) provides complete information on x86-64 address modes and machine
instruction encoding.

https://artofasm.randallhyde.com/
http://www.intel.com/
http://www.intel.com/

Memory Access and Organization 145

 3.16 Test Yourself

1. The PC-relative addressing mode indexes off which 64-bit register?

2. What does opcode stand for?

3. What type of data is the PC-relative addressing mode typically used for?

4. What is the address range of the PC-relative addressing mode?

5. In a register-indirect addressing mode, what does the register contain?

6. Which of the following registers is valid for use with the register-indirect
addressing mode?

a. AL

b. AX

c. EAX

d. RAX

7. What instruction would you normally use to load the address of a mem-
ory object into a register?

8. What is an effective address?

9. What scaling values are legal with the scaled-indexed addressing mode?

10. What is the memory limitation on a LARGEADDRESSAWARE:NO application?

11. What is the advantage of using the LARGEADDRESSAWARE:NO option when
compiling a program?

12. What is the difference between the .data section and the .data? section?

13. Which (standard MASM) memory sections are read-only?

14. Which (standard MASM) memory sections are readable and writable?

15. What is the location counter?

16. Explain how to use the label directive to coerce data to a different type.

17. Explain what happens if two (or more) .data sections appear in a MASM
source file.

18. How would you align a variable in the .data section to an 8-byte
boundary?

19. What does MMU stand for?

20. If b is a byte variable in read/write memory, explain how a mov ax, b
instruction could cause a general protection fault.

21. What is an address expression?

22. What is the purpose of the MASM PTR operator?

23. What is the difference between a big-endian value and a little-endian
value?

24. If AX contains a big-endian value, what instruction could you use to
convert it to a little-endian value?

146 Chapter 3

25. If EAX contains a little-endian value, what instruction could you use to
convert it to a big-endian value?

26. If RAX contains a big-endian value, what instruction could you use to
convert it to a little-endian value?

27. Explain, step by step, what the push rax instruction does.

28. Explain, step by step, what the pop rax instruction does.

29. When using the push and pop instructions to preserve registers, you
must always pop the registers in the order that you
pushed them.

30. What does LIFO stand for?

31. How do you access data on the stack without using the push and pop
instructions?

32. How can pushing RAX onto the stack before calling a Windows
ABI–compatible function create problems?

4
C O N S T A N T S , V A R I A B L E S ,

A N D D A T A T Y P E S

Chapter 2 discussed the basic format for
data in memory. Chapter 3 covered how a

computer system physically organizes that
data in memory. This chapter finishes the dis-

cussion by connecting the concept of data representa-
tion to its actual physical representation. As the title
indicates, this chapter concerns itself with three main
topics: constants, variables, and data structures. I do
not assume that you’ve had a formal course in data
structures, though such experience would be useful.

This chapter discusses how to declare and use constants, scalar variables,
integers, data types, pointers, arrays, records/structures, and unions. You
must master these subjects before going on to the next chapter. Declaring
and accessing arrays, in particular, seem to present a multitude of problems
to beginning assembly language programmers. However, the rest of this text
depends on your understanding of these data structures and their memory

148 Chapter 4

representation. Do not try to skim over this material with the expectation that
you will pick it up as you need it later. You will need it right away, and trying to
learn this material along with later material will only confuse you more.

 4.1 The imul Instruction
This chapter introduces arrays and other concepts that will require the expan-
sion of your x86-64 instruction set knowledge. In particular, you will need to
learn how to multiply two values; hence, this section looks at the imul (integer
multiply) instruction.

The imul instruction has several forms. This section doesn’t cover all of
them, just the ones that are useful for array calculations (for the remaining
imul instructions, see “Arithmetic Expressions” in Chapter 6). The imul vari-
ants of interest right now are as follows:

; The following computes destreg = destreg * constant:

imul destreg16, constant
imul destreg32, constant
imul destreg64, constant32

; The following computes dest = src * constant:

imul destreg16, srcreg16, constant
imul destreg16, srcmem16, constant

imul destreg32, srcreg32, constant
imul destreg32, srcmem32, constant

imul destreg64, srcreg64, constant32
imul destreg64, srcmem64, constant32

; The following computes dest = destreg * src:

imul destreg16, srcreg16
imul destreg16, srcmem16
imul destreg32, srcreg32
imul destreg32, srcmem32
imul destreg64, srcreg64
imul destreg64, srcmem64

Note that the syntax of the imul instruction is different from that of the
add and sub instructions. In particular, the destination operand must be a
register (add and sub both allow a memory operand as a destination). Also
note that imul allows three operands when the last operand is a constant.
Another important difference is that the imul instruction allows only 16-,
32-, and 64-bit operands; it does not multiply 8-bit operands. Finally, as is
true for most instructions that support the immediate addressing mode,
the CPU limits constant sizes to 32 bits. For 64-bit operands, the x86-64 will
sign-extend the 32-bit immediate constant to 64 bits.

Constants, Variables, and Data Types 149

imul computes the product of its specified operands and stores the
result into the destination register. If an overflow occurs (which is always a
signed overflow, because imul multiplies only signed integer values), then
this instruction sets both the carry and overflow flags. imul leaves the other
condition code flags undefined (so, for example, you cannot meaningfully
check the sign flag or the zero flag after executing imul).

 4.2 The inc and dec Instructions
As several examples up to this point have indicated, adding or subtracting
1 from a register or memory location is a very common operation. In fact,
these operations are so common that Intel’s engineers included a pair of
instructions to perform these specific operations: inc (increment) and dec
(decrement).

The inc and dec instructions use the following syntax:

inc mem/reg
dec mem/reg

The single operand can be any legal 8-, 16-, 32-, or 64-bit register or
memory operand. The inc instruction will add 1 to the specified operand,
and the dec instruction will subtract 1 from the specified operand.

These two instructions are slightly shorter than the corresponding add
or sub instructions (their encoding uses fewer bytes). There is also one slight
difference between these two instructions and the corresponding add or sub
instructions: they do not affect the carry flag.

 4.3 MASM Constant Declarations
MASM provides three directives that let you define constants in your assem-
bly language programs.1 Collectively, these three directives are known as
equates. You’ve already seen the most common form:

symbol = constant_expression

For example:

MaxIndex = 15

Once you declare a symbolic constant in this manner, you may use the
symbolic identifier anywhere the corresponding literal constant is legal. These
constants are known as manifest constants—symbolic representations that allow
you to substitute the literal value for the symbol anywhere in the program.

Contrast this with .const variables; a .const variable is certainly a constant
value because you cannot change its value at runtime. However, a memory

1. Technically, you could also use macro functions to define constants in MASM. See
Chapter 13 for more details.

150 Chapter 4

location is associated with a .const variable; the operating system, not the
MASM compiler, enforces the read-only attribute. Although it will certainly
crash your program when it runs, it is perfectly legal to write an instruction
like mov ReadOnlyVar, eax. On the other hand, it is no more legal to write mov
MaxIndex, eax (using the preceding declaration) than it is to write mov 15, eax.
In fact, both statements are equivalent because the compiler substitutes 15 for
MaxIndex whenever it encounters this manifest constant.

Constant declarations are great for defining “magic” numbers that might
possibly change during program modification. Most of the listings through-
out this book have used manifest constants like nl (newline), maxLen, and NULL.

In addition to the = directive, MASM provides the equ directive:

symbol equ constant_expression

With a couple exceptions, these two equate directives do the same
thing: they define a manifest constant, and MASM will substitute the
constant_expression value wherever the symbol appears in the source file.

The first difference between the two is that MASM allows you to rede-
fine symbols that use the = directive. Consider the following code snippet:

maxSize = 100

Code that uses maxSize, expecting it to be 100

maxSize = 256

Code that uses maxSize, expecting it to be 256

You might question the term constant when it’s pretty clear in this example
that maxSize’s value changes at various points in the source file. However, note
that while maxSize’s value does change during assembly, at runtime the particu-
lar literal constant (100 or 256 in this example) can never change.

You cannot redefine the value of a constant you declare with an equ
directive (at runtime or assembly time). Any attempt to redefine an equ
symbol results in a symbol redefinition error from MASM. So if you want to
prevent the accidental redefinition of a constant symbol in your source file,
you should use the equ directive rather than the = directive.

Another difference between the = and equ directives is that constants you
define with = must be representable as a 64-bit (or smaller) integer. Short
character strings are legal as = operands, but only if they have eight or fewer
characters (which would fit into a 64-bit value). Equates using equ have no
such limitation.

Ultimately, the difference between = and equ is that the = directive com-
putes the value of a numeric expression and saves that value to substitute
wherever that symbol appears in the program. The equ directive, if its oper-
and can be reduced to a numeric value, will work the same way. However, if
the equ operand cannot be converted to a numeric value, then the equ direc-
tive will save its operand as textual data and substitute that textual data in
place of the symbol.

Constants, Variables, and Data Types 151

Because of the numeric/text processing, equ can get confused on occa-
sion by its operand. Consider the following example:

SomeStr equ "abcdefgh"
 .
 .
 .
memStr byte SomeStr

MASM will report an error (initializer magnitude too large for specified
size or something similar) because a 64-bit value (obtained by creating
an integer value from the eight characters abcdefgh) will not fit into a byte
variable. However, if we add one more character to the string, MASM will
gladly accept this:

SomeStr equ "abcdefghi"
 .
 .
 .
memStr byte SomeStr

The difference between these two examples is that in the first case,
MASM decides that it can represent the string as a 64-bit integer, so the con-
stant is a quad-word constant rather than a string of characters. In the second
example, MASM cannot represent the string of characters as an integer, so it
treats the operand as a text operand rather than a numeric operand. When
MASM does a textual substitution of the string abcdefghi for memStr in the
second example, MASM assembles the code properly because strings are per-
fectly legitimate operands for the byte directive.

Assuming you really want MASM to treat a string of eight characters
or fewer as a string rather than as an integer value, there are two solutions.
The first is to surround the operand with text delimiters. MASM uses the sym-
bols < and > as text delimiters in an equ operand field. So, you could use the
following code to solve this problem:

SomeStr equ <"abcdefgh">
 .
 .
 .
memStr byte SomeStr

Because the equ directive’s operand can be somewhat ambiguous at
times, Microsoft introduced a third equate directive, textequ, to use when
you want to create a text equate. Here’s the current example using a text
equate:

SomeStr textequ <"abcdefgh">
 .
 .
 .
memStr byte SomeStr

152 Chapter 4

Note that textequ operands must always use the text delimiters (< and >)
in the operand field.

Whenever MASM encounters a symbol defined with the text directive
in a source file, it will immediately substitute the text associated with that
directive for the identifier. This is somewhat similar to the C/C++ #define
macro (except you don’t get to specify any parameters). Consider the fol-
lowing example:

maxCnt = 10
max textequ <maxCnt>
max = max+1

MASM substitutes maxCnt for max throughout the program (after the
textequ declaring max). In the third line of this example, this substitution
yields the statement:

maxCnt = maxCnt+1

Thereafter in the program, MASM will substitute the value 11 everywhere
it sees the symbol maxCnt. Whenever MASM sees max after that point, it will
substitute maxCnt, and then it will substitute 11 for maxCnt.

You could even use MASM text equates to do something like the
following:

mv textequ <mov>
 .
 .
 .
 mv rax,0

MASM will substitute mov for mv and compile the last statement in this
sequence into a mov instruction. Most people would consider this a huge
violation of assembly language programming style, but it’s perfectly legal.

4.3.1 Constant Expressions
Thus far, this chapter has given the impression that a symbolic constant
definition consists of an identifier, an optional type, and a literal constant.
Actually, MASM constant declarations can be a lot more sophisticated than
this because MASM allows the assignment of a constant expression, not just
a literal constant, to a symbolic constant. The generic constant declaration
takes one of the following two forms:

identifier = constant_expression
identifier equ constant_expression

Constant (integer) expressions take the familiar form you’re used to in
high-level languages like C/C++ and Python. They may contain literal con-
stant values, previously declared symbolic constants, and various arithmetic
operators.

Constants, Variables, and Data Types 153

The constant expression operators follow standard precedence rules
(similar to those in C/C++); you may use the parentheses to override the
precedence if necessary. In general, if the precedence isn’t obvious, use
parentheses to exactly state the order of evaluation. Table 4-1 lists the arith-
metic operators MASM allows in constant (and address) expressions.

Table 4-1: Operations Allowed in Constant Expressions

Arithmetic operators

- (unary negation) Negates the expression immediately following -.

* Multiplies the integer or real values around the asterisk.

/ Divides the left integer operand by the right integer operand,
producing an integer (truncated) result.

mod Divides the left integer operand by the right integer operand,
producing an integer remainder.

/ Divides the left numeric operand by the second numeric operand,
producing a floating-point result.

+ Adds the left and right numeric operands.

- Subtracts the right numeric operand from the left numeric operand.

[] expr1[expr2] computes the sum of expr1 + expr2.

Comparison operators

EQ Compares left operand with right operand. Returns true if equal.*

NE Compares left operand with right operand. Returns true if not equal.

LT Returns true if left operand is less than right operand.

LE Returns true if left operand is ≤ right operand.

GT Returns true if left operand is greater than right operand.

GE Returns true if left operand is ≥ right operand.

Logical operators**

AND For Boolean operands, returns the logical AND of the two
operands.

OR For Boolean operands, returns the logical OR of the two operands.

NOT For Boolean operands, returns the logical negation (inverse).

Unary operators

HIGH Returns the HO byte of the LO 16 bits of the following expression.

HIGHWORD Returns the HO word of the LO 32 bits of the following expression.

HIGH32 Returns the HO 32 bits of the 64-bit expression following the
operator.

LENGTHOF Returns the number of data elements of the variable name follow-
ing the operator.

LOW Returns the LO byte of the expression following the operator.

LOWWORD Returns the LO word of the expression following the operator.

(continued)

154 Chapter 4

LOW32 Returns the LO dword of the expression following the operator.

OFFSET Returns the offset into its respective section for the symbol follow-
ing the operator.

OPATTR Returns the attributes of the expression following the operator. The
attributes are returned as a bit map with the following meanings:
bit 0: There is a code label in the expression.
bit 1: The expression is relocatable.
bit 2: The expression is a constant expression.
bit 3: The expression uses direct addressing.
bit 4: The expression is a register.
bit 5: The expression contains no undefined symbols.
bit 6: The expression is a stack-segment memory expression.
bit 7: The expression references an external label.
bits 8–11: Language type (probably 0 for 64-bit code).

SIZE Returns the size, in bytes, of the first initializer in a symbol’s
declaration.

SIZEOF Returns the size, in bytes, allocated for a given symbol.

THIS Returns an address expression equal to the value of the current
program counter within a section. Must include type after this; for
example, this byte.

$ Synonym for this.
* MASM represents “true” by using all 1 bits (–1 or 0FFFFFF…FFh).
** Note to C/C++ and Java users: MASM’s constant expressions use complete Boolean evaluation

rather than short-circuit Boolean evaluation. Hence, MASM constant expressions do not behave
identically to C/C++ and Java expressions.

4.3.2 this and $ Operators
The last two operators in Table 4-1 deserve special mention. The this and $
operands (they are roughly synonyms for one another) return the current
offset into the section containing them. The current offset into the section
is known as the location counter (see “How MASM Allocates Memory for
Variables” in Chapter 3). Consider the following:

someLabel equ $

This sets the label’s offset to the current location in the program. The
type of the symbol will be statement label (for example, proc). Typically, people
use the $ operator for branch labels (and advanced features). For example,
the following creates an infinite loop (effectively locking up the CPU):

jmp $; "$" is equivalent to the address of the jmp instr

You can also use instructions like this to skip a fixed number of bytes
ahead (or behind) in the source file:

jmp $+5 ; Skip to a position 5 bytes beyond the jmp

Table 4-1: Operations Allowed in Constant Expressions (continued)

Unary operators

Constants, Variables, and Data Types 155

For the most part, creating operands like this is crazy because it depends
on knowing the number of bytes of machine code each machine instruction
compiles into. Obviously, this is an advanced operation and not recommended
for beginning assembly language programmers (it’s even hard to recommend
for most advanced assembly language programmers).

One practical use of the $ operator (and probably its most common use)
is to compute the size of a block of data declarations in the source file:

someData byte 1, 2, 3, 4, 5
sizeSomeData = $-someData

The address expression $-someData computes the current offset minus
the offset of someData in the current section. In this case, this produces 5,
the number of bytes in the someData operand field. In this simple example,
you’re probably better off using the sizeof someData expression. This also
returns the number of bytes required for the someData declaration. However,
consider the following statements:

someData byte 1, 2, 3, 4, 5
 byte 6, 7, 8, 9, 0
sizeSomeData = $-someData

In this case, sizeof someData still returns 5 (because it returns only the
length of the operands attached to someData), whereas sizeSomeData is set to 10.

If an identifier appears in a constant expression, that identifier must
be a constant identifier that you have previously defined in your program
in the equate directive. You may not use variable identifiers in a constant
expression; their values are not defined at assembly time when MASM
evaluates the constant expression. Also, don’t confuse compile-time and
runtime operations:

; Constant expression, computed while MASM
; is assembling your program:

x = 5
y = 6
Sum = x + y

; Runtime calculation, computed while your program
; is running, long after MASM has assembled it:

 mov al, x
 add al, y

The this operator differs from the $ operator in one important way:
the $ has a default type of statement label. The this operator, on the other
hand, allows you to specify a type. The syntax for the this operator is the
following:

this type

156 Chapter 4

where type is one of the usual data types (byte, sbyte, word, sword, and so forth).
Therefore, this proc is what is directly equivalent to $. Note that the following
two MASM statements are equivalent:

someLabel label byte
someLabel equ this byte

4.3.3 Constant Expression Evaluation
MASM immediately interprets the value of a constant expression during
assembly. It does not emit any machine instructions to compute x + y in the
constant expression of the example in the previous section. Instead, it directly
computes the sum of these two constant values. From that point forward in
the program, MASM associates the value 11 with the constant Sum just as if
the program had contained the statement Sum = 11 rather than Sum = x + y.
On the other hand, MASM does not precompute the value 11 in AL for the
mov and add instructions in the previous section; it faithfully emits the object
code for these two instructions, and the x86-64 computes their sum when
the program is run (sometime after the assembly is complete).

In general, constant expressions don’t get very sophisticated in assembly
language programs. Usually, you’re adding, subtracting, or multiplying two
integer values. For example, the following set of equates defines a set of
constants that have consecutive values:

TapeDAT = 0
Tape8mm = TapeDAT + 1
TapeQIC80 = Tape8mm + 1
TapeTravan = TapeQIC80 + 1
TapeDLT = TapeTravan + 1

These constants have the following values: TapeDAT = 0, Tape8mm = 1,
TapeQIC80 = 2, TapeTravan = 3, and TapeDLT = 4. This example, by the way,
demonstrates how you would create a list of enumerated data constants
in MASM.

 4.4 The MASM typedef Statement
Let’s say that you do not like the names that MASM uses for declaring byte,
word, dword, real4, and other variables. Let’s say that you prefer Pascal’s nam-
ing convention or perhaps C’s naming convention. You want to use terms
like integer, float, double, or whatever. If MASM were Pascal, you could rede-
fine the names in the type section of the program. With C, you could use
a typedef statement to accomplish the task. Well, MASM, like C/C++, has
its own type statement that also lets you create aliases of these names. The
MASM typedef statement takes the following form:

new_type_name typedef existing_type_name

Constants, Variables, and Data Types 157

The following example demonstrates how to set up some names in your
MASM programs that are compatible with C/C++ or Pascal:

integer typedef sdword
float typedef real4
double typedef real8
colors typedef byte

Now you can declare your variables with more meaningful statements
like these:

 .data
i integer ?
x float 1.0
HouseColor colors ?

If you program in Ada, C/C++, or FORTRAN (or any other language,
for that matter), you can pick type names you’re more comfortable with. Of
course, this doesn’t change how the x86-64 or MASM reacts to these vari-
ables one iota, but it does let you create programs that are easier to read and
understand because the type names are more indicative of the actual under-
lying types. One warning for C/C++ programmers: don’t get too excited and
go off and define an int data type. Unfortunately, int is an x86-64 machine
instruction (interrupt), and therefore this is a reserved word in MASM.

 4.5 Type Coercion
Although MASM is fairly loose when it comes to type checking, MASM does
ensure that you specify appropriate operand sizes to an instruction. For
example, consider the following (incorrect) program in Listing 4-1.

; Listing 4-1

; Type checking errors.

 option casemap:none

nl = 10 ; ASCII code for newline

 .data
i8 sbyte ?
i16 sword ?
i32 sdword ?
i64 sqword ?

 .code

; Here is the "asmMain" function.

 public asmMain
asmMain proc

158 Chapter 4

 mov eax, i8
 mov al, i16
 mov rax, i32
 mov ax, i64

 ret ; Returns to caller
asmMain endp
 end

Listing 4-1: MASM type checking

MASM will generate errors for these four mov instructions because the
operand sizes are incompatible. The mov instruction requires both operands to
be the same size. The first instruction attempts to move a byte into EAX, the
second instruction attempts to move a word into AL, and the third instruction
attempts to move a double word into RAX. The fourth instruction attempts to
move a qword into AX. Here’s the output from the compiler when you attempt
to assemble this file:

C:\>ml64 /c listing4-1.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing4-1.asm
listing4-1.asm(24) : error A2022:instruction operands must be the same size
listing4-1.asm(25) : error A2022:instruction operands must be the same size
listing4-1.asm(26) : error A2022:instruction operands must be the same size
listing4-1.asm(27) : error A2022:instruction operands must be the same size

While this is a good feature in MASM,2 sometimes it gets in the way.
Consider the following code fragments:

 .data
byte_values label byte
 byte 0, 1

 .
 .
 .

 mov ax, byte_values

In this example, let’s assume that the programmer really wants to load
the word starting at the address of byte_values into the AX register because
they want to load AL with 0, and AH with 1, by using a single instruction
(0 is held in the LO memory byte, and 1 is held in the HO memory byte).
MASM will refuse, claiming a type mismatch error (because byte_values is a
byte object and AX is a word object).

2. After all, if the two operand sizes are different, this usually indicates an error in the
program.

Constants, Variables, and Data Types 159

The programmer could break this into two instructions, one to load AL
with the byte at address byte_values and the other to load AH with the byte at
address byte_values[1]. Unfortunately, this decomposition makes the program
slightly less efficient (which was probably the reason for using the single mov
instruction in the first place). To tell MASM that we know what we’re doing
and we want to treat the byte_values variable as a word object, we can use type
coercion.

Type coercion is the process of telling MASM that you want to treat an
object as an explicit type, regardless of its actual type.3 To coerce the type
of a variable, you use the following syntax:

new_type_name ptr address_expression

The new_type_name item is the new type you wish to associate with the
memory location specified by address_expression. You may use this coercion
operator anywhere a memory address is legal. To correct the previous exam-
ple, so MASM doesn’t complain about type mismatches, you would use the
following statement:

mov ax, word ptr byte_values

This instruction tells MASM to load the AX register with the word start-
ing at address byte_values in memory. Assuming byte_values still contains its
initial value, this instruction will load 0 into AL and 1 into AH.

Table 4-2 lists all the MASM type-coercion operators.

Table 4-2: MASM Type-Coercion Operators

Directive Meaning

byte ptr Byte (unsigned 8-bit) value

sbyte ptr Signed 8-bit integer value

word ptr Unsigned 16-bit (word) value

sword ptr Signed 16-bit integer value

dword ptr Unsigned 32-bit (double-word) value

sdword ptr Signed 32-bit integer value

qword ptr Unsigned 64-bit (quad-word) value

sqword ptr Signed 64-bit integer value

tbyte ptr Unsigned 80-bit (10-byte) value

oword ptr 128-bit (octal-word) value

xmmword ptr 128-bit (octal-word) value—same as oword ptr

ymmword ptr 256-bit value (for use with AVX YMM registers)

zmmword ptr 512-bit value (for use with AVX-512 ZMM registers)

3. Type coercion is also called type casting in some languages.

(continued)

160 Chapter 4

Directive Meaning

real4 ptr Single-precision (32-bit) floating-point value

real8 ptr Double-precision (64-bit) floating-point value

real10 ptr Extended-precision (80-bit) floating-point value

Type coercion is necessary when you specify an anonymous variable as
the operand to an instruction that directly modifies memory (for example,
neg, shl, not, and so on). Consider the following statement:

not [rbx]

MASM will generate an error on this instruction because it cannot
determine the size of the memory operand. The instruction does not supply
sufficient information to determine whether the program should invert the
bits in the byte pointed at by RBX, the word pointed at by RBX, the double
word pointed at by RBX, or the quad word pointed at by RBX. You must use
type coercion to explicitly specify the size of anonymous references with
these types of instructions:

not byte ptr [rbx]
not dword ptr [rbx]

W A R N I N G Do not use the type-coercion operator unless you know exactly what you are doing and
fully understand the effect it has on your program. Beginning assembly language
programmers often use type coercion as a tool to quiet the assembler when it complains
about type mismatches, without solving the underlying problem.

Consider the following statement (where byteVar is an 8-bit variable):

mov dword ptr byteVar, eax

Without the type-coercion operator, MASM complains about this
instruction because it attempts to store a 32-bit register in an 8-bit memory
location. Beginning programmers, wanting their programs to assemble,
may take a shortcut and use the type-coercion operator, as shown in this
instruction; this certainly quiets the assembler—it will no longer complain
about a type mismatch—so the beginning programmers are happy.

However, the program is still incorrect; the only difference is that
MASM no longer warns you about your error. The type-coercion operator
does not fix the problem of attempting to store a 32-bit value into an 8-bit
memory location—it simply allows the instruction to store a 32-bit value
starting at the address specified by the 8-bit variable. The program still stores
4 bytes, overwriting the 3 bytes following byteVar in memory.

This often produces unexpected results, including the phantom modi-
fication of variables in your program.4 Another, rarer possibility is for the

4. If you have a variable immediately following byteVar in this example, the mov instruction will
surely overwrite the value of that variable, whether or not you intend for this to happen.

Table 4-2: MASM Type-Coercion Operator (continued)

Constants, Variables, and Data Types 161

program to abort with a general protection fault, if the 3 bytes following
byteVar are not allocated in real memory or if those bytes just happen to fall
in a read-only section of memory. The important thing to remember about
the type-coercion operator is this: if you cannot exactly state the effect this
operator has, don’t use it.

Also keep in mind that the type-coercion operator does not perform
any translation of the data in memory. It simply tells the assembler to treat
the bits in memory as a different type. It will not automatically extend an
8-bit value to 32 bits, nor will it convert an integer to a floating-point value.
It simply tells the compiler to treat the bit pattern of the memory operand
as a different type.

 4.6 Pointer Data Types
You’ve probably experienced pointers firsthand in the Pascal, C, or Ada
programming languages, and you’re probably getting worried right now.
Almost everyone has a bad experience when they first encounter pointers in
a high-level language. Well, fear not! Pointers are actually easier to deal with
in assembly language than in high-level languages.

Besides, most of the problems you had with pointers probably had noth-
ing to do with pointers but rather with the linked list and tree data structures
you were trying to implement with them. Pointers, on the other hand, have
many uses in assembly language that have nothing to do with linked lists,
trees, and other scary data structures. Indeed, simple data structures like
arrays and records often involve the use of pointers. So, if you have some
deep-rooted fear about pointers, forget everything you know about them.
You’re going to learn how great pointers really are.

Probably the best place to start is with the definition of a pointer. A
pointer is a memory location whose value is the address of another memory
location. Unfortunately, high-level languages like C/C++ tend to hide the
simplicity of pointers behind a wall of abstraction. This added complexity
(which exists for good reason, by the way) tends to frighten programmers
because they don’t understand what’s going on.

To illuminate what’s really happening, consider the following array dec-
laration in Pascal:

M: array [0..1023] of integer;

Even if you don’t know Pascal, the concept here is pretty easy to under-
stand. M is an array with 1024 integers in it, indexed from M[0] to M[1023].
Each one of these array elements can hold an integer value that is indepen-
dent of all the others. In other words, this array gives you 1024 different
integer variables, each of which you refer to by number (the array index)
rather than by name.

162 Chapter 4

If you encounter a program that has the statement M[0] := 100;, you
probably won’t have to think at all about what is happening with this state-
ment. It is storing the value 100 into the first element of the array M. Now
consider the following two statements:

i := 0; (Assume "i" is an integer variable)
M [i] := 100;

You should agree, without too much hesitation, that these two statements
perform the same operation as M[0] := 100;. Indeed, you’re probably willing
to agree that you can use any integer expression in the range 0 to 1023
as an index into this array. The following statements still perform the same
operation as our single assignment to index 0:

i := 5; (Assume all variables are integers)
j := 10;
k := 50;
m [i*j-k] := 100;

“Okay, so what’s the point?” you’re probably thinking. “Anything that
produces an integer in the range 0 to 1023 is legal. So what?” Okay, how
about the following:

M [1] := 0;
M [M [1]] := 100;

Whoa! Now that takes a few moments to digest. However, if you take it
slowly, it makes sense, and you’ll discover that these two instructions perform
the same operation you’ve been doing all along. The first statement stores
0 into array element M[1]. The second statement fetches the value of M[1],
which is an integer so you can use it as an array index into M, and uses that
value (0) to control where it stores the value 100.

If you’re willing to accept this as reasonable—perhaps bizarre, but
usable nonetheless—then you’ll have no problems with pointers. Because
M[1] is a pointer! Well, not really, but if you were to change M to memory and
treat this array as all of memory, this is the exact definition of a pointer:
a memory location whose value is the address (or index, if you prefer) of
another memory location. Pointers are easy to declare and use in an assem-
bly language program. You don’t even have to worry about array indices or
anything like that.

4.6.1 Using Pointers in Assembly Language
A MASM pointer is a 64-bit value that may contain the address of another
variable. If you have a dword variable p that contains 1000_0000h, then p
“points” at memory location 1000_0000h. To access the dword that p points
at, you could use code like the following:

mov rbx, p ; Load RBX with the value of pointer p
mov rax, [rbx] ; Fetch the data that p points at

Constants, Variables, and Data Types 163

By loading the value of p into RBX, this code loads the value
1000_0000h into RBX (assuming p contains 1000_0000h). The second
instruction loads the RAX register with the qword starting at the location
whose offset appears in RBX. Because RBX now contains 1000_0000h, this
will load RAX from locations 1000_0000h through 1000_0007h.

Why not just load RAX directly from location 1000_0000h by using an
instruction like mov rax, mem (assuming mem is at address 1000_0000h)? Well,
there are several reasons. But the primary reason is that this mov instruction
always loads RAX from location mem. You cannot change the address from
where it loads RAX. The former instructions, however, always load RAX
from the location where p is pointing. This is easy to change under program
control. In fact, the two instructions mov rax, offset mem2 and mov p, rax will
cause those previous two instructions to load RAX from mem2 the next time
they execute. Consider the following code fragment:

 mov rax, offset i
 mov p, rax
 .
 .
 . ; Code that sets or clears the carry flag.

 jc skipSetp

 mov rax, offset j
 mov p, rax
 .
 .
 .

skipSetp:
 mov rbx, p ; Assume both code paths wind up
 mov rax, [rbx] ; down here

This short example demonstrates two execution paths through the pro-
gram. The first path loads the variable p with the address of the variable i.
The second path through the code loads p with the address of the variable j.
Both execution paths converge on the last two mov instructions that load
RAX with i or j depending on which execution path was taken. In many
respects, this is like a parameter to a procedure in a high-level language like
Swift. Executing the same instructions accesses different variables depend-
ing on whose address (i or j) winds up in p.

4.6.2 Declaring Pointers in MASM
Because pointers are 64 bits long, you could use the qword type to allocate
storage for your pointers. However, rather than use qword declarations, an
arguably better approach is to use typedef to create a pointer type:

 .data
pointer typedef qword

164 Chapter 4

b byte ?
d dword ?
pByteVar pointer b
pDWordVar pointer d

This example demonstrates that it is possible to initialize as well as
declare pointer variables in MASM. Note that you may specify addresses of
static variables (.data, .const, and .data? objects) in the operand field of a
qword/pointer directive, so you can initialize only pointer variables with the
addresses of static objects.

4.6.3 Pointer Constants and Pointer Constant Expressions
MASM allows very simple constant expressions wherever a pointer constant
is legal. Pointer constant expressions take one of the three following forms:5

offset StaticVarName [PureConstantExpression]
offset StaticVarName + PureConstantExpression
offset StaticVarName - PureConstantExpression

The PureConstantExpression term is a numeric constant expression that
does not involve any pointer constants. This type of expression produces
a memory address that is the specified number of bytes before or after
(- or +, respectively) the StaticVarName variable in memory. Note that the
first two forms shown here are semantically equivalent; both return a pointer
constant whose address is the sum of the static variable and the constant
expression.

Because you can create pointer constant expressions, it should come
as no surprise to discover that MASM lets you define manifest pointer con-
stants by using equates. The program in Listing 4-2 demonstrates how you
can do this.

; Listing 4-2

; Pointer constant demonstration.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-2", 0
fmtStr byte "pb's value is %ph", nl
 byte "*pb's value is %d", nl, 0

 .data
b byte 0
 byte 1, 2, 3, 4, 5, 6, 7

5. In MASM syntax, the form x[y] is equivalent to x + y. Likewise, [x][y] is also equivalent to
x + y.

Constants, Variables, and Data Types 165

pb textequ <offset b[2]>

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

 lea rcx, fmtStr
 mov rdx, pb
 movzx r8, byte ptr [rdx]
 call printf

 add rsp, 48
 ret ; Returns to caller

asmMain endp
 end

Listing 4-2: Pointer constant expressions in a MASM program

Here’s the assembly and execution of this code:

C:\>build listing4-2

C:\>echo off
 Assembling: listing4-2.asm
c.cpp

C:\>listing4-2
Calling Listing 4-2:
pb's value is 00007FF6AC381002h
*pb's value is 2
Listing 4-2 terminated

Note that the address printed may vary on different machines and dif-
ferent versions of Windows.

166 Chapter 4

4.6.4 Pointer Variables and Dynamic Memory Allocation
Pointer variables are the perfect place to store the return result from the
C Standard Library malloc() function. This function returns the address of the
storage it allocates in the RAX register; therefore, you can store the address
directly into a pointer variable with a single mov instruction immediately after
a call to malloc(). Listing 4-3 demonstrates calls to the C Standard Library
malloc() and free() functions.

; Listing 4-3

; Demonstration of calls
; to C standard library malloc
; and free functions.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-3", 0
fmtStr byte "Addresses returned by malloc: %ph, %ph", nl, 0

 .data
ptrVar qword ?
ptrVar2 qword ?

 .code
 externdef printf:proc
 externdef malloc:proc
 externdef free:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

; C standard library malloc function.

; ptr = malloc(byteCnt);

Constants, Variables, and Data Types 167

 mov rcx, 256 ; Allocate 256 bytes
 call malloc
 mov ptrVar, rax ; Save pointer to buffer

 mov rcx, 1024 ; Allocate 1024 bytes
 call malloc
 mov ptrVar2, rax ; Save pointer to buffer

 lea rcx, fmtStr
 mov rdx, ptrVar
 mov r8, rax ; Print addresses
 call printf

; Free the storage by calling
; C standard library free function.

; free(ptrToFree);

 mov rcx, ptrVar
 call free

 mov rcx, ptrVar2
 call free

 add rsp, 48
 ret ; Returns to caller

asmMain endp
 end

Listing 4-3: Demonstration of malloc() and free() calls

Here’s the output I obtained when building and running this program.
Note that the addresses that malloc() returns may vary by system, by operating
system version, and for other reasons. Therefore, you will likely get different
numbers than I obtained on my system.

C:\>build listing4-3

C:\>echo off
 Assembling: listing4-3.asm
c.cpp

C:\>listing4-3
Calling Listing 4-3:
Addresses returned by malloc: 0000013B2BC43AD0h, 0000013B2BC43BE0h
Listing 4-3 terminated

4.6.5 Common Pointer Problems
Programmers encounter five common problems when using pointers. Some
of these errors will cause your programs to immediately stop with a diagnos-
tic message; other problems are subtler, yielding incorrect results without

168 Chapter 4

otherwise reporting an error or simply affecting the performance of your
program without displaying an error. These five problems are as follows:

1. Using an uninitialized pointer

2. Using a pointer that contains an illegal value (for example, NULL)

3. Continuing to use malloc()’d storage after that storage has been freed

4. Failing to free() storage once the program is finished using it

5. Accessing indirect data by using the wrong data type

The first problem is using a pointer variable before you have assigned a
valid memory address to the pointer. Beginning programmers often don’t
realize that declaring a pointer variable reserves storage only for the pointer
itself; it does not reserve storage for the data that the pointer references. The
short program in Listing 4-4 demonstrates this problem (don’t try to com-
pile and run this program; it will crash).

; Listing 4-4

; Uninitialized pointer demonstration.
; Note that this program will not
; run properly.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-4", 0
fmtStr byte "Pointer value= %p", nl, 0

 .data
ptrVar qword ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

Constants, Variables, and Data Types 169

 lea rcx, fmtStr
 mov rdx, ptrVar
 mov rdx, [rdx] ; Will crash system
 call printf

 add rsp, 48
 ret ; Returns to caller

asmMain endp
 end

Listing 4-4: Uninitialized pointer demonstration

Although variables you declare in the .data section are, technically,
initialized, static initialization still doesn’t initialize the pointer in this pro-
gram with a valid address (it initializes the pointer with 0, which is NULL).

Of course, there is no such thing as a truly uninitialized variable on the
x86-64. What you really have are variables that you’ve explicitly given an ini-
tial value to and variables that just happen to inherit whatever bit pattern was
in memory when storage for the variable was allocated. Much of the time,
these garbage bit patterns lying around in memory don’t correspond to a
valid memory address. Attempting to dereference such a pointer (that is, access
the data in memory at which it points) typically raises a memory access violation
exception.

Sometimes, however, those random bits in memory just happen to cor-
respond to a valid memory location you can access. In this situation, the
CPU will access the specified memory location without aborting the pro-
gram. Although to a naive programmer this situation may seem preferable
to stopping the program, in reality this is far worse because your defective
program continues to run without alerting you to the problem. If you store
data through an uninitialized pointer, you may very well overwrite the val-
ues of other important variables in memory. This defect can produce some
very difficult-to-locate problems in your program.

The second problem programmers have with pointers is storing invalid
address values into a pointer. The first problem is actually a special case of this
second problem (with garbage bits in memory supplying the invalid address
rather than you producing it via a miscalculation). The effects are the same; if
you attempt to dereference a pointer containing an invalid address, you either
will get a memory access violation exception or will access an unexpected
memory location.

The third problem listed is also known as the dangling pointer problem.
To understand this problem, consider the following code fragment:

mov rcx, 256
call malloc ; Allocate some storage
mov ptrVar, rax ; Save address away in ptrVar
 .
 . ; Code that uses the pointer variable ptrVar.
 .

170 Chapter 4

mov rcx, ptrVar
call free ; Free storage associated with ptrVar
 .
 . ; Code that does not change the value in ptrVar.
 .
mov rbx, ptrVar
mov [rbx], al

In this example, the program allocates 256 bytes of storage and saves
the address of that storage in the ptrVar variable. Then the code uses this
block of 256 bytes for a while and frees the storage, returning it to the system
for other uses. Note that calling free() does not change the value of ptrVar in
any way; ptrVar still points at the block of memory allocated by malloc() ear-
lier. Indeed, free() does not change any data in this block, so upon return
from free(), ptrVar still points at the data stored into the block by this code.

However, note that the call to free() tells the system that the program
no longer needs this 256-byte block of memory and the system can use this
region of memory for other purposes. The free() function cannot enforce
the fact that you will never access this data again; you are simply promising
that you won’t. Of course, the preceding code fragment breaks this prom-
ise; as you can see in the last two instructions, the program fetches the value
in ptrVar and accesses the data it points at in memory.

The biggest problem with dangling pointers is that you can get away
with using them a good part of the time. As long as the system doesn’t
reuse the storage you’ve freed, using a dangling pointer produces no
ill effects in your program. However, with each new call to malloc(), the
system may decide to reuse the memory released by that previous call
to free(). When this happens, any attempt to dereference the dangling
pointer may produce unintended consequences. The problems range
from reading data that has been overwritten (by the new, legal use of the
data storage), to overwriting the new data, to (the worst case) overwriting
system heap management pointers (doing so will probably cause your pro-
gram to crash). The solution is clear: never use a pointer value once you free
the storage associated with that pointer.

Of all the problems, the fourth (failing to free allocated storage) will
probably have the least impact on the proper operation of your program.
The following code fragment demonstrates this problem:

mov rcx, 256
call malloc
mov ptrVar, rax
 . ; Code that uses ptrVar.
 . ; This code does not free up the storage
 . ; associated with ptrVar.
mov rcx, 512
call malloc
mov ptrVar, rax

; At this point, there is no way to reference the original
; block of 256 bytes pointed at by ptrVar.

Constants, Variables, and Data Types 171

In this example, the program allocates 256 bytes of storage and ref-
erences this storage by using the ptrVar variable. At some later time, the
program allocates another block of bytes and overwrites the value in ptrVar
with the address of this new block. Note that the former value in ptrVar is
lost. Because the program no longer has this address value, there is no way
to call free() to return the storage for later use.

As a result, this memory is no longer available to your program. While
making 256 bytes of memory inaccessible to your program may not seem
like a big deal, imagine that this code is in a loop that repeats over and over
again. With each execution of the loop, the program loses another 256 bytes
of memory. After a sufficient number of loop iterations, the program will
exhaust the memory available on the heap. This problem is often called a
memory leak because the effect is the same as though the memory bits were
leaking out of your computer (yielding less and less available storage) during
program execution.

Memory leaks are far less damaging than dangling pointers. Indeed,
memory leaks create only two problems: the danger of running out of heap
space (which, ultimately, may cause the program to abort, though this is
rare) and performance problems due to virtual memory page swapping.
Nevertheless, you should get in the habit of always freeing all storage once
you have finished using it. When your program quits, the operating system
reclaims all storage, including the data lost via memory leaks. Therefore,
memory lost via a leak is lost only to your program, not the whole system.

The last problem with pointers is the lack of type-safe access. This can
occur because MASM cannot and does not enforce pointer type checking.
For example, consider the program in Listing 4-5.

; Listing 4-5

; Demonstration of lack of type
; checking in assembly language
; pointer access.

 option casemap:none

nl = 10
maxLen = 256

 .const
ttlStr byte "Listing 4-5", 0
prompt byte "Input a string: ", 0
fmtStr byte "%d: Hex value of char read: %x", nl, 0

 .data
bufPtr qword ?
bytesRead qword ?

 .code
 externdef readLine:proc
 externdef printf:proc

172 Chapter 4

 externdef malloc:proc
 externdef free:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx ; Preserve RBX

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40

; C standard library malloc function.
; Allocate sufficient characters
; to hold a line of text input
; by the user:

 mov rcx, maxLen ; Allocate 256 bytes
 call malloc
 mov bufPtr, rax ; Save pointer to buffer

; Read a line of text from the user and place in
; the newly allocated buffer:

 lea rcx, prompt ; Prompt user to input
 call printf ; a line of text

 mov rcx, bufPtr ; Pointer to input buffer
 mov rdx, maxLen ; Maximum input buffer length
 call readLine ; Read text from user
 cmp rax, -1 ; Skip output if error
 je allDone
 mov bytesRead, rax ; Save number of chars read

; Display the data input by the user:

 xor rbx, rbx ; Set index to zero
dispLp: mov r9, bufPtr ; Pointer to buffer
 mov rdx, rbx ; Display index into buffer
 mov r8d, [r9+rbx*1] ; Read dword rather than byte!
 lea rcx, fmtStr
 call printf

Constants, Variables, and Data Types 173

 inc rbx ; Repeat for each char in buffer
 cmp rbx, bytesRead
 jb dispLp

; Free the storage by calling
; C standard library free function.

; free(bufPtr);

allDone:
 mov rcx, bufPtr
 call free

 add rsp, 40
 pop rbx ; Restore RBX
 ret ; Returns to caller
asmMain endp
 end

Listing 4-5: Type-unsafe pointer access example

Here are the commands to build and run this sample program:

C:\>build listing4-5

C:\>echo off
 Assembling: listing4-5.asm
c.cpp

C:\>listing4-5
Calling Listing 4-5:
Input a string: Hello, World!
0: Hex value of char read: 6c6c6548
1: Hex value of char read: 6f6c6c65
2: Hex value of char read: 2c6f6c6c
3: Hex value of char read: 202c6f6c
4: Hex value of char read: 57202c6f
5: Hex value of char read: 6f57202c
6: Hex value of char read: 726f5720
7: Hex value of char read: 6c726f57
8: Hex value of char read: 646c726f
9: Hex value of char read: 21646c72
10: Hex value of char read: 21646c
11: Hex value of char read: 2164
12: Hex value of char read: 21
13: Hex value of char read: 5c000000
Listing 4-5 terminated

The program in Listing 4-5 reads data from the user as character val-
ues and then displays the data as double-word hexadecimal values. While a
powerful feature of assembly language is that it lets you ignore data types
at will and automatically coerce the data without any effort, this power is a

174 Chapter 4

two-edged sword. If you make a mistake and access indirect data by using
the wrong data type, MASM and the x86-64 may not catch the mistake,
and your program may produce inaccurate results. Therefore, when using
pointers and indirection in your programs, you need to take care that you
use the data consistently with respect to data type.

This demonstration program has one fundamental flaw that could create
a problem for you: when reading the last two characters of the input buffer,
the program accesses data beyond the characters input by the user. If the
user inputs 255 characters (plus the zero-terminating byte that readLine()
appends), this program will access data beyond the end of the buffer allo-
cated by malloc(). In theory, this could cause the program to crash. This is yet
another problem that can occur when accessing data by using the wrong type
via pointers.

 4.7 Composite Data Types
Composite data types, also known as aggregate data types, are those that are built
up from other (generally scalar) data types. The next sections cover several of
the more important composite data types—character strings, arrays, multi-
dimensional arrays, records/structs, and unions. A string is a good example
of a composite data type; it is a data structure built up from a sequence of
individual characters and other data.

 4.8 Character Strings
After integer values, character strings are probably the most common data
type that modern programs use. The x86-64 does support a handful of
string instructions, but these instructions are really intended for block
memory operations, not a specific implementation of a character string.
Therefore, this section will provide a couple of definitions of character
strings and discuss how to process them.

In general, a character string is a sequence of ASCII characters that
possesses two main attributes: a length and character data. Different lan-
guages use different data structures to represent strings. Assembly language
(at least, sans any library routines) doesn’t really care how you implement
strings. All you need to do is create a sequence of machine instructions to
process the string data in whatever format the strings take.

4.8.1 Zero-Terminated Strings
Without question, zero-terminated strings are the most common string rep-
resentation in use today because this is the native string format for C,
C++, and other languages. A zero-terminated string consists of a sequence
of zero or more ASCII characters ending with a 0 byte. For example, in
C/C++, the string "abc" requires 4 bytes: the three characters a, b, and c
followed by a 0. As you’ll soon see, MASM character strings are upward

Constants, Variables, and Data Types 175

compatible with zero-terminated strings, but in the meantime, you should
note that creating zero-terminated strings in MASM is easy. The easiest
place to do this is in the .data section by using code like the following:

 .data
zeroString byte "This is the zero-terminated string", 0

Whenever a character string appears in the byte directive as it does
here, MASM emits each character in the string to successive memory loca-
tions. The zero value at the end of the string terminates this string.

Zero-terminated strings have two principal attributes: they are simple
to implement, and the strings can be any length. On the other hand, zero-
terminated strings have a few drawbacks. First, though not usually important,
zero-terminated strings cannot contain the NUL character (whose ASCII
code is 0). Generally, this isn’t a problem, but it does create havoc once in a
while. The second problem with zero-terminated strings is that many opera-
tions on them are somewhat inefficient. For example, to compute the length
of a zero-terminated string, you must scan the entire string looking for that
0 byte (counting characters up to the 0). The following program fragment
demonstrates how to compute the length of the preceding string:

 lea rbx, zeroString
 xor rax, rax ; Set RAX to zero
whileLp: cmp byte ptr [rbx+rax*1], 0
 je endwhile

 inc rax
 jmp whileLp

endwhile:

; String length is now in RAX.

As you can see from this code, the time it takes to compute the length
of the string is proportional to the length of the string; as the string gets
longer, it takes longer to compute its length.

4.8.2 Length-Prefixed Strings
The length-prefixed string format overcomes some of the problems with zero-
terminated strings. Length-prefixed strings are common in languages like
Pascal; they generally consist of a length byte followed by zero or more
character values. The first byte specifies the string length, and the follow-
ing bytes (up to the specified length) are the character data. In a length-
prefixed scheme, the string "abc" would consist of the 4 bytes: 03 (the string
length) followed by a, b, and c. You can create length-prefixed strings in
MASM by using code like the following:

 .data
lengthPrefixedString label byte;
 byte 3, "abc"

176 Chapter 4

Counting the characters ahead of time and inserting them into the byte
statement, as was done here, may seem like a major pain. Fortunately, there
are ways to have MASM automatically compute the string length for you.

Length-prefixed strings solve the two major problems associated with
zero-terminated strings. It is possible to include the NUL character in
length-prefixed strings, and those operations on zero-terminated strings
that are relatively inefficient (for example, string length) are more efficient
when using length-prefixed strings. However, length-prefixed strings have
their own drawbacks. The principal drawback is that they are limited to a
maximum of 255 characters in length (assuming a 1-byte length prefix).

Of course, if you have a problem with a string length limitation of 255
characters, it’s perfectly possible to create a length-prefixed string by using
any number of bytes for the length as needed. For example, the High-
Level Assembler (HLA) uses a 4-byte length variant of length-prefixed strings,
allowing strings up to 4GB long.6 The point is that in assembly language,
you can define string formats however you like.

If you want to create length-prefixed strings in your assembly language
programs, you don’t want to have to manually count the characters in the
string and emit that length in your code. It’s far better to have the assem-
bler do this kind of grunge work for you. This is easily accomplished using
the location counter operator ($) as follows:

 .data
lengthPrefixedString label byte;
 byte lpsLen, "abc"
lpsLen = $-lengthPrefixedString-1

The lpsLen operand subtracts 1 in the address expression because
$-lengthPrefixedString also includes the length prefix byte, which isn’t con-
sidered part of the string length.

4.8.3 String Descriptors
Another common string format is a string descriptor. A string descriptor is
typically a small data structure (record or structure, see “Records/Structs”
on page 197) that contains several pieces of data describing a string. At a
bare minimum, a string descriptor will probably have a pointer to the actual
string data and a field specifying the number of characters in the string
(that is, the string length). Other possible fields might include the number
of bytes currently occupied by the string,7 the maximum number of bytes
the string could occupy, the string encoding (for example, ASCII, Latin-1,
UTF-8, or UTF-16), and any other information the string data structure’s
designer could dream up.

6. Visit https://artofasm.randallhyde.com/ for more details on the High-Level Assembler.

7. The number of bytes could be different from the number of characters in the string if the
string encoding includes multi-byte character sequences, such as what you would find in
UTF-8 or UTF-16 encodings.

https://artofasm.randallhyde.com/

Constants, Variables, and Data Types 177

By far, the most common descriptor format incorporates a pointer to the
string’s data and a size field specifying the number of bytes currently occu-
pied by that string data. Note that this particular string descriptor is not the
same thing as a length-prefixed string. In a length-prefixed string, the length
immediately precedes the character data itself. In a descriptor, the length
and a pointer are kept together, and this pair is (usually) separate from the
character data itself.

4.8.4 Pointers to Strings
Most of the time, an assembly language program won’t directly work with
strings appearing in the .data (or .const or .data?) section. Instead, the pro-
gram will work with pointers to strings (including strings whose storage the
program has dynamically allocated with a call to a function like malloc()).
Listing 4-5 provided a simple (if not broken) example. In such applications,
your assembly code will typically load a pointer to a string into a base regis-
ter and then use a second (index) register to access individual characters in
the string.

4.8.5 String Functions
Unfortunately, very few assemblers provide a set of string functions you can
call from your assembly language programs.8 As an assembly language pro-
grammer, you’re expected to write these functions on your own. Fortunately,
a couple of solutions are available if you don’t quite feel up to the task.

The first set of string functions you can call (without having to write
them yourself) is the C Standard Library string functions (from the string.h
header file in C). Of course, you’ll have to use C strings (zero-terminated
strings) in your code when calling C Standard Library functions, but this
generally isn’t a big problem. Listing 4-6 provides examples of calls to vari-
ous C string functions.

; Listing 4-6

; Calling C Standard Library string functions.

 option casemap:none

nl = 10
maxLen = 256

 .const
ttlStr byte "Listing 4-6", 0
prompt byte "Input a string: ", 0
fmtStr1 byte "After strncpy, resultStr='%s'", nl, 0

8. The High-Level Assembler (HLA) is a notable exception. The HLA Standard Library
includes a wide set of string functions written in HLA. Were it not for the HLA Standard
Library being all 32-bit code, you would have been able to call those functions from your
MASM code. That being said, it isn’t that difficult to rewrite the HLA library functions
in MASM. You can obtain the HLA Standard Library source code from https://artofasm
.randallhyde.com/ if you care to try this.

https://artofasm .randallhyde.com/
https://artofasm .randallhyde.com/

178 Chapter 4

fmtStr2 byte "After strncat, resultStr='%s'", nl, 0
fmtStr3 byte "After strcmp (3), eax=%d", nl, 0
fmtStr4 byte "After strcmp (4), eax=%d", nl, 0
fmtStr5 byte "After strcmp (5), eax=%d", nl, 0
fmtStr6 byte "After strchr, rax='%s'", nl, 0
fmtStr7 byte "After strstr, rax='%s'", nl, 0
fmtStr8 byte "resultStr length is %d", nl, 0

str1 byte "Hello, ", 0
str2 byte "World!", 0
str3 byte "Hello, World!", 0
str4 byte "hello, world!", 0
str5 byte "HELLO, WORLD!", 0

 .data
strLength dword ?
resultStr byte maxLen dup (?)

 .code
 externdef readLine:proc
 externdef printf:proc
 externdef malloc:proc
 externdef free:proc

; Some C standard library string functions:

; size_t strlen(char *str)

 externdef strlen:proc

; char *strncat(char *dest, const char *src, size_t n)

 externdef strncat:proc

; char *strchr(const char *str, int c)

 externdef strchr:proc

; int strcmp(const char *str1, const char *str2)

 externdef strcmp:proc

; char *strncpy(char *dest, const char *src, size_t n)

 externdef strncpy:proc

; char *strstr(const char *inStr, const char *search4)

 externdef strstr:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr

Constants, Variables, and Data Types 179

 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

; Demonstrate the strncpy function to copy a
; string from one location to another:

 lea rcx, resultStr ; Destination string
 lea rdx, str1 ; Source string
 mov r8, maxLen ; Max number of chars to copy
 call strncpy

 lea rcx, fmtStr1
 lea rdx, resultStr
 call printf

; Demonstrate the strncat function to concatenate str2 to
; the end of resultStr:

 lea rcx, resultStr
 lea rdx, str2
 mov r8, maxLen
 call strncat

 lea rcx, fmtStr2
 lea rdx, resultStr
 call printf

; Demonstrate the strcmp function to compare resultStr
; with str3, str4, and str5:

 lea rcx, resultStr
 lea rdx, str3
 call strcmp

 lea rcx, fmtStr3
 mov rdx, rax
 call printf

 lea rcx, resultStr
 lea rdx, str4
 call strcmp

 lea rcx, fmtStr4
 mov rdx, rax
 call printf

180 Chapter 4

 lea rcx, resultStr
 lea rdx, str5
 call strcmp

 lea rcx, fmtStr5
 mov rdx, rax
 call printf

; Demonstrate the strchr function to search for
; "," in resultStr:

 lea rcx, resultStr
 mov rdx, ','
 call strchr

 lea rcx, fmtStr6
 mov rdx, rax
 call printf

; Demonstrate the strstr function to search for
; str2 in resultStr:

 lea rcx, resultStr
 lea rdx, str2
 call strstr

 lea rcx, fmtStr7
 mov rdx, rax
 call printf

; Demonstrate a call to the strlen function:

 lea rcx, resultStr
 call strlen

 lea rcx, fmtStr8
 mov rdx, rax
 call printf

 add rsp, 48
 ret ; Returns to caller
asmMain endp
 end

Listing 4-6: Calling C Standard Library string function from MASM source code

Here are the commands to build and run Listing 4-6:

C:\>build listing4-6

C:\>echo off
 Assembling: listing4-6.asm
c.cpp

Constants, Variables, and Data Types 181

C:\>listing4-6
Calling Listing 4-6:
After strncpy, resultStr='Hello, '
After strncat, resultStr='Hello, World!'
After strcmp (3), eax=0
After strcmp (4), eax=-1
After strcmp (5), eax=1
After strchr, rax=', World!'
After strstr, rax='World!'
resultStr length is 13
Listing 4-6 terminated

Of course, you could make a good argument that if all your assembly
code does is call a bunch of C Standard Library functions, you should have
written your application in C in the first place. Most of the benefits of writing
code in assembly language happen only when you “think” in assembly lan-
guage, not C. In particular, you can dramatically improve the performance of
your string function calls if you stop using zero-terminated strings and switch
to another string format (such as length-prefixed or descriptor-based strings
that include a length component).

In addition to the C Standard Library, you can find lots of x86-64 string
functions written in assembly language out on the internet. A good place
to start is the MASM Forum at https://masm32.com/board/ (despite the name,
this message forum supports 64-bit as well as 32-bit MASM programming).
Chapter 14 discusses string functions written in assembly language in
greater detail.

 4.9 Arrays
Along with strings, arrays are probably the most commonly used composite
data. Yet most beginning programmers don’t understand how arrays operate
internally and their associated efficiency trade-offs. It’s surprising how many
novice (and even advanced!) programmers view arrays from a completely dif-
ferent perspective once they learn how to deal with arrays at the machine level.

Abstractly, an array is an aggregate data type whose members (elements)
are all the same type. Selection of a member from the array is by an integer
index.9 Different indices select unique elements of the array. This book
assumes that the integer indices are contiguous (though this is by no means
required). That is, if the number x is a valid index into the array and y is also
a valid index, with x < y, then all i such that x < i < y are valid indices.

Whenever you apply the indexing operator to an array, the result is the
specific array element chosen by that index. For example, A[i] chooses the
ith element from array A. There is no formal requirement that element i be
anywhere near element i+1 in memory. As long as A[i] always refers to the

9. Or it could be a value whose underlying representation is integer, such as character, enu-
merated, and Boolean types.

https://masm32.com/board/

182 Chapter 4

same memory location and A[i+1] always refers to its corresponding loca-
tion (and the two are different), the definition of an array is satisfied.

In this book, we assume that array elements occupy contiguous loca-
tions in memory. An array with five elements will appear in memory as
Figure 4-1 shows.

Low memory
addresses Base address of A

High memory
addresses

A[0] A[1] A[2] A[3] A[4]

Figure 4-1: Array layout in memory

The base address of an array is the address of the first element in the
array and always appears in the lowest memory location. The second array
element directly follows the first in memory, the third element follows the
second, and so on. Indices are not required to start at zero. They may start
with any number as long as they are contiguous. However, for the purposes
of discussion, this book will start all indexes at zero.

To access an element of an array, you need a function that translates an
array index to the address of the indexed element. For a single-dimensional
array, this function is very simple:

element_address = base_address + ((index - initial_index) * element_size)

where initial_index is the value of the first index in the array (which you
can ignore if it’s zero), and the value element_size is the size, in bytes, of an
individual array element.

4.9.1 Declaring Arrays in Your MASM Programs
Before you can access elements of an array, you need to set aside storage for
that array. Fortunately, array declarations build on the declarations you’ve
already seen. To allocate n elements in an array, you would use a declara-
tion like the following in one of the variable declaration sections:

array_name base_type n dup (?)

array_name is the name of the array variable, and base_type is the type of
an element of that array. This declaration sets aside storage for the array.
To obtain the base address of the array, just use array_name.

The n dup (?) operand tells MASM to duplicate the object n times. Now
let’s look at some specific examples:

 .data

; Character array with elements 0 to 127.

CharArray byte 128 dup (?)

Constants, Variables, and Data Types 183

; Array of bytes with elements 0 to 9.

ByteArray byte 10 dup (?)

; Array of double words with elements 0 to 3.

DWArray dword 4 dup (?)

These examples all allocate storage for uninitialized arrays. You may
also specify that the elements of the arrays be initialized using declarations
like the following in the .data and .const sections:

RealArray real4 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
IntegerAry sdword 1, 1, 1, 1, 1, 1, 1, 1

Both definitions create arrays with eight elements. The first definition
initializes each 4-byte real value to 1.0, and the second declaration initial-
izes each 32-bit integer (sdword) element to 1.

If all the array elements have the same initial value, you can save a little
work by using the following declarations:

RealArray real4 8 dup (1.0)
IntegerAry sdword 8 dup (1)

These operand fields tell MASM to make eight copies of the value inside
the parentheses. In past examples, this has always been ? (an uninitialized
value). However, you can put an initial value inside the parentheses, and
MASM will duplicate that value. In fact, you can put a comma-separated list
of values, and MASM will duplicate everything inside the parentheses:

RealArray real4 4 dup (1.0, 2.0)
IntegerAry sdword 4 dup (1, 2)

These two examples also create eight-element arrays. Their initial
values will be 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, 1.0, 2.0, and 1, 2, 1, 2, 1, 2, 1, 2,
respectively.

4.9.2 Accessing Elements of a Single-Dimensional Array
To access an element of a zero-based array, you can use this formula:

element_address = base_address + index * element_size

If you are operating in LARGEADDRESSAWARE:NO mode, for the base_address
entry you can use the name of the array (because MASM associates the
address of the first element of an array with the name of that array). If you
are operating in a large address mode, you’ll need to load the base address
of the array into a 64-bit (base) register; for example:

lea rbx, base_address

184 Chapter 4

The element_size entry is the number of bytes for each array element.
If the object is an array of bytes, the element_size field is 1 (resulting in a
very simple computation). If each element of the array is a word (or other
2-byte type), then element_size is 2, and so on. To access an element of the
IntegerAry array in the previous section, you’d use the following formula
(the size is 4 because each element is an sdword object):

element_address = IntegerAry + (index * 4)

Assuming LARGEADDRESSAWARE:NO, the x86-64 code equivalent to the state-
ment eax = IntegerAry[index] is as follows:

mov rbx, index
mov eax, IntegerAry[rbx*4]

In large address mode (LARGEADDRESSAWARE:YES), you’d have to load the
address of the array into a base register; for example:

lea rdx, IntegerAry
mov rbx, index
mov eax, [rdx + rbx*4]

These two instructions don’t explicitly multiply the index register (RBX)
by 4 (the size of a 32-bit integer element in IntegerAry). Instead, they use the
scaled-indexed address mode to perform the multiplication.

Another thing to note about this instruction sequence is that it does
not explicitly compute the sum of the base address plus the index times 4.
Instead, it relies on the scaled-indexed addressing mode to implicitly com-
pute this sum. The instruction mov eax, IntegerAry[rbx*4] loads EAX from
location IntegerAry + rbx*4, which is the base address plus index*4 (because
RBX contains index*4). Similarly, mov eax, [rdx+rbx*4] computes this same
sum as part of the addressing mode. Sure, you could have used

lea rax, IntegerAry
mov rbx, index
shl rbx, 2 ; Sneaky way to compute 4 * RBX
add rbx, rax ; Compute base address plus index * 4
mov eax, [rbx]

in place of the previous sequence, but why use five instructions when two or
three will do the same job? This is a good example of why you should know
your addressing modes inside and out. Choosing the proper addressing
mode can reduce the size of your program, thereby speeding it up.

However, if you need to multiply by a constant other than 1, 2, 4, or 8,
then you cannot use the scaled-indexed addressing modes. Similarly, if you
need to multiply by an element size that is not a power of 2, you will not be
able to use the shl instruction to multiply the index by the element size;
instead, you will have to use imul or another instruction sequence to do the
multiplication.

Constants, Variables, and Data Types 185

The indexed addressing mode on the x86-64 is a natural for accessing
elements of a single-dimensional array. Indeed, its syntax even suggests an
array access. The important thing to keep in mind is that you must remem-
ber to multiply the index by the size of an element. Failure to do so will pro-
duce incorrect results.

The examples appearing in this section assume that the index variable
is a 64-bit value. In reality, integer indexes into arrays are generally 32-bit
integers or 32-bit unsigned integers. Therefore, you’d typically use the fol-
lowing instruction to load the index value into RBX:

mov ebx, index ; Zero-extends into RBX

Because loading a 32-bit value into a general-purpose register automati-
cally zero-extends that register to 64 bits, the former instruction sequences
(which expect a 64-bit index value) will still work properly when you’re
using 32-bit integers as indexes into an array.

4.9.3 Sorting an Array of Values
Almost every textbook on this planet gives an example of a sort when intro-
ducing arrays. Because you’ve probably seen how to do a sort in high-level
languages already, it’s instructive to take a quick look at a sort in MASM.
Listing 4-7 uses a variant of the bubble sort, which is great for short lists
of data and lists that are nearly sorted, but horrible for just about every-
thing else.10

; Listing 4-7

; A simple bubble sort example.

; Note: This example must be assembled
; and linked with LARGEADDRESSAWARE:NO.

 option casemap:none

nl = 10
maxLen = 256
true = 1
false = 0

bool typedef ptr byte

 .const
ttlStr byte "Listing 4-7", 0
fmtStr byte "Sortme[%d] = %d", nl, 0

 .data

10. Fear not, you’ll see some better sorting algorithms in Chapter 5.

186 Chapter 4

; sortMe - A 16-element array to sort:

sortMe label dword
 dword 1, 2, 16, 14
 dword 3, 9, 4, 10
 dword 5, 7, 15, 12
 dword 8, 6, 11, 13
sortSize = ($ - sortMe) / sizeof dword ; Number of elements

; didSwap - A Boolean value that indicates
; whether a swap occurred on the
; last loop iteration.

didSwap bool ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here's the bubblesort function.

; sort(dword *array, qword count);

; Note: this is not an external (C)
; function, nor does it call any
; external functions. So it will
; dispense with some of the Windows
; calling sequence stuff.

; array - Address passed in RCX.
; count - Element count passed in RDX.

sort proc
 push rax ; In pure assembly language
 push rbx ; it's always a good idea
 push rcx ; to preserve all registers
 push rdx ; you modify
 push r8

 dec rdx ; numElements - 1

; Outer loop:

outer: mov didSwap, false

 xor rbx, rbx ; RBX = 0
inner: cmp rbx, rdx ; while RBX < count - 1
 jnb xInner

Constants, Variables, and Data Types 187

 mov eax, [rcx + rbx*4] ; EAX = sortMe[RBX]
 cmp eax, [rcx + rbx*4 + 4] ; If EAX > sortMe[RBX + 1]
 jna dontSwap ; then swap

 ; sortMe[RBX] > sortMe[RBX + 1], so swap elements:

 mov r8d, [rcx + rbx*4 + 4]
 mov [rcx + rbx*4 + 4], eax
 mov [rcx + rbx*4], r8d
 mov didSwap, true

dontSwap:
 inc rbx ; Next loop iteration
 jmp inner

; Exited from inner loop, test for repeat
; of outer loop:

xInner: cmp didSwap, true
 je outer

 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
sort endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40

; Sort the "sortMe" array:

 lea rcx, sortMe
 mov rdx, sortSize ; 16 elements in array
 call sort

; Display the sorted array:

 xor rbx, rbx
dispLp: mov r8d, sortMe[rbx*4]
 mov rdx, rbx
 lea rcx, fmtStr
 call printf

188 Chapter 4

 inc rbx
 cmp rbx, sortSize
 jb dispLp

 add rsp, 40
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 4-7: A simple bubble sort example

Here are the commands to assemble and run this sample code:

C:\>sbuild listing4-7

C:\>echo off
 Assembling: listing4-7.asm
c.cpp

C:\>listing4-7
Calling Listing 4-7:
Sortme[0] = 1
Sortme[1] = 2
Sortme[2] = 3
Sortme[3] = 4
Sortme[4] = 5
Sortme[5] = 6
Sortme[6] = 7
Sortme[7] = 8
Sortme[8] = 9
Sortme[9] = 10
Sortme[10] = 11
Sortme[11] = 12
Sortme[12] = 13
Sortme[13] = 14
Sortme[14] = 15
Sortme[15] = 16
Listing 4-7 terminated

The bubble sort works by comparing adjacent elements in an array. The
cmp instruction (before ; if EAX > sortMe[RBX + 1]) compares EAX (which
contains sortMe[rbx*4]) against sortMe[rbx*4 + 4]. Because each element of
this array is 4 bytes (dword), the index [rbx*4 + 4] references the next ele-
ment beyond [rbx*4].

As is typical for a bubble sort, this algorithm terminates if the inner-
most loop completes without swapping any data. If the data is already
presorted, the bubble sort is very efficient, making only one pass over
the data. Unfortunately, if the data is not sorted (worst case, if the data
is sorted in reverse order), then this algorithm is extremely inefficient.
However, the bubble sort is easy to implement and understand (which is
why introductory texts continue to use it in examples).

Constants, Variables, and Data Types 189

 4.10 Multidimensional Arrays
The x86-64 hardware can easily handle single-dimensional arrays.
Unfortunately, there is no magic addressing mode that lets you easily
access elements of multidimensional arrays. That’s going to take some
work and several instructions.

Before discussing how to declare or access multidimensional arrays, it
would be a good idea to figure out how to implement them in memory. The
first problem is to figure out how to store a multidimensional object into a
one-dimensional memory space.

Consider for a moment a Pascal array of the form A:array[0..3,0..3] of
char;. This array contains 16 bytes organized as four rows of four characters.
Somehow, you’ve got to draw a correspondence with each of the 16 bytes in
this array and 16 contiguous bytes in main memory. Figure 4-2 shows one
way to do this.

Memory

0 1 2 3

0

1

2

3

Figure 4-2: Mapping a 4×4 array to sequential memory locations

The actual mapping is not important as long as two things occur:
(1) each element maps to a unique memory location (that is, no two
entries in the array occupy the same memory locations) and (2) the map-
ping is consistent (that is, a given element in the array always maps to the
same memory location). So, what you really need is a function with two
input parameters (row and column) that produces an offset into a linear
array of 16 memory locations.

Now any function that satisfies these constraints will work fine. Indeed,
you could randomly choose a mapping as long as it was consistent. However,
what you really want is a mapping that is efficient to compute at runtime
and works for any size array (not just 4×4 or even limited to two dimen-
sions). While a large number of possible functions fit this bill, two functions
in particular are used by most programmers and high-level languages:
row-major ordering and column-major ordering.

190 Chapter 4

4.10.1 Row-Major Ordering
Row-major ordering assigns successive elements, moving across the rows and
then down the columns, to successive memory locations. This mapping is
demonstrated in Figure 4-3.

Memory

15 A[3,3]
14 A[3,2]
13 A[3,1]
12 A[3,0]
11 A[2,3]
10 A[2,2]
9 A[2,1]
8 A[2,0]
7 A[1,3]
6 A[1,2]
5 A[1,1]
4 A[1,0]
3 A[0,3]
2 A[0,2]
1 A[0,1]
0 A[0,0]

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 3

0

1

2

2

3

A:array[0..3, 0..3] of char;

Figure 4-3: Row-major array element ordering

Row-major ordering is the method most high-level programming lan-
guages employ. It is easy to implement and use in machine language. You
start with the first row (row 0) and then concatenate the second row to its
end. You then concatenate the third row to the end of the list, then the
fourth row, and so on (see Figure 4-4).

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

High addressesLow addresses

Figure 4-4: Another view of row-major ordering for a 4×4 array

The actual function that converts a list of index values into an offset is a
slight modification of the formula for computing the address of an element

Constants, Variables, and Data Types 191

of a single-dimensional array. The formula to compute the offset for a two-
dimensional row-major ordered array is as follows:

element_address =
 base_address + (col_index * row_size + row_index) * element_size

As usual, base_address is the address of the first element of the array (A[0]
[0] in this case), and element_size is the size of an individual element of the
array, in bytes. col_index is the leftmost index, and row_index is the rightmost
index into the array. row_size is the number of elements in one row of the
array (4, in this case, because each row has four elements). Assuming element_
size is 1, this formula computes the following offsets from the base address:

Column Row Offset
Index Index into Array
0 0 0
0 1 1
0 2 2
0 3 3
1 0 4
1 1 5
1 2 6
1 3 7
2 0 8
2 1 9
2 2 10
2 3 11
3 0 12
3 1 13
3 2 14
3 3 15

For a three-dimensional array, the formula to compute the offset into
memory is the following:

Address = Base +
 ((depth_index * col_size + col_index) * row_size + row_index) * element_size

The col_size is the number of items in a column, and row_size is the
number of items in a row. In C/C++, if you’ve declared the array as type A[i]
[j][k];, then row_size is equal to k and col_size is equal to j.

For a four-dimensional array, declared in C/C++ as type A[i][j][k][m];,
the formula for computing the address of an array element is shown here:

Address = Base +
 (((left_index * depth_size + depth_index) * col_size + col_index) *
 row_size + row_index) * element_size

The depth_size is equal to j, col_size is equal to k, and row_size is equal
to m. left_index represents the value of the leftmost index.

By now you’re probably beginning to see a pattern. There is a generic
formula that will compute the offset into memory for an array with any
number of dimensions; however, you’ll rarely use more than four.

192 Chapter 4

Another convenient way to think of row-major arrays is as arrays of
arrays. Consider the following single-dimensional Pascal array definition:

A: array [0..3] of sometype;

where sometype is the type sometype = array [0..3] of char;.
A is a single-dimensional array. Its individual elements happen to be

arrays, but you can safely ignore that for the time being. The formula to com-
pute the address of an element of a single-dimensional array is as follows:

element_address = Base + index * element_size

In this case, element_size happens to be 4 because each element of A is
an array of four characters. So, this formula computes the base address of
each row in this 4×4 array of characters (see Figure 4-5).

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

(A[0][0])

(A[0][1])

(A[0][2])

(A[0][3])

Each element of A
is 4 bytes long.

A[0]

A[1]

A[2]

A[3]

Figure 4-5: Viewing a 4×4 array as an array of arrays

Of course, once you compute the base address of a row, you can reapply
the single-dimensional formula to get the address of a particular element.
While this doesn’t affect the computation, it’s probably a little easier to deal
with several single-dimensional computations rather than a complex multi-
dimensional array computation.

Consider a Pascal array defined as A:array [0..3, 0..3, 0..3, 0..3, 0..3]
of char;. You can view this five-dimensional array as a single-dimensional
array of arrays. The following Pascal code provides such a definition:

type
 OneD = array[0..3] of char;
 TwoD = array[0..3] of OneD;
 ThreeD = array[0..3] of TwoD;
 FourD = array[0..3] of ThreeD;
var
 A: array[0..3] of FourD;

Constants, Variables, and Data Types 193

The size of OneD is 4 bytes. Because TwoD contains four OneD arrays, its size
is 16 bytes. Likewise, ThreeD is four TwoDs, so it is 64 bytes long. Finally, FourD
is four ThreeDs, so it is 256 bytes long. To compute the address of A [b, c, d,
e, f], you could use the following steps:

1. Compute the address of A[b] as Base + b * size. Here size is 256 bytes.
Use this result as the new base address in the next computation.

2. Compute the address of A[b, c] by the formula Base + c * size, where
Base is the value obtained in the previous step and size is 64. Use the
result as the new base in the next computation.

3. Compute the base address of A [b, c, d] by Base + d * size, where Base
comes from the previous computation, and size is 16. Use the result
as the new base in the next computation.

4. Compute the address of A[b, c, d, e] with the formula Base + e * size,
where Base comes from the previous computation, and size is 4. Use this
value as the base for the next computation.

5. Finally, compute the address of A[b, c, d, e, f] by using the formula
Base + f * size, where Base comes from the previous computation and
size is 1 (obviously, you can ignore this final multiplication). The result
you obtain at this point is the address of the desired element.

One of the main reasons you won’t find higher-dimensional arrays in
assembly language is that assembly language emphasizes the inefficiencies
associated with such access. It’s easy to enter something like A[b, c, d, e, f]
into a Pascal program, not realizing what the compiler is doing with the code.
Assembly language programmers are not so cavalier—they see the mess you
wind up with when you use higher-dimensional arrays. Indeed, good assem-
bly language programmers try to avoid two-dimensional arrays and often
resort to tricks in order to access data in such an array when its use becomes
absolutely mandatory.

4.10.2 Column-Major Ordering
Column-major ordering is the other function high-level languages frequently
use to compute the address of an array element. FORTRAN and various
dialects of BASIC (for example, older versions of Microsoft BASIC) use
this method.

In row-major ordering, the rightmost index increases the fastest as you
move through consecutive memory locations. In column-major ordering,
the leftmost index increases the fastest. Pictorially, a column-major ordered
array is organized as shown in Figure 4-6.

The formula for computing the address of an array element when using
column-major ordering is similar to that for row-major ordering. You reverse
the indexes and sizes in the computation.

194 Chapter 4

A:array[0..3, 0..3] of char;

15 A[3,3]
14 A[2,3]
13 A[1,3]
12 A[0,3]
11 A[3,2]
10 A[2,2]

9 A[1,2]
8 A[0,2]
7 A[3,1]
6 A[2,1]
5 A[1,1]
4 A[0,1]
3 A[3,0]
2 A[2,0]
1 A[1,0]
0 A[0,0]

Memory

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 3

0

1

2

2

3

Figure 4-6: Column-major array element ordering

For a two-dimension column-major array:

element_address = base_address + (row_index * col_size + col_index) *
 element_size

For a three-dimension column-major array:

Address = Base +
 ((row_index * col_size + col_index) *
 depth_size + depth_index) * element_size

For a four-dimension column-major array:

Address =
 Base + (((row_index * col_size + col_index) * depth_size + depth_index)
 left_size + left_index) * element_size

4.10.3 Allocating Storage for Multidimensional Arrays
If you have an m×n array, it will have m × n elements and require m × n ×
element_size bytes of storage. To allocate storage for an array, you must
reserve this memory. As usual, there are several ways of accomplishing this
task. To declare a multidimensional array in MASM, you could use a decla-
ration like the following:

array_name element_type size1*size2*size3*...*sizen dup (?)

where size1 to sizen are the sizes of each of the dimensions of the array.

Constants, Variables, and Data Types 195

For example, here is a declaration for a 4×4 array of characters:

GameGrid byte 4*4 dup (?)

Here is another example that shows how to declare a three-dimensional
array of strings (assuming the array holds 64-bit pointers to the strings):

NameItems qword 2 * 3 * 3 dup (?)

As was the case with single-dimensional arrays, you may initialize every
element of the array to a specific value by following the declaration with
the values of the array constant. Array constants ignore dimension informa-
tion; all that matters is that the number of elements in the array constant
corresponds to the number of elements in the actual array. The following
example shows the GameGrid declaration with an initializer:

GameGrid byte 'a', 'b', 'c', 'd'
 byte 'e', 'f', 'g', 'h'
 byte 'i', 'j', 'k', 'l'
 byte 'm', 'n', 'o', 'p'

This example was laid out to enhance readability (which is always a good
idea). MASM does not interpret the four separate lines as representing rows
of data in the array. Humans do, which is why it’s good to write the data in
this manner. All that matters is that there are 16 (4 × 4) characters in the
array constant. You’ll probably agree that this is much easier to read than

GameGrid byte 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p'

Of course, if you have a large array, an array with really large rows, or
an array with many dimensions, there is little hope for winding up with
something readable. That’s when comments that carefully explain every-
thing come in handy.

As for single-dimensional arrays, you can use the dup operator to ini-
tialize each element of a large array with the same value. The following
example initializes a 256×64 array of bytes so that each byte contains the
value 0FFh:

StateValue byte 256*64 dup (0FFh)

The use of a constant expression to compute the number of array ele-
ments rather than simply using the constant 16,384 (256 × 64) more clearly
suggests that this code is initializing each element of a 256×64 element array
than does the simple literal constant 16,384.

Another MASM trick you can use to improve the readability of your
programs is to use nested dup declarations. The following is an example of a
MASM nested dup declaration:

StateValue byte 256 dup (64 dup (0FFh))

196 Chapter 4

MASM replicates anything inside the parentheses the number of times
specified by the constant preceding the dup operator; this includes nested
dup declarations. This example says, “Duplicate the stuff inside the paren-
theses 256 times.” Inside the parentheses, there is a dup operator that says,
“Duplicate 0FFh 64 times,” so the outside dup operator duplicates the duplica-
tion of 64 0FFh values 256 times.

It is probably a good programming convention to declare multidimen-
sional arrays by using the “dup of dup (. . . of dup)” syntax. This can make it
clearer that you’re creating a multidimensional array rather than a single-
dimensional array with a large number of elements.

4.10.4 Accessing Multidimensional Array Elements in Assembly Language
Well, you’ve seen the formulas for computing the address of a multidimen-
sional array element. Now it’s time to see how to access elements of those
arrays by using assembly language.

The mov, shl, and imul instructions make short work of the various equa-
tions that compute offsets into multidimensional arrays. Let’s consider a
two-dimensional array first:

 .data
i sdword ?
j sdword ?
TwoD sdword 4 dup (8 dup (?))

 .
 .
 .

; To perform the operation TwoD[i,j] := 5;
; you'd use code like the following.
; Note that the array index computation is (i*8 + j)*4.

 mov ebx, i ; Remember, zero-extends into RBX
 shl rbx, 3 ; Multiply by 8
 add ebx, j ; Also zero-extends result into RBX11

 mov TwoD[rbx*4], 5

Note that this code does not require the use of a two-register address-
ing mode on the x86-64 (at least, not when using the LARGEADDRESSAWARE:NO
option). Although an addressing mode like TwoD[rbx][rsi] looks like it
should be a natural for accessing two-dimensional arrays, that isn’t the pur-
pose of this addressing mode.

Now consider a second example that uses a three-dimensional array
(again, assuming LARGEADDRESSAWARE:NO):

 .data
i dword ?

11. The add instruction zero-extends into RBX, assuming the HO 32 bits of RBX were zero
after the shl operation. This is generally a safe assumption, but something to keep in
mind if i’s value is large.

Constants, Variables, and Data Types 197

j dword ?
k dword ?
ThreeD sdword 3 dup (4 dup (5 dup (?)))
 .
 .
 .

; To perform the operation ThreeD[i,j,k] := ESI;
; you'd use the following code that computes
; ((i*4 + j)*5 + k)*4 as the address of ThreeD[i,j,k].

 mov ebx, i ; Zero-extends into RBX
 shl ebx, 2 ; Four elements per column
 add ebx, j
 imul ebx, 5 ; Five elements per row
 add ebx, k
 mov ThreeD[rbx*4], esi

This code uses the imul instruction to multiply the value in RBX by 5,
because the shl instruction can multiply a register by only a power of 2.
While there are ways to multiply the value in a register by a constant other
than a power of 2, the imul instruction is more convenient.12 Also remember
that operations on the 32-bit general-purpose registers automatically zero-
extend their result into the 64-bit register.

 4.11 Records/Structs
Another major composite data structure is the Pascal record or C/C++/C#
structure.13 The Pascal terminology is probably better, because it tends to
avoid confusion with the more general term data structure. However, MASM
uses the term struct, so this book favors that term.

Whereas an array is homogeneous, with elements that are all the same
type, the elements in a struct can have different types. Arrays let you select
a particular element via an integer index. With structs, you must select an
element (known as a field) by name.

The whole purpose of a structure is to let you encapsulate different,
though logically related, data into a single package. The Pascal record dec-
laration for a student is a typical example:

student =
 record
 Name: string[64];
 Major: integer;
 SSN: string[11];
 Midterm1: integer;

12. A full discussion of multiplication by constants other than a power of 2 appears in
Chapter 6.

13. Records and structures also go by other names in other languages, but most people
recognize at least one of these names.

198 Chapter 4

 Midterm2: integer;
 Final: integer;
 Homework: integer;
 Projects: integer;
 end;

Most Pascal compilers allocate each field in a record to contiguous
memory locations. This means that Pascal will reserve the first 65 bytes for
the name,14 the next 2 bytes hold the major code (assuming a 16-bit inte-
ger), the next 12 bytes hold the Social Security number, and so on.

4.11.1 MASM Struct Declarations
In MASM, you can create record types by using the struct/ends declaration.
You would encode the preceding record in MASM as follows:

student struct
sName byte 65 dup (?) ; "Name" is a MASM reserved word
Major word ?
SSN byte 12 dup (?)
Midterm1 word ?
Midterm2 word ?
Final word ?
Homework word ?
Projects word ?
student ends

As you can see, the MASM declaration is similar to the Pascal decla-
ration. To be true to the Pascal declaration, this example uses character
arrays rather than strings for the sName and SSN (US Social Security number)
fields. Also, the MASM declaration assumes that integers are unsigned 16-bit
values (which is probably appropriate for this type of data structure).

The field names within the struct must be unique; the same name may
not appear two or more times in the same record. However, all field names
are local to that record. Therefore, you may reuse those field names else-
where in the program or in different records.

The struct/ends declaration may appear anywhere in the source file
as long as you define it before you use it. A struct declaration does not
actually allocate any storage for a student variable. Instead, you have to
explicitly declare a variable of type student. The following example dem-
onstrates how to do this:

 .data
John student {}

The funny operand ({}) is a MASM-ism, just something you’ll have to
remember.

14. Strings require an extra byte, in addition to all the characters in the string, to encode
the length.

Constants, Variables, and Data Types 199

The John variable declaration allocates 89 bytes of storage laid out in
memory, as shown in Figure 4-7.

John

sName
(65 bytes)

SSN
(12 bytes)

Midterm2
(2 bytes)

Homework
(2 bytes)

Major
(2 bytes)

Midterm1
(2 bytes)

Final
(2 bytes)

Projects
(2 bytes)

Figure 4-7: Student data structure storage in memory

If the label John corresponds to the base address of this record, the
sName field is at offset John + 0, the Major field is at offset John + 65, the SSN
field is at offset John + 67, and so on.

4.11.2 Accessing Record/Struct Fields
To access an element of a structure, you need to know the offset from the
beginning of the structure to the desired field. For example, the Major field
in the variable John is at offset 65 from the base address of John. Therefore,
you could store the value in AX into this field by using this instruction:

mov word ptr John[65], ax

Unfortunately, memorizing all the offsets to fields in a struct defeats
the whole purpose of using them in the first place. After all, if you have to
deal with these numeric offsets, why not just use an array of bytes instead of
a struct?

Fortunately, MASM lets you refer to field names in a record by using
the same mechanism most HLLs use: the dot operator. To store AX into the
Major field, you could use mov John.Major, ax instead of the previous instruc-
tion. This is much more readable and certainly easier to use.

The use of the dot operator does not introduce a new addressing
mode. The instruction mov John.Major, ax still uses the PC-relative address-
ing mode. MASM simply adds the base address of John with the offset
to the Major field (65) to get the actual displacement to encode into the
instruction.

The dot operator works quite well when dealing with struct variables
you declare in one of the static sections (.data, .const, or .data?) and access
via the PC-relative addressing mode. However, what happens when you have
a pointer to a record object? Consider the following code fragment:

mov rcx, sizeof student ; Size of student struct
call malloc ; Returns pointer in RAX
mov [rax].Final, 100

200 Chapter 4

Unfortunately, the Final field name is local to the student structure. As
a result, MASM will complain that the name Final is undefined in this code
sequence. To get around this problem, you add the structure name to the
dotted name list when using pointer references. Here’s the correct form of
the preceding code:

mov rcx, sizeof student ; Size of student struct
call malloc
mov [rax].student.Final, 100

4.11.3 Nesting MASM Structs
MASM allows you to define fields of a structure that are themselves struc-
ture types. Consider the following two struct declarations:

grades struct
Midterm1 word ?
Midterm2 word ?
Final word ?
Homework word ?
Projects word ?
grades ends

student struct
sName byte 65 dup (?) ; "Name" is a MASM reserved word
Major word ?
SSN byte 12 dup (?)
sGrades grades {}
student ends

The sGrades field now holds all the individual grade fields that were
formerly individual fields in the grades structure. Note that this particu-
lar example has the same memory layout as the previous examples (see
Figure 4-7). The grades structure itself doesn’t add any new data; it simply
organizes the grade fields under its own substructure.

To access the subfields, you use the same syntax you’d use with C/C++
(and most other HLLs supporting records/structures). If the John variable
declaration appearing in previous sections was of this new struct type,
you’d access the Homework field by using a statement such as the following:

mov ax, John.sGrades.Homework

4.11.4 Initializing Struct Fields
A typical structure declaration such as the following

 .data
structVar structType {}

leaves all fields in structType uninitialized (similar to having the ? operand
in other variable declarations). MASM will allow you to provide initial values

Constants, Variables, and Data Types 201

for all the fields of a structure by supplying a list of comma-separated items
between the braces in the operand field of a structure variable declaration,
as shown in Listing 4-8.

; Listing 4-8

; Sample struct initialization example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 4-8", 0
fmtStr byte "aString: maxLen:%d, len:%d, string data:'%s'"
 byte nl, 0

; Define a struct for a string descriptor:

strDesc struct
maxLen dword ?
len dword ?
strPtr qword ?
strDesc ends

 .data

; Here's the string data we will initialize the
; string descriptor with:

charData byte "Initial String Data", 0
len = lengthof charData ; Includes zero byte

; Create a string descriptor initialized with
; the charData string value:

aString strDesc {len, len, offset charData}

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

202 Chapter 4

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

; Display the fields of the string descriptor.

 lea rcx, fmtStr
 mov edx, aString.maxLen ; Zero-extends!
 mov r8d, aString.len ; Zero-extends!
 mov r9, aString.strPtr
 call printf

 add rsp, 48 ; Restore RSP
 ret ; Returns to caller
asmMain endp
 end

Listing 4-8: Initializing the fields of a structure

Here are the build commands and output for Listing 4-8:

C:\>build listing4-8

C:\>echo off
 Assembling: listing4-8.asm
c.cpp

C:\>listing4-8
Calling Listing 4-8:
aString: maxLen:20, len:20, string data:'Initial String Data'
Listing 4-8 terminated

If a structure field is an array object, you’ll need special syntax to ini-
tialize that array data. Consider the following structure definition:

aryStruct struct
aryField1 byte 8 dup (?)
aryField2 word 4 dup (?)
aryStruct ends

The initialization operands must either be a string or a single item.
Therefore, the following is not legal:

a aryStruct {1,2,3,4,5,6,7,8, 1,2,3,4}

This (presumably) is an attempt to initialize aryField1 with {1,2,3,4,5,6,7,8}
and aryField2 with {1,2,3,4}. MASM, however, won’t accept this. MASM wants
only two values in the operand field (one for aryField1 and one for aryField2).
The solution is to place the array constants for the two arrays in their own
set of braces:

a aryStruct {{1,2,3,4,5,6,7,8}, {1,2,3,4}}

Constants, Variables, and Data Types 203

If you supply too many initializers for a given array element, MASM will
report an error. If you supply too few initializers, MASM will quietly fill in
the remaining array entries with 0 values:

a aryStruct {{1,2,3,4}, {1,2,3,4}}

This example initializes a.aryField1 with {1,2,3,4,0,0,0,0} and initializes
a.aryField2 with {1,2,3,4}.

If the field is an array of bytes, you can substitute a character string (with
no more characters than the array size) for the list of byte values:

b aryStruct {"abcdefgh", {1,2,3,4}}

If you supply too few characters, MASM will fill out the rest of the byte
array with 0 bytes; too many characters produce an error.

4.11.5 Arrays of Structs
It is a perfectly reasonable operation to create an array of structures. To do
so, you create a struct type and then use the standard array declaration syn-
tax. The following example demonstrates how you could do this:

recElement struct
 Fields for this record
recElement ends
 .
 .
 .
 .data
recArray recElement 4 dup ({})

To access an element of this array, you use the standard array-indexing
techniques. Because recArray is a single-dimensional array, you’d compute
the address of an element of this array by using the formula base_address
+ index * lengthof(recElement). For example, to access an element of recArray,
you’d use code like the following:

; Access element i of recArray:
; RBX := i*lengthof(recElement)

 imul ebx, i, sizeOf recElement ; Zero-extends EBX to RBX!
 mov eax, recArray.someField[rbx] ; LARGEADDRESSAWARE:NO!

The index specification follows the entire variable name; remember,
this is assembly, not a high-level language (in a high-level language, you’d
probably use recArray[i].someField).

Naturally, you can create multidimensional arrays of records as well.
You would use the row-major or column-major order functions to compute
the address of an element within such records. The only thing that really

204 Chapter 4

changes (from the discussion of arrays) is that the size of each element is
the size of the record object:

 .data
rec2D recElement 4 dup (6 dup ({}))
 .
 .
 .
; Access element [i,j] of rec2D and load someField into EAX:

 imul ebx, i, 6
 add ebx, j
 imul ebx, sizeof recElement
 lea rcx, rec2D ; To avoid requiring LARGEADDRESS...
 mov eax, [rcx].recElement.someField[rbx*1]

4.11.6 Aligning Fields Within a Record
To achieve maximum performance in your programs, or to ensure that
MASM’s structures properly map to records or structures in a high-level
language, you will often need to be able to control the alignment of fields
within a record. For example, you might want to ensure that a double-word
field’s offset is a multiple of four. You can use the align directive to do this.
The following creates a structure with unaligned fields:

Padded struct
b byte ?
d dword ?
b2 byte ?
b3 byte ?
w word ?
Padded ends

Here’s how MASM organizes this structure’s fields in memory:15

 Name Size Offset Type

Padded 00000009
 b 00000000 byte
 d 00000001 dword
 b2 00000005 byte
 b3 00000006 byte
 w 00000007 word

As you can see from this example, the d and w fields are both aligned on
odd offsets, which may result in slower performance. Ideally, you would like
d to be aligned on a double-word offset (multiple of four) and w aligned on
an even offset.

15. By the way, if you would like MASM to provide you with this information, supply a /Fl
command line option to ml64.exe. This tells MASM to produce a listing file, which
contains this information.

Constants, Variables, and Data Types 205

You can fix this problem by adding align directives to the structure, as
follows:

Padded struct
b byte ?
 align 4
d dword ?
b2 byte ?
b3 byte ?
 align 2
w word ?
Padded ends

Now, MASM uses the following offsets for each of these fields:

Padded 0000000C
 b 00000000 byte
 d 00000004 dword
 b2 00000008 byte
 b3 00000009 byte
 w 0000000A word

As you can see, d is now aligned on a 4-byte offset, and w is aligned at an
even offset.

MASM provides one additional option that lets you automatically align
objects in a struct declaration. If you supply a value (which must be 1, 2, 4,
8, or 16) as the operand to the struct statement, MASM will automatically
align all fields in the structure to an offset that is a multiple of that field’s
size or to the value you specify as the operand, whichever is smaller. Consider
the following example:

Padded struct 4
b byte ?
d dword ?
b2 byte ?
b3 byte ?
w word ?
Padded ends

Here’s the alignment MASM produces for this structure:

Padded 0000000C
 b 00000000 byte
 d 00000004 dword
 b2 00000008 byte
 b3 00000009 byte
 w 0000000A word

Note that MASM properly aligns d on a dword boundary and w on a
word boundary (within the structure). Also note that w is not aligned on a
dword boundary (even though the struct operand was 4). This is because
MASM uses the smaller of the operand or the field’s size as the alignment
value (and w’s size is 2).

206 Chapter 4

 4.12 Unions
A record/struct definition assigns different offsets to each field in the
record according to the size of those fields. This behavior is quite similar to
the allocation of memory offsets in a .data?, .data, or .const section. MASM
provides a second type of structure declaration, the union, that does not
assign different addresses to each object; instead, each field in a union dec-
laration has the same offset: zero. The following example demonstrates the
syntax for a union declaration:

unionType union
 Fields (syntactically identical to struct declarations)
unionType ends

Yes, it seems rather weird that MASM still uses ends for the end of the
union (rather than endu). If this really bothers you, just create a textequ for
endu as follows:

endu textequ <ends>

Now, you can use endu to your heart’s content to mark the end of a union.
You access the fields of a union exactly the same way you access the fields

of a struct: using dot notation and field names. The following is a concrete
example of a union type declaration and a variable of the union type:

numeric union
i sdword ?
u dword ?
q qword ?
numeric ends
 .
 .
 .
 .data
number numeric {}
 .
 .
 .
 mov number.u, 55
 .
 .
 .
 mov number.i, -62
 .
 .
 .
 mov rbx, number.q

The important thing to note about union objects is that all the fields of
a union have the same offset in the structure. In the preceding example, the
number.u, number.i, and number.q fields all have the same offset: zero. Therefore,

Constants, Variables, and Data Types 207

the fields of a union overlap in memory; this is similar to the way the x86-64
8-, 16-, 32-, and 64-bit general-purpose registers overlap one another. Usually,
you may access only one field of a union at a time; you do not manipulate
separate fields of a particular union variable concurrently because writing to
one field overwrites the other fields. In the preceding example, any modifica-
tion of number.u would also change number.i and number.q.

Programmers typically use unions for two reasons: to conserve memory
or to create aliases. Memory conservation is the intended use of this data
structure facility. To see how this works, let’s compare the numeric union in
the preceding example with a corresponding structure type:

numericRec struct
i sdword ?
u dword ?
q qword ?
numericRec ends

If you declare a variable, say n, of type numericRec, you access the fields as
n.i, n.u, and n.q exactly as though you had declared the variable to be type
numeric. The difference between the two is that numericRec variables allocate
separate storage for each field of the structure, whereas numeric (union)
objects allocate the same storage for all fields. Therefore, sizeof numericRec
is 16 because the record contains two double-word fields and a quad-word
(real64) field. The sizeof numeric, however, is 8. This is because all the fields
of a union occupy the same memory locations, and the size of a union object
is the size of the largest field of that object (see Figure 4-8).

i u q

q

i, u

0 4 8

union variable

record/struct variable

Offset

Figure 4-8: Layout of a union versus a struct variable

In addition to conserving memory, programmers often use unions to
create aliases in their code. As you may recall, an alias is a different name
for the same memory object. Aliases are often a source of confusion in a
program, so you should use them sparingly; sometimes, however, using an
alias can be quite convenient. For example, in one section of your program,
you might need to constantly use type coercion to refer to an object using
a different type. Although you can use a MASM textequ to simplify this

208 Chapter 4

process, another way to do this is to use a union variable with the fields rep-
resenting the different types you want to use for the object. As an example,
consider the following code:

CharOrUns union
chr byte ?
u dword ?
CharOrUns ends

 .data
v CharOrUns {}

With a declaration like this, you can manipulate an uns32 object by
accessing v.u. If, at some point, you need to treat the LO byte of this dword
variable as a character, you can do so by accessing the v.chr variable; for
example:

mov v.u, eax
mov ch, v.chr

You can use unions exactly the same way you use structures in a MASM
program. In particular, union declarations may appear as fields in structures,
struct declarations may appear as fields in unions, array declarations may
appear within unions, you can create arrays of unions, and so on.

4.12.1 Anonymous Unions
Within a struct declaration, you can place a union declaration without speci-
fying a field name for the union object. The following example demonstrates
the syntax:

HasAnonUnion struct
r real8 ?

 union
u dword ?
i sdword ?
 ends

s qword ?
HasAnonUnion ends

 .data
v HasAnonUnion {}

Whenever an anonymous union appears within a record, you can access
the fields of the union as though they were unenclosed fields of the record.
In the preceding example, for instance, you would access v’s u and i fields
by using the syntax v.u and v.i, respectively. The u and i fields have the

Constants, Variables, and Data Types 209

same offset in the record (8, because they follow a real8 object). The fields
of v have the following offsets from v’s base address:

v.r 0
v.u 8
v.i 8
v.s 12

sizeof(v) is 20 because the u and i fields consume only 4 bytes.
MASM also allows anonymous structures within unions. Please see the

MASM documentation for more details, though the syntax and usage are
identical to anonymous unions within structures.

4.12.2 Variant Types
One big use of unions in programs is to create variant types. A variant vari-
able can change its type dynamically while the program is running. A variant
object can be an integer at one point in the program, switch to a string at a
different part of the program, and then change to a real value at a later time.
Many very high-level language (VHLL) systems use a dynamic type system
(that is, variant objects) to reduce the overall complexity of the program;
indeed, proponents of many VHLLs insist that the use of a dynamic typing
system is one of the reasons you can write complex programs with so few lines
of code using those languages.

Of course, if you can create variant objects in a VHLL, you can cer-
tainly do it in assembly language. In this section, we’ll look at how we can
use the union structure to create variant types.

At any one given instant during program execution, a variant object
has a specific type, but under program control, the variable can switch to
a different type. Therefore, when the program processes a variant object,
it must use an if statement or switch statement (or something similar) to
execute different instructions based on the object’s current type. VHLLs
do this transparently.

In assembly language, you have to provide the code to test the type your-
self. To achieve this, the variant type needs additional information beyond
the object’s value. Specifically, the variant object needs a field that specifies
the current type of the object. This field (often known as the tag field) is
an enumerated type or integer that specifies the object’s type at any given
instant. The following code demonstrates how to create a variant type:

VariantType struct
tag dword ? ; 0-uns32, 1-int32, 2-real64

 union
u dword ?
i sdword ?
r real8 ?

210 Chapter 4

 ends
VariantType ends

 .data
v VariantType {}

The program would test the v.tag field to determine the current type of
the v object. Based on this test, the program would manipulate the v.i, v.u,
or v.r field.

Of course, when operating on variant objects, the program’s code must
constantly be testing the tag field and executing a separate sequence of
instructions for dword, sdword, or real8 values. If you use the variant fields
often, it makes a lot of sense to write procedures to handle these operations
for you (for example, vadd, vsub, vmul, and vdiv).

 4.13 Microsoft ABI Notes
The Microsoft ABI expects fields of an array to be aligned on their natural
size: the offset from the beginning of the structure to a given field must be
a multiple of the field’s size. On top of this, the whole structure must be
aligned at a memory address that is a multiple of the size of the largest object
in the structure (up to 16 bytes). Finally, the entire structure’s size must be a
multiple of the largest element in the structure (you must add padding bytes
to the end of the structure to appropriately fill out the structure’s size).

The Microsoft ABI expects arrays to begin at an address in memory
that is a multiple of the element size. For example, if you have an array of
32-bit objects, the array must begin on a 4-byte boundary.

Of course, if you’re not passing an array or structure data to another
language (you’re only processing the struct or array in your assembly code),
you can align (or misalign) the data however you want.

 4.14 For More Information
For additional information about data structure representation in memory,
consider reading my book Write Great Code, Volume 1 (No Starch Press, 2004).
For an in-depth discussion of data types, consult a textbook on data struc-
tures and algorithms. Of course, the MASM online documentation (at
https://www.microsoft.com/) is a good source of information.

 4.15 Test Yourself

1. What is the two-operand form of the imul instruction that multiplies a
register by a constant?

2. What is the three-operand form of the imul instruction that multiplies a
register by a constant and leaves the result in a destination register?

https://www.microsoft.com/

Constants, Variables, and Data Types 211

3. What is the syntax for the imul instruction that multiplies one register
by another?

4. What is a manifest constant?

5. Which directive(s) would you use to create a manifest constant?

6. What is the difference between a text equate and a numeric equate?

7. Explain how you would use an equate to define literal strings whose
length is greater than eight characters.

8. What is a constant expression?

9. What operator would you use to determine the number of data ele-
ments in the operand field of a byte directive?

10. What is the location counter?

11. What operator(s) return(s) the current location counter?

12. How would you compute the number of bytes between two declarations
in the .data section?

13. How would you create a set of enumerated data constants using MASM?

14. How do you define your own data types using MASM?

15. What is a pointer (how is it implemented)?

16. How do you dereference a pointer in assembly language?

17. How do you declare pointer variables in assembly language?

18. What operator would you use to obtain the address of a static data
object (for example, in the .data section)?

19. What are the five common problems encountered when using pointers
in a program?

20. What is a dangling pointer?

21. What is a memory leak?

22. What is a composite data type?

23. What is a zero-terminated string?

24. What is a length-prefixed string?

25. What is a descriptor-based string?

26. What is an array?

27. What is the base address of an array?

28. Provide an example of an array declaration using the dup operator.

29. Describe how to create an array whose elements you initialize at assem-
bly time.

30. What is the formula for accessing elements of a

a. Single-dimension array dword A[10]?

b. Two-dimensional array word W[4, 8]?

c. Three-dimensional array real8 R[2, 4, 6]?

31. What is row-major order?

212 Chapter 4

32. What is column-major order?

33. Provide an example of a two-dimensional array declaration (word array
W[4, 8]) using nested dup operators.

34. What is a record/struct?

35. What MASM directives do you use to declare a record data structure?

36. What operator do you use to access fields of a record/struct?

37. What is a union?

38. What directives do you use to declare unions in MASM?

39. What is the difference between the memory organization of fields in a
union versus those in a record/struct?

40. What is an anonymous union in a struct?

PART II
A S S E M B LY L A N G U A G E

P R O G R A M M I N G

5
P R O C E D U R E S

In a procedural programming language,
the basic unit of code is the procedure. A

procedure is a set of instructions that compute
a value or take an action (such as printing or

reading a character value). This chapter discusses
how MASM implements procedures, parameters, and
local variables. By the end of this chapter, you should
be well versed in writing your own procedures and
functions, and fully understand parameter passing
and the Microsoft ABI calling convention.

216 Chapter 5

 5.1 Implementing Procedures
Most procedural programming languages implement procedures by using
the call/return mechanism. The code calls a procedure, the procedure
does its thing, and then the procedure returns to the caller. The call and
return instructions provide the x86-64’s procedure invocation mechanism. The
calling code calls a procedure with the call instruction, and the procedure
returns to the caller with the ret instruction. For example, the following
x86-64 instruction calls the C Standard Library printf() function:

call printf

Alas, the C Standard Library does not supply all the routines you will
ever need. Most of the time you’ll have to write your own procedures. To do
this, you will use MASM’s procedure-declaration facilities. A basic MASM
procedure declaration takes the following form:

proc_name proc options
 Procedure statements
proc_name endp

Procedure declarations appear in the .code section of your program. In
the preceding syntax example, proc_name represents the name of the procedure
you wish to define. This can be any valid (and unique) MASM identifier.

Here is a concrete example of a MASM procedure declaration. This
procedure stores 0s into the 256 double words that RCX points at upon
entry into the procedure:

zeroBytes proc
 mov eax, 0
 mov edx, 256
repeatlp: mov [rcx+rdx*4-4], eax
 dec rdx
 jnz repeatlp
 ret
zeroBytes endp

As you’ve probably noticed, this simple procedure doesn’t bother with
the “magic” instructions that add and subtract a value to and from the RSP
register. Those instructions are a requirement of the Microsoft ABI when
the procedure will be calling other C/C++ code (or other code written in a
Microsoft ABI–compliant language). Because this little function doesn’t call
any other procedures, it doesn’t bother executing such code. Also note that
this code uses the loop index to count down from 256 to 0, filling in the
256 dword array backward (from end to beginning) rather than filling it in
from beginning to end. This is a common technique in assembly language.

You can use the x86-64 call instruction to call this procedure.
When, during program execution, the code falls into the ret instruction,

Procedures 217

the procedure returns to whoever called it and begins executing the first
instruction beyond the call instruction. The program in Listing 5-1 provides
an example of a call to the zeroBytes routine.

; Listing 5-1

; Simple procedure call example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-1", 0

 .data
dwArray dword 256 dup (1)

 .code

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the user-written procedure
; that zeroes out a buffer.

zeroBytes proc
 mov eax, 0
 mov edx, 256
repeatlp: mov [rcx+rdx*4-4], eax
 dec rdx
 jnz repeatlp
 ret
zeroBytes endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 48

218 Chapter 5

 lea rcx, dwArray
 call zeroBytes

 add rsp, 48 ; Restore RSP
 ret ; Returns to caller
asmMain endp
 end

Listing 5-1: Example of a simple procedure

5.1.1 The call and ret Instructions
The x86-64 call instruction does two things. First, it pushes the (64-bit)
address of the instruction immediately following the call onto the stack;
then it transfers control to the address of the specified procedure. The
value that call pushes onto the stack is known as the return address.

When the procedure wants to return to the caller and continue execution
with the first statement following the call instruction, most procedures return
to their caller by executing a ret (return) instruction. The ret instruction pops
a (64-bit) return address off the stack and transfers control indirectly to that
address.

The following is an example of the minimal procedure:

minimal proc
 ret
minimal endp

If you call this procedure with the call instruction, minimal will simply
pop the return address off the stack and return to the caller. If you fail to
put the ret instruction in the procedure, the program will not return to the
caller upon encountering the endp statement. Instead, the program will fall
through to whatever code happens to follow the procedure in memory.

The example program in Listing 5-2 demonstrates this problem. The
main program calls noRet, which falls straight through to followingProc
(printing the message followingProc was called).

; Listing 5-2

; A procedure without a ret instruction.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-2", 0
fpMsg byte "followingProc was called", nl, 0

 .code
 externdef printf:proc

Procedures 219

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; noRet - Demonstrates what happens when a procedure
; does not have a return instruction.

noRet proc
noRet endp

followingProc proc
 sub rsp, 28h
 lea rcx, fpMsg
 call printf
 add rsp, 28h
 ret
followingProc endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

 sub rsp, 40 ; "Magic" instruction

 call noRet

 add rsp, 40 ; "Magic" instruction
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 5-2: Effect of a missing ret instruction in a procedure

Although this behavior might be desirable in certain rare circumstances,
it usually represents a defect in most programs. Therefore, always remember
to explicitly return from the procedure by using the ret instruction.

5.1.2 Labels in a Procedure
Procedures may contain statement labels, just like the main procedure in
your assembly language program (after all, the main procedure, asmMain in
most of the examples in this book, is just another procedure declaration as
far as MASM is concerned). Note, however, that statement labels defined
within a procedure are local to that procedure; such symbols are not visible
outside the procedure.

220 Chapter 5

In most situations, having scoped symbols in a procedure is nice (see
“Local (Automatic) Variables” on page 234 for a discussion of scope). You
don’t have to worry about namespace pollution (conflicting symbol names)
among the different procedures in your source file. Sometimes, however,
MASM’s name scoping can create problems. You might actually want to
refer to a statement label outside a procedure.

One way to do this on a label-by-label basis is to use a global statement
label declaration. Global statement labels are similar to normal statement labels
in a procedure except you follow the symbol with two colons instead of a
single colon, like so:

globalSymbol:: mov eax, 0

Global statement labels are visible outside the procedure. You can use
an unconditional or conditional jump instruction to transfer control to a
global symbol from outside the procedure; you can even use a call instruc-
tion to call that global symbol (in which case, it becomes a second entry
point to the procedure). Generally, having multiple entry points to a pro-
cedure is considered bad programming style, and the use of multiple entry
points often leads to programming errors. As such, you should rarely use
global symbols in assembly language procedures.

If, for some reason, you don’t want MASM to treat all the statement
labels in a procedure as local to that procedure, you can turn scoping on
and off with the following statements:

option scoped
option noscoped

The option noscoped directive disables scoping in procedures (for all pro-
cedures following the directive). The option scoped directive turns scoping
back on. Therefore, you can turn scoping off for a single procedure (or set
of procedures) and turn it back on immediately afterward.

 5.2 Saving the State of the Machine
Take a look at Listing 5-3. This program attempts to print 20 lines of 40 spaces
and an asterisk. Unfortunately, a subtle bug creates an infinite loop. The main
program uses the jnz printLp instruction to create a loop that calls PrintSpaces
20 times. This function uses EBX to count off the 40 spaces it prints, and then
returns with ECX containing 0. The main program then prints an asterisk
and a newline, decrements ECX, and then repeats because ECX isn’t 0 (it will
always contain 0FFFF_FFFFh at this point).

The problem here is that the print40Spaces subroutine doesn’t preserve
the EBX register. Preserving a register means you save it upon entry into the
subroutine and restore it before leaving. Had the print40Spaces subroutine
preserved the contents of the EBX register, Listing 5-3 would have func-
tioned properly.

Procedures 221

; Listing 5-3

; Preserving registers (failure) example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-3", 0
space byte " ", 0
asterisk byte '*, %d', nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; print40Spaces - Prints out a sequence of 40 spaces
; to the console display.

print40Spaces proc
 sub rsp, 48 ; "Magic" instruction
 mov ebx, 40
printLoop: lea rcx, space
 call printf
 dec ebx
 jnz printLoop ; Until EBX == 0
 add rsp, 48 ; "Magic" instruction
 ret
print40Spaces endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40 ; "Magic" instruction

 mov rbx, 20
astLp: call print40Spaces
 lea rcx, asterisk
 mov rdx, rbx
 call printf

222 Chapter 5

 dec rbx
 jnz astLp

 add rsp, 40 ; "Magic" instruction
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 5-3: Program with an unintended infinite loop

You can use the x86-64’s push and pop instructions to preserve register
values while you need to use them for something else. Consider the follow-
ing code for PrintSpaces:

print40Spaces proc
 push rbx
 sub rsp, 40 ; "Magic" instruction
 mov ebx, 40
printLoop: lea rcx, space
 call printf
 dec ebx
 jnz printLoop ; Until EBX == 0
 add rsp, 40 ; "Magic" instruction
 pop rbx
 ret
print40Spaces endp

print40Spaces saves and restores RBX by using push and pop instructions.
Either the caller (the code containing the call instruction) or the callee
(the subroutine) can take responsibility for preserving the registers. In the
preceding example, the callee preserves the registers.

Listing 5-4 shows what this code might look like if the caller preserves
the registers (for reasons that will become clear in “Saving the State of the
Machine, Part II” on page 280, the main program saves the value of RBX in
a static memory location rather than using the stack).

; Listing 5-4

; Preserving registers (caller) example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-4", 0
space byte " ", 0
asterisk byte '*, %d', nl, 0

 .data
saveRBX qword ?

Procedures 223

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; print40Spaces - Prints out a sequence of 40 spaces
; to the console display.

print40Spaces proc
 sub rsp, 48 ; "Magic" instruction
 mov ebx, 40
printLoop: lea rcx, space
 call printf
 dec ebx
 jnz printLoop ; Until EBX == 0
 add rsp, 48 ; "Magic" instruction
 ret
print40Spaces endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx

; "Magic" instruction offered without
; explanation at this point:

 sub rsp, 40

 mov rbx, 20
astLp: mov saveRBX, rbx
 call print40Spaces
 lea rcx, asterisk
 mov rdx, saveRBX
 call printf
 mov rbx, saveRBX
 dec rbx
 jnz astLp

 add rsp, 40
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 5-4: Demonstration of caller register preservation

224 Chapter 5

Callee preservation has two advantages: space and maintainability. If
the callee (the procedure) preserves all affected registers, only one copy
of the push and pop instructions exists—those the procedure contains. If the
caller saves the values in the registers, the program needs a set of preser-
vation instructions around every call. This makes your programs not only
longer but also harder to maintain. Remembering which registers to save
and restore on each procedure call is not easily done.

On the other hand, a subroutine may unnecessarily preserve some reg-
isters if it preserves all the registers it modifies. In the preceding examples,
the print40Spaces procedure didn’t save RBX. Although print40Spaces changes
RBX, this won’t affect the program’s operation. If the caller is preserving the
registers, it doesn’t have to save registers it doesn’t care about.

One big problem with having the caller preserve registers is that your
program may change over time. You may modify the calling code or the pro-
cedure to use additional registers. Such changes, of course, may change the
set of registers that you must preserve. Worse still, if the modification is in
the subroutine itself, you will need to locate every call to the routine and ver-
ify that the subroutine does not change any registers the calling code uses.

Assembly language programmers use a common convention with respect
to register preservation: unless there is a good reason (performance) for
doing otherwise, most programmers will preserve all registers that a pro-
cedure modifies (and that doesn’t explicitly return a value in a modified
register). This reduces the likelihood of defects occurring in a program
because a procedure modifies a register the caller expects to be preserved.
Of course, you could follow the rules concerning the Microsoft ABI with
respect to volatile and nonvolatile registers; however, such calling conventions
impose their own inefficiencies on programmers (and other programs).

Preserving registers isn’t all there is to preserving the environment. You
can also push and pop variables and other values that a subroutine might
change. Because the x86-64 allows you to push and pop memory locations,
you can easily preserve these values as well.

 5.3 Procedures and the Stack
Because procedures use the stack to hold the return address, you must exer-
cise caution when pushing and popping data within a procedure. Consider
the following simple (and defective) procedure:

MessedUp proc

 push rax
 ret

MessedUp endp

Procedures 225

At the point the program encounters the ret instruction, the x86-64
stack takes the form shown in Figure 5-1.

Previous
stack

contents

Return address

Saved RAX
value RSP

Figure 5-1: Stack contents before ret in the
MessedUp procedure

The ret instruction isn’t aware that the value on the top of the stack is
not a valid address. It simply pops whatever value is on top and jumps to
that location. In this example, the top of the stack contains the saved RAX
value. Because it is very unlikely that RAX’s value pushed on the stack was
the proper return address, this program will probably crash or exhibit
another undefined behavior. Therefore, when pushing data onto the stack
within a procedure, you must take care to properly pop that data prior to
returning from the procedure.

Popping extra data off the stack prior to executing the ret statement
can also create havoc in your programs. Consider the following defective
procedure:

MessedUp2 proc

 pop rax
 ret

MessedUp2 endp

Upon reaching the ret instruction in this procedure, the x86-64 stack
looks something like Figure 5-2.

226 Chapter 5

Return address

Previous
stack

contents

Return address

RSP
RAX

Figure 5-2: Stack contents before ret in MessedUp2

Once again, the ret instruction blindly pops whatever data happens to
be on the top of the stack and attempts to return to that address. Unlike
the previous example, in which the top of the stack was unlikely to contain
a valid return address (because it contained the value in RAX), there is a
small possibility that the top of the stack in this example does contain a return
address. However, this will not be the proper return address for the messedUp2
procedure; instead, it will be the return address for the procedure that called
messedUp2. To understand the effect of this code, consider the program in
Listing 5-5.

; Listing 5-5

; Popping a return address by mistake.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-5", 0
calling byte "Calling proc2", nl, 0
call1 byte "Called proc1", nl, 0
rtn1 byte "Returned from proc 1", nl, 0
rtn2 byte "Returned from proc 2", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

Procedures 227

; proc1 - Gets called by proc2, but returns
; back to the main program.

proc1 proc
 pop rcx ; Pops return address off stack
 ret
proc1 endp

proc2 proc
 call proc1 ; Will never return

; This code never executes because the call to proc1
; pops the return address off the stack and returns
; directly to asmMain.

 sub rsp, 40
 lea rcx, rtn1
 call printf
 add rsp, 40
 ret
proc2 endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc

 sub rsp, 40

 lea rcx, calling
 call printf

 call proc2
 lea rcx, rtn2
 call printf

 add rsp, 40
 ret ; Returns to caller
asmMain endp
 end

Listing 5-5: Effect of popping too much data off the stack

Because a valid return address is sitting on the top of the stack when
proc1 is entered, you might think that this program will actually work (prop-
erly). However, when returning from the proc1 procedure, this code returns
directly to the asmMain program rather than to the proper return address in
the proc2 procedure. Therefore, all code in the proc2 procedure that follows
the call to proc1 does not execute.

When reading the source code, you may find it very difficult to figure
out why those statements are not executing, because they immediately follow
the call to the proc1 procedure. It isn’t clear, unless you look very closely, that
the program is popping an extra return address off the stack and therefore
doesn’t return to proc2 but rather returns directly to whoever calls proc2.

228 Chapter 5

Therefore, you should always be careful about pushing and popping data
in a procedure, and verify that a one-to-one relationship exists between the
pushes in your procedures and the corresponding pops.1

5.3.1 Activation Records
Whenever you call a procedure, the program associates certain information
with that procedure call, including the return address, parameters, and
automatic local variables, using a data structure called an activation record.2
The program creates an activation record when calling (activating) a pro-
cedure, and the data in the structure is organized in a manner identical to
records.

N O T E This section begins by discussing traditional activation records created by a hypotheti-
cal compiler, ignoring the parameter-passing conventions of the Microsoft ABI. Once
this initial discussion is complete, this chapter will incorporate the Microsoft ABI
conventions.

Construction of an activation record begins in the code that calls a pro-
cedure. The caller makes room for the parameter data (if any) on the stack
and copies the data onto the stack. Then the call instruction pushes the
return address onto the stack. At this point, construction of the activation
record continues within the procedure itself. The procedure pushes reg-
isters and other important state information and then makes room in the
activation record for local variables. The procedure might also update the
RBP register so that it points at the base address of the activation record.

To see what a traditional activation record looks like, consider the fol-
lowing C++ procedure declaration:

void ARDemo(unsigned i, int j, unsigned k)
{
 int a;
 float r;
 char c;
 bool b;
 short w
 .
 .
 .
}

Whenever a program calls this ARDemo procedure, it begins by pushing the
data for the parameters onto the stack. In the original C/C++ calling conven-
tion (ignoring the Microsoft ABI), the calling code pushes the parameters
onto the stack in the opposite order that they appear in the parameter list,

1. One possible recommendation is to always push registers in the same order: RAX, RBX,
RCX, RDX, RSI, RDI, R8, . . . , R15 (leaving out the registers you don’t push). This makes
visual inspections of the code easier.

2. Stack frame is another term used to describe the activation record.

Procedures 229

from right to left. Therefore, the calling code first pushes the value for the k
parameter, then it pushes the value for the j parameter, and it finally pushes
the data for the i parameter. After pushing the parameters, the program
calls the ARDemo procedure. Immediately upon entry into the ARDemo procedure,
the stack contains these four items arranged as shown in Figure 5-3. By
pushing the parameters in the reverse order, they appear on the stack in the
correct order (with the first parameter at the lowest address in memory).

N O T E The x86-64 push instruction is capable of pushing 16-bit or 64-bit objects onto the
stack. For performance reasons, you always want to keep RSP aligned on an 8-byte
boundary (which largely eliminates using 16-bit pushes). For this and other reasons,
modern programs always reserve at least 8 bytes for each parameter, regardless of the
actual parameter size.

Previous
stack

contents

RSPReturn address

i‘s value

j‘s value

k‘s value

Figure 5-3: Stack organization immediately upon
entry into ARDemo

N O T E The Microsoft ABI requires the stack to be aligned on a 16-byte boundary when mak-
ing system calls. Assembly programs don’t require this, but it’s often convenient to
keep the stack aligned this way for those times when you need to make a system call
(OS or C Standard Library call).

The first few instructions in ARDemo will push the current value of RBP
onto the stack and then copy the value of RSP into RBP.3 Next, the code
drops the stack pointer down in memory to make room for the local vari-
ables. This produces the stack organization shown in Figure 5-4.

3. Technically speaking, few actual optimizing C/C++ compilers will do this unless you have
certain options turned on. However, this chapter ignores such optimizations in favor of an
easier-to-understand example.

230 Chapter 5

Previous
stack

contents

RSP

k‘s value

j‘s value

i‘s value

Return address

Old RBP value RBP

a

r

c
b
w

Possible padding

Figure 5-4: Activation record for ARDemo

N O T E Unlike parameters, local variables do not have to be a multiple of 8 bytes in the
activation record. However, the entire block of local variables must be a multiple of
16 bytes in size so that RSP remains aligned on a 16-byte boundary as required by
the Microsoft ABI. Hence the presence of possible padding in Figure 5-4.

5.3.1.1 Accessing Objects in the Activation Record

To access objects in the activation record, you must use offsets from the RBP
register to the desired object. The two items of immediate interest to you
are the parameters and the local variables. You can access the parameters at
positive offsets from the RBP register; you can access the local variables at
negative offsets from the RBP register, as Figure 5-5 shows.

Intel specifically reserves the RBP (Base Pointer) register for use as a
pointer to the base of the activation record. This is why you should avoid
using the RBP register for general calculations. If you arbitrarily change the
value in the RBP register, you could lose access to the current procedure’s
parameters and local variables.

The local variables are aligned on offsets that are equal to their native
size (chars are aligned on 1-byte addresses, shorts/words are aligned on
2-byte addresses, longs/ints/unsigneds/dwords are aligned on 4-byte
addresses, and so forth). In the ARDemo example, all of the locals just happen
to be allocated on appropriate addresses (assuming a compiler allocates
storage in the order of declaration).

Procedures 231

Previous
stack

contents

k‘s value

j‘s value

i‘s value

Return address

Old value RBP RBP+0

−4

−8

−9
−10
−12

+8

+16

+24

+32

Offset from RBP

Padding −16 RSP

a

r

c
b
w

Figure 5-5: Offsets of objects in the ARDemo activation record

5.3.1.2 Using Microsoft ABI Parameter Conventions

The Microsoft ABI makes several modifications to the activation record
model, in particular:

•	 The caller passes the first four parameters in registers rather than on
the stack (though it must still reserve storage on the stack for those
parameters).

•	 Parameters are always 8-byte values.

•	 The caller must reserve (at least) 32 bytes of parameter data on the
stack, even if there are fewer than five parameters (plus 8 bytes for each
additional parameter if there are five or more parameters).

•	 RSP must be 16-byte-aligned immediately before the call instruction
pushes the return address onto the stack.

For more information, see “Microsoft ABI Notes” in Chapter 1. You must
follow these conventions only when calling Windows or other Microsoft ABI–
compliant code. For assembly language procedures that you write and call,
you can use any convention you like.

5.3.2 The Assembly Language Standard Entry Sequence
The caller of a procedure is responsible for allocating storage for parameters
on the stack and moving the parameter data to its appropriate location. In
the simplest case, this just involves pushing the data onto the stack by using

232 Chapter 5

64-bit push instructions. The call instruction pushes the return address onto
the stack. It is the procedure’s responsibility to construct the rest of the
activation record. You can accomplish this by using the following assembly
language standard entry sequence code:

push rbp ; Save a copy of the old RBP value
mov rbp, rsp ; Get ptr to activation record into RBP
sub rsp, num_vars ; Allocate local variable storage plus padding

If the procedure doesn’t have any local variables, the third instruction
shown here, sub rsp, num_vars, isn’t necessary.

num_vars represents the number of bytes of local variables needed by the
procedure, a constant that should be a multiple of 16 (so the RSP register
remains aligned on a 16-byte boundary).4 If the number of bytes of local vari-
ables in the procedure is not a multiple of 16, you should round up the value
to the next higher multiple of 16 before subtracting this constant from RSP.
Doing so will slightly increase the amount of storage the procedure uses for
local variables but will not otherwise affect the operation of the procedure.

If a Microsoft ABI–compliant program calls your procedure, the stack
will be aligned on a 16-byte boundary immediately prior to the execution
of the call instruction. As the return address adds 8 bytes to the stack,
immediately upon entry into your procedure, the stack will be aligned on
an (RSP mod 16) == 8 address (aligned on an 8-byte address but not on a
16-byte address). Pushing RBP onto the stack (to save the old value before
copying RSP into RBP) adds another 8 bytes to the stack so that RSP is now
16-byte-aligned. Therefore, assuming the stack was 16-byte-aligned prior
to the call, and the number you subtract from RSP is a multiple of 16, the
stack will be 16-byte-aligned after allocating storage for local variables.

If you cannot ensure that RSP is 16-byte-aligned (RSP mod 16 == 8) upon
entry into your procedure, you can always force 16-byte alignment by using
the following sequence at the beginning of your procedure:

push rbp
mov rbp, rsp
sub rsp, num_vars ; Make room for local variables
and rsp, -16 ; Force qword stack alignment

The –16 is equivalent to 0FFFF_FFFF_FFFF_FFF0h. The and instruction
sequence forces the stack to be aligned on a 16-byte boundary (it reduces
the value in the stack pointer so that it is a multiple of 16).

The ARDemo activation record has only 12 bytes of local storage. Therefore,
subtracting 12 from RSP for the local variables will not leave the stack
16-byte-aligned. The and instruction in the preceding sequence, however,
guarantees that RSP is 16-byte-aligned regardless of RSP’s value upon entry

4. Alignment of the stack on a 16-byte boundary is a Microsoft ABI requirement, not a hard-
ware requirement. The hardware is happy with an 8-byte address alignment. However,
if you make any calls to Microsoft ABI–compliant code, you will need to keep the stack
aligned on a 16-byte boundary.

Procedures 233

into the procedure (this adds in the padding bytes shown in Figure 5-5). The
few bytes and CPU cycles needed to execute this instruction would pay off
handsomely if RSP was not oword aligned. Of course, if you know that the
stack was properly aligned before the call, you could dispense with the extra
and instruction and simply subtract 16 from RSP rather than 12 (in other
words, reserving 4 more bytes than the ARDemo procedure needs, to keep the
stack aligned).

5.3.3 The Assembly Language Standard Exit Sequence
Before a procedure returns to its caller, it needs to clean up the activation
record. Standard MASM procedures and procedure calls, therefore, assume
that it is the procedure’s responsibility to clean up the activation record,
although it is possible to share the cleanup duties between the procedure
and the procedure’s caller.

If a procedure does not have any parameters, the exit sequence is simple.
It requires only three instructions:

mov rsp, rbp ; Deallocate locals and clean up stack
pop rbp ; Restore pointer to caller's activation record
ret ; Return to the caller

In the Microsoft ABI (as opposed to pure assembly procedures), it is
the caller’s responsibility to clean up any parameters pushed on the stack.
Therefore, if you are writing a function to be called from C/C++ (or other
Microsoft ABI–compliant code), your procedure doesn’t have to do any-
thing at all about the parameters on the stack.

If you are writing procedures that will be called only from your assembly
language programs, it is possible to have the callee (the procedure) rather
than the caller clean up the parameters on the stack upon returning to the
caller, using the following standard exit sequence:

mov rsp, rbp ; Deallocate locals and clean up stack
pop rbp ; Restore pointer to caller's activation record
ret parm_bytes ; Return to the caller and pop the parameters

The parm_bytes operand of the ret instruction is a constant that specifies
the number of bytes of parameter data to remove from the stack after the
return instruction pops the return address. For example, the ARDemo example
code in the previous sections has three quad words reserved for the param-
eters (because we want to keep the stack qword aligned). Therefore, the
standard exit sequence would take the following form:

mov rsp, rbp
pop rbp
ret 24

If you do not specify a 16-bit constant operand to the ret instruction, the
x86-64 will not pop the parameters off the stack upon return. Those param-
eters will still be sitting on the stack when you execute the first instruction

234 Chapter 5

following the call to the procedure. Similarly, if you specify a value that is
too small, some of the parameters will be left on the stack upon return from
the procedure. If the ret operand you specify is too large, the ret instruction
will actually pop some of the caller’s data off the stack, usually with disas-
trous consequences.

By the way, Intel has added a special instruction to the instruction set to
shorten the standard exit sequence: leave. This instruction copies RBP into
RSP and then pops RBP. The following is equivalent to the standard exit
sequence presented thus far:

leave
ret optional_const

The choice is up to you. Most compilers generate the leave instruction
(because it’s shorter), so using it is the standard choice.

 5.4 Local (Automatic) Variables
Procedures and functions in most high-level languages let you declare local
variables. These are generally accessible only within the procedure; they are
not accessible by the code that calls the procedure.

Local variables possess two special attributes in HLLs: scope and life-
time. The scope of an identifier determines where that identifier is visible
(accessible) in the source file during compilation. In most HLLs, the scope
of a procedure’s local variable is the body of that procedure; the identifier
is inaccessible outside that procedure.

Whereas scope is a compile-time attribute of a symbol, lifetime is a run-
time attribute. The lifetime of a variable is from that point when storage
is first bound to the variable until the point where the storage is no longer
available for that variable. Static objects (those you declare in the .data,
.const, .data?, and .code sections) have a lifetime equivalent to the total
runtime of the application. The program allocates storage for such vari-
ables when the program first loads into memory, and those variables
maintain that storage until the program terminates.

Local variables (or, more properly, automatic variables) have their stor-
age allocated upon entry into a procedure, and that storage is returned
for other use when the procedure returns to its caller. The name automatic
refers to the program automatically allocating and deallocating storage for
the variable on procedure invocation and return.

A procedure can access any global .data, .data?, or .const object the
same way the main program accesses such variables—by referencing the
name (using the PC-relative addressing mode). Accessing global objects is
convenient and easy. Of course, accessing global objects makes your pro-
grams harder to read, understand, and maintain, so you should avoid using
global variables within procedures. Although accessing global variables
within a procedure may sometimes be the best solution to a given problem,

Procedures 235

you likely won’t be writing such code at this point, so you should carefully
consider your options before doing so.5

5.4.1 Low-Level Implementation of Automatic (Local) Variables
Your program accesses local variables in a procedure by using negative off-
sets from the activation record base address (RBP). Consider the following
MASM procedure in Listing 5-6 (which admittedly doesn’t do much, other
than demonstrate the use of local variables).

; Listing 5-6

; Accessing local variables.

 option casemap:none
 .code

; sdword a is at offset -4 from RBP.
; sdword b is at offset -8 from RBP.

; On entry, ECX and EDX contain values to store
; into the local variables a and b (respectively):

localVars proc
 push rbp
 mov rbp, rsp
 sub rsp, 16 ; Make room for a and b

 mov [rbp-4], ecx ; a = ECX
 mov [rbp-8], edx ; b = EDX

 ; Additional code here that uses a and b:

 mov rsp, rbp
 pop rbp
 ret
localVars endp

Listing 5-6: Sample procedure that accesses local variables

The standard entry sequence allocates 16 bytes of storage even though
locals a and b require only 8. This keeps the stack 16-byte-aligned. If this
isn’t necessary for a particular procedure, subtracting 8 would work just as
well.

The activation record for localVars appears in Figure 5-6.
Of course, having to refer to the local variables by the offset from the

RBP register is truly horrible. This code is not only difficult to read (is [RBP-4]
the a or the b variable?) but also hard to maintain. For example, if you decide
you no longer need the a variable, you’d have to go find every occurrence of
[RBP-8] (accessing the b variable) and change it to [RBP-4].

5. This argument against accessing global variables does not apply to other global symbols. It
is perfectly reasonable to access global constants, types, procedures, and other objects in
your programs.

236 Chapter 5

Previous
stack

contents

Return address

Old RBP value RBP

a

b

+0

−4

−8

+8

+16

Offset from RBP

−12

−16

Space reserved to keep
stack 16-byte-aligned

RSP

Figure 5-6: Activation record for the LocalVars procedure

A slightly better solution is to create equates for your local variable
names. Consider the modification to Listing 5-6 shown here in Listing 5-7.

; Listing 5-7

; Accessing local variables #2.

 option casemap:none
 .code

; localVars - Demonstrates local variable access.

; sdword a is at offset -4 from RBP.
; sdword b is at offset -8 from RBP.

; On entry, ECX and EDX contain values to store
; into the local variables a and b (respectively):

a equ <[rbp-4]>
b equ <[rbp-8]>
localVars proc
 push rbp
 mov rbp, rsp
 sub rsp, 16 ; Make room for a and b

 mov a, ecx
 mov b, edx

 ; Additional code here that uses a and b:

 mov rsp, rbp
 pop rbp

Procedures 237

 ret
localVars endp

Listing 5-7: Local variables using equates

This is considerably easier to read and maintain than the former pro-
gram in Listing 5-6. It’s possible to improve on this equate system. For
example, the following four equates are perfectly legitimate:

a equ <[rbp-4]>
b equ a-4
d equ b-4
e equ d-4

MASM will associate [RBP-4] with a, [RBP-8] with b, [RBP-12] with d, and
[RBP-16] with e. However, getting too crazy with fancy equates doesn’t pay;
MASM provides a high-level-like declaration for local variables (and param-
eters) you can use if you really want your declarations to be as maintainable
as possible.

5.4.2 The MASM Local Directive
Creating equates for local variables is a lot of work and error prone. It’s easy
to specify the wrong offset when defining equates, and adding and removing
local variables from a procedure is a headache. Fortunately, MASM provides
a directive that lets you specify local variables, and MASM automatically fills
in the offsets for the locals. That directive, local, uses the following syntax:

local list_of_declarations

The list_of_declarations is a list of local variable declarations, separated
by commas. A local variable declaration has two main forms:

identifier:type
identifier [elements]:type

Here, type is one of the usual MASM data types (byte, word, dword, and
so forth), and identifier is the name of the local variable you are declar-
ing. The second form declares local arrays, where elements is the number
of array elements. elements must be a constant expression that MASM can
resolve at assembly time.

local directives, if they appear in a procedure, must be the first
statement(s) after a procedure declaration (the proc directive). A proce-
dure may have more than one local statement; if there is more than one
local directive, all must appear together after the proc declaration. Here’s
a code snippet with examples of local variable declarations:

procWithLocals proc
 local var1:byte, local2:word, dVar:dword
 local qArray[4]:qword, rlocal:real4

238 Chapter 5

 local ptrVar:qword
 local userTypeVar:userType
 .
 . ; Other statements in the procedure.
 .
procWithLocals endp

MASM automatically associates appropriate offsets with each variable
you declare via the local directive. MASM assigns offsets to the variables by
subtracting the variable’s size from the current offset (starting at zero) and
then rounding down to an offset that is a multiple of the object’s size. For
example, if userType is typedef’d to real8, MASM assigns offsets to the local
variables in procWithLocals as shown in the following MASM listing output:

var1 byte rbp - 00000001
local2 word rbp - 00000004
dVar dword rbp - 00000008
qArray qword rbp - 00000028
rlocal dword rbp - 0000002C
ptrVar qword rbp - 00000034
userTypeVar qword rbp - 0000003C

In addition to assigning an offset to each local variable, MASM asso-
ciates the [RBP-constant] addressing mode with each of these symbols.
Therefore, if you use a statement like mov ax, local2 in the procedure,
MASM will substitute [RBP-4] for the symbol local2.

Of course, upon entry into the procedure, you must still allocate stor-
age for the local variables on the stack; that is, you must still provide the
code for the standard entry (and standard exit) sequence. This means you
must add up all the storage needed for the local variables so you can sub-
tract this value from RSP after moving RSP’s value into RBP. Once again,
this is grunt work that could turn out to be a source of defects in the proce-
dure (if you miscount the number of bytes of local variable storage), so you
must take care when manually computing the storage requirements.

MASM does provide a solution (of sorts) for this problem: the option
directive. You’ve seen the option casemap:none, option noscoped, and option
scoped directives already; the option directive actually supports a wide array
of arguments that control MASM’s behavior. Two option operands control
procedure code generation when using the local directive: prologue and
epilogue. These operands typically take the following two forms:

option prologue:PrologueDef
option prologue:none
option epilogue:EpilogueDef
option epilogue:none

By default, MASM assumes prologue:none and epilogue:none. When you
specify none as the prologue and epilogue values, MASM will not generate any
extra code to support local variable storage allocation and deallocation in a

Procedures 239

procedure; you will be responsible for supplying the standard entry and exit
sequences for the procedure.

If you insert the option prologue:PrologueDef (default prologue generation)
and option epilogue:EpilogueDef (default epilogue generation) into your source
file, all following procedures will automatically generate the appropri-
ate standard entry and exit sequences for you (assuming local directives
are in the procedure). MASM will quietly generate the standard entry
sequence (the prologue) immediately after the last local directive (and before
the first machine instruction) in a procedure, consisting of the usual standard
entry sequence instructions

push rbp
mov rbp, rsp
sub rsp, local_size

where local_size is a constant specifying the number of local variables
plus a (possible) additional amount to leave the stack aligned on a 16-byte
boundary. (MASM usually assumes the stack was aligned on a mod 16 == 8
boundary prior to the push rbp instruction.)

For MASM’s automatically generated prologue code to work, the pro-
cedure must have exactly one entry point. If you define a global statement
label as a second entry point, MASM won’t know that it is supposed to
generate the prologue code at that point. Entering the procedure at that
second entry point will create problems unless you explicitly include the
standard entry sequence yourself. Moral of the story: procedures should
have exactly one entry point.

Generating the standard exit sequence for the epilogue is a bit more prob-
lematic. Although it is rare for an assembly language procedure to have more
than a single entry point, it’s common to have multiple exit points. After all, the
exit point is controlled by the programmer’s placement of a ret instruction,
not by a directive (like endp). MASM deals with the issue of multiple exit points
by automatically translating any ret instruction it finds into the standard exit
sequence:

leave
ret

Assuming, of course, that option epilogue:EpilogueDef is active.
You can control whether MASM generates prologues (standard entry

sequences) and epilogues (standard exit sequences) independently of one
another. So if you would prefer to write the leave instruction yourself (while
having MASM generate the standard entry sequence), you can.

One final note about the prologue: and epilogue: options. In addition to
specifying prologue:PrologueDef and epilogue:EpilogueDef, you can also sup-
ply a macro identifier after the prologue: or epilogue: options. If you supply
a macro identifier, MASM will expand that macro for the standard entry
or exit sequence. For more information on macros, see “Macros and the
MASM Compile-Time Language” in Chapter 13.

240 Chapter 5

Most of the example programs throughout the remainder of this book
continue to use textequ declarations for local variables rather than the local
directive to make the use of the [RBP-constant] addressing mode and local
variable offsets more explicit.

5.4.3 Automatic Allocation
One big advantage to automatic storage allocation is that it efficiently shares
a fixed pool of memory among several procedures. For example, say you call
three procedures in a row, like so:

call ProcA
call ProcB
call ProcC

The first procedure (ProcA in this code) allocates its local variables on
the stack. Upon return, ProcA deallocates that stack storage. Upon entry into
ProcB, the program allocates storage for ProcB’s local variables by using the
same memory locations just freed by ProcA. Likewise, when ProcB returns and the
program calls ProcC, ProcC uses the same stack space for its local variables that
ProcB recently freed up. This memory reuse makes efficient use of the system
resources and is probably the greatest advantage to using automatic variables.

Now that you’ve seen how assembly language allocates and deallocates
storage for local variables, it’s easy to understand why automatic variables
do not maintain their values between two calls to the same procedure. Once
the procedure returns to its caller, the storage for the automatic variable is
lost, and, therefore, the value is lost as well. Thus, you must always assume that
a local var object is uninitialized upon entry into a procedure. If you need to main-
tain the value of a variable between calls to a procedure, you should use one
of the static variable declaration types.

 5.5 Parameters
Although many procedures are totally self-contained, most require input
data and return data to the caller. Parameters are values that you pass to and
from a procedure. In straight assembly language, passing parameters can
be a real chore.

The first thing to consider when discussing parameters is how we pass
them to a procedure. If you are familiar with Pascal or C/C++, you’ve prob-
ably seen two ways to pass parameters: pass by value and pass by reference.
Anything that can be done in an HLL can be done in assembly language
(obviously, as HLL code compiles into machine code), but you have to pro-
vide the instruction sequence to access those parameters in an appropriate
fashion.

Another concern you will face when dealing with parameters is where
you pass them. There are many places to pass parameters: in registers,
on the stack, in the code stream, in global variables, or in a combination of
these. This chapter covers several of the possibilities.

Procedures 241

5.5.1 Pass by Value
A parameter passed by value is just that—the caller passes a value to the
procedure. Pass-by-value parameters are input-only parameters. You can
pass them to a procedure, but the procedure cannot return values through
them. Consider this C/C++ function call:

CallProc(I);

If you pass I by value, CallProc() does not change the value of I, regard-
less of what happens to the parameter inside CallProc().

Because you must pass a copy of the data to the procedure, you should
use this method only for passing small objects like bytes, words, double
words, and quad words. Passing large arrays and records by value is inefficient
(because you must create and pass a copy of the object to the procedure).6

5.5.2 Pass by Reference
To pass a parameter by reference, you must pass the address of a variable
rather than its value. In other words, you must pass a pointer to the data.
The procedure must dereference this pointer to access the data. Passing
parameters by reference is useful when you must modify the actual param-
eter or when you pass large data structures between procedures. Because
pointers on the x86-64 are 64 bits wide, a parameter that you pass by refer-
ence will consist of a quad-word value.

You can compute the address of an object in memory in two common
ways: the offset operator or the lea instruction. You can use the offset oper-
ator to take the address of any static variable you’ve declared in your .data,
.data?, .const, or .code sections. Listing 5-8 demonstrates how to obtain the
address of a static variable (staticVar) and pass that address to a procedure
(someFunc) in the RCX register.

; Listing 5-8

; Demonstrate obtaining the address
; of a static variable using offset
; operator.

 option casemap:none

 .data
staticVar dword ?

 .code
 externdef someFunc:proc

getAddress proc

6. The Microsoft ABI doesn’t allow passing objects larger than 64 bits by value. If you’re writ-
ing Microsoft ABI–compliant code, the inefficiency of passing large objects is irrelevant.

242 Chapter 5

 mov rcx, offset staticVar
 call someFunc

 ret
getAddress endp

 end

Listing 5-8: Using the offset operator to obtain the address of a static variable

Using the offset operator raises a couple of issues. First of all, it can
compute the address of only a static variable; you cannot obtain the address
of an automatic (local) variable or parameter, nor can you compute the
address of a memory reference involving a complex memory addressing
mode (for example, [RBX+RDX*1-5]). Another problem is that an instruc-
tion like mov rcx, offset staticVar assembles into a large number of bytes
(because the offset operator returns a 64-bit constant). If you look at the
assembly listing MASM produces (with the /Fl command line option), you
can see how big this instruction is:

00000000 48/ B9 mov rcx, offset staticVar
 0000000000000000 R
0000000A E8 00000000 E call someFunc

As you can see here, the mov instruction is 10 (0Ah) bytes long.
You’ve seen numerous examples of the second way to obtain the address

of a variable: the lea instruction (for example, when loading the address of
a format string into RCX prior to calling printf()). Listing 5-9 shows the
example in Listing 5-8 recoded to use the lea instruction.

; Listing 5-9

; Demonstrate obtaining the address
; of a variable using the lea instruction.

 option casemap:none

 .data
staticVar dword ?

 .code
 externdef someFunc:proc

getAddress proc

 lea rcx, staticVar
 call someFunc

 ret
getAddress endp
 end

Listing 5-9: Obtaining the address of a variable using the lea instruction

Procedures 243

Looking at the listing MASM produces for this code, we find that the
lea instruction is only 7 bytes long:

00000000 48/ 8D 0D lea rcx, staticVar
 00000000 R
00000007 E8 00000000 E call someFunc

So, if nothing else, your programs will be shorter if you use the lea
instruction rather than the offset operator.

Another advantage to using lea is that it will accept any memory address-
ing mode, not just the name of a static variable. For example, if staticVar
were an array of 32-bit integers, you could load the current element address,
indexed by the RDX register, in RCX by using an instruction such as this:

lea rcx, staticVar[rdx*4] ; Assumes LARGEADDRESSAWARE:NO

Pass by reference is usually less efficient than pass by value. You must
dereference all pass-by-reference parameters on each access; this is slower
than simply using a value because it typically requires at least two instruc-
tions. However, when passing a large data structure, pass by reference is
faster because you do not have to copy the large data structure before call-
ing the procedure. Of course, you’d probably need to access elements of
that large data structure (for example, an array) by using a pointer, so little
efficiency is lost when you pass large arrays by reference.

5.5.3 Low-Level Parameter Implementation
A parameter-passing mechanism is a contract between the caller and the
callee (the procedure). Both parties have to agree on where the parameter
data will appear and what form it will take (for example, value or address).
If your assembly language procedures are being called only by other
assembly language code that you’ve written, you control both sides of the
contract negotiation and get to decide where and how you’re going to pass
parameters.

However, if external code is calling your procedure, or your procedure is
calling external code, your procedure will have to adhere to whatever calling
convention that external code uses. On 64-bit Windows systems, that calling
convention will, undoubtedly, be the Windows ABI.

Before discussing the Windows calling conventions, we’ll consider the
situation of calling code that you’ve written (and, therefore, have com-
plete control over the calling conventions). The following sections provide
insight into the various ways you can pass parameters in pure assembly lan-
guage code (without the overhead associated with the Microsoft ABI).

5.5.3.1 Passing Parameters in Registers

Having touched on how to pass parameters to a procedure, the next thing
to discuss is where to pass parameters. This depends on the size and number
of those parameters. If you are passing a small number of parameters to a

244 Chapter 5

procedure, the registers are an excellent place to pass them. If you are pass-
ing a single parameter to a procedure, you should use the registers listed in
Table 5-1 for the accompanying data types.

Table 5-1: Parameter Location by Size

Data size Pass in this register

Byte CL

Word CX

Double word ECX

Quad word RCX

This is not a hard-and-fast rule. However, these registers are convenient
because they mesh with the first parameter register in the Microsoft ABI
(which is where most people will pass a single parameter).

If you are passing several parameters to a procedure in the x86-64’s
registers, you should probably use up the registers in the following order:

First Last
RCX, RDX, R8, R9, R10, R11, RAX, XMM0/YMM0-XMM5/YMM5

In general, you should pass integer and other non-floating-point
values in the general-purpose registers, and floating-point values in the
XMMx/YMMx registers. This is not a hard requirement, but Microsoft
reserves these registers for passing parameters and for local variables
(volatile), so using these registers to pass parameters won’t mess with
Microsoft ABI nonvolatile registers. Of course, if you intend to have
Microsoft ABI–compliant code call your procedure, you must exactly
observe the Microsoft calling conventions (see “Calling Conventions
and the Microsoft ABI” on page 261).

N O T E You can use the movsd instruction to load a double-precision value into one of the
XMM registers.7 This instruction has the following syntax:

movsd XMMn, mem64

Of course, if you’re writing pure assembly language code (no calls to or
from any code you didn’t write), you can use most of the general-purpose
registers as you see fit (RSP is an exception, and you should avoid RBP, but
the others are fair game). Ditto for the XMM/YMM registers.

As an example, consider the strfill(s,c) procedure that copies the
character c (passed by value in AL) to each character position in s (passed
by reference in RDI) up to a zero-terminating byte (Listing 5-10).

7. Intel has overloaded the meaning of the movsd mnemonic. When it has two operands (the
first being an XMM register and the second being a 64-bit memory location), movsd stands
for move scalar double-precision. When it has no operands, movsd is a string instruction and
stands for move string double.

Procedures 245

; Listing 5-10

; Demonstrate passing parameters in registers.

 option casemap:none

 .data
staticVar dword ?

 .code
 externdef someFunc:proc

; strfill - Overwrites the data in a string with a character.

; RDI - Pointer to zero-terminated string
; (for example, a C/C++ string).
; AL - Character to store into the string.

strfill proc
 push rdi ; Preserve RDI because it changes

; While we haven't reached the end of the string:

whlNot0: cmp byte ptr [rdi], 0
 je endOfStr

; Overwrite character in string with the character
; passed to this procedure in AL:

 mov [rdi], al

; Move on to the next character in the string and
; repeat this process:

 inc rdi
 jmp whlNot0

endOfStr: pop rdi
 ret
strfill endp
 end

Listing 5-10: Passing parameters in registers to the strfill procedure

To call the strfill procedure, you would load the address of the string
data into RDI and the character value into AL prior to the call. The follow-
ing code fragment demonstrates a typical call to strfill:

lea rdi, stringData ; Load address of string into RDI
mov al, ' ' ; Fill string with spaces
call strfill

This code passes the string by reference and the character data by value.

246 Chapter 5

5.5.3.2 Passing Parameters in the Code Stream

Another place where you can pass parameters is in the code stream imme-
diately after the call instruction. Consider the following print routine that
prints a literal string constant to the standard output device:

call print
byte "This parameter is in the code stream.",0

Normally, a subroutine returns control to the first instruction immedi-
ately following the call instruction. Were that to happen here, the x86-64
would attempt to interpret the ASCII codes for "This..." as an instruction.
This would produce undesirable results. Fortunately, you can skip over this
string before returning from the subroutine.

So how do you gain access to these parameters? Easy. The return address
on the stack points at them. Consider the implementation of print appearing
in Listing 5-11.

; Listing 5-11

; Demonstration passing parameters in the code stream.

 option casemap:none

nl = 10
stdout = -11

 .const
ttlStr byte "Listing 5-11", 0

 .data
soHandle qword ?
bWritten dword ?

 .code

 ; Magic equates for Windows API calls:

 extrn __imp_GetStdHandle:qword
 extrn __imp_WriteFile:qword

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here's the print procedure.
; It expects a zero-terminated string
; to follow the call to print.

Procedures 247

print proc
 push rbp
 mov rbp, rsp
 and rsp, -16 ; Ensure stack is 16-byte-aligned
 sub rsp, 48 ; Set up stack for MS ABI

; Get the pointer to the string immediately following the
; call instruction and scan for the zero-terminating byte.

 mov rdx, [rbp+8] ; Return address is here
 lea r8, [rdx-1] ; R8 = return address - 1
search4_0: inc r8 ; Move on to next char
 cmp byte ptr [R8], 0 ; At end of string?
 jne search4_0

; Fix return address and compute length of string:

 inc r8 ; Point at new return address
 mov [rbp+8], r8 ; Save return address
 sub r8, rdx ; Compute string length
 dec r8 ; Don't include 0 byte

; Call WriteFile to print the string to the console:

; WriteFile(fd, bufAdrs, len, &bytesWritten);

; Note: pointer to the buffer (string) is already
; in RDX. The len is already in R8. Just need to
; load the file descriptor (handle) into RCX:

 mov rcx, soHandle ; Zero-extends!
 lea r9, bWritten ; Address of "bWritten" in R9
 call __imp_WriteFile

 leave
 ret
print endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

; Call getStdHandle with "stdout" parameter
; in order to get the standard output handle
; we can use to call write. Must set up
; soHandle before first call to print procedure.

 mov ecx, stdout ; Zero-extends!
 call __imp_GetStdHandle
 mov soHandle, rax ; Save handle

248 Chapter 5

; Demonstrate passing parameters in code stream
; by calling the print procedure:

 call print
 byte "Hello, world!", nl, 0

; Clean up, as per Microsoft ABI:

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-11: Print procedure implementation (using code stream parameters)

One quick note about a machine idiom in Listing 5-11. The instruction

lea r8, [rdx-1]

isn’t actually loading an address into R8, per se. This is really an arithmetic
instruction that is computing R8 = RDX – 1 (with a single instruction rather
than two as would normally be required). This is a common usage of the lea
instruction in assembly language programs. Therefore, it’s a little program-
ming trick that you should become comfortable with.

Besides showing how to pass parameters in the code stream, the print
routine also exhibits another concept: variable-length parameters. The string
following the call can be any practical length. The zero-terminating byte
marks the end of the parameter list.

We have two easy ways to handle variable-length parameters: either use
a special terminating value (like 0) or pass a special length value that tells
the subroutine the number of parameters you are passing. Both methods
have their advantages and disadvantages.

Using a special value to terminate a parameter list requires that you
choose a value that never appears in the list. For example, print uses 0 as
the terminating value, so it cannot print the NUL character (whose ASCII
code is 0). Sometimes this isn’t a limitation. Specifying a length parameter
is another mechanism you can use to pass a variable-length parameter list.
While this doesn’t require any special codes, or limit the range of possible
values that can be passed to a subroutine, setting up the length parameter
and maintaining the resulting code can be a real nightmare.8

Despite the convenience afforded by passing parameters in the code
stream, passing parameters there has disadvantages. First, if you fail to
provide the exact number of parameters the procedure requires, the sub-
routine will get confused. Consider the print example. It prints a string of
characters up to a zero-terminating byte and then returns control to the
first instruction following that byte. If you leave off the zero-terminating

8. This is especially true if the parameter list changes frequently.

Procedures 249

byte, the print routine happily prints the following opcode bytes as ASCII
characters until it finds a zero byte. Because zero bytes often appear in the
middle of an instruction, the print routine might return control into the
middle of another instruction, which will probably crash the machine.

Inserting an extra 0, which occurs more often than you might think,
is another problem programmers have with the print routine. In such a
case, the print routine would return upon encountering the first zero byte
and attempt to execute the following ASCII characters as machine code.
Problems notwithstanding, however, the code stream is an efficient place to
pass parameters whose values do not change.

5.5.3.3 Passing Parameters on the Stack

Most high-level languages use the stack to pass a large number of param-
eters because this method is fairly efficient. Although passing parameters
on the stack is slightly less efficient than passing parameters in registers, the
register set is limited (especially if you’re limiting yourself to the four reg-
isters the Microsoft ABI sets aside for this purpose), and you can pass only
a few value or reference parameters through registers. The stack, on the
other hand, allows you to pass a large amount of parameter data without
difficulty. This is the reason that most programs pass their parameters on
the stack (at least, when passing more than about three to six parameters).

To manually pass parameters on the stack, push them immediately
before calling the subroutine. The subroutine then reads this data from
the stack memory and operates on it appropriately. Consider the following
high-level language function call:

CallProc(i,j,k);

Back in the days of 32-bit assembly language, you could have passed
these parameters to CallProc by using an instruction sequence such as the
following:

push k ; Assumes i, j, and k are all 32-bit
push j ; variables
push i
call CallProc

Unfortunately, with the advent of the x86-64 64-bit CPU, the 32-bit
push instruction was removed from the instruction set (the 64-bit push
instruction replaced it). If you want to pass parameters to a procedure by
using the push instruction, they must be 64-bit operands.9

Because keeping RSP aligned on an appropriate boundary (8 or
16 bytes) is crucial, the Microsoft ABI simply requires that every parameter

9. Actually, the x86-64 allows you to push 16-bit operands onto the stack. However, keeping
RSP properly aligned on an 8- or 16-byte boundary when using 16-bit push instructions will
be a big source of bugs in your program. Furthermore, it winds up taking two instructions
to push a 32-bit value with 16-bit push instructions, so it is hardly cost-effective to use those
instructions.

250 Chapter 5

consume 8 bytes on the stack, and thus doesn’t allow larger arguments
on the stack. If you’re controlling both sides of the parameter contract
(caller and callee), you can pass larger arguments to your procedures.
However, it is a good idea to ensure that all parameter sizes are a mul-
tiple of 8 bytes.

One simple solution is to make all your variables qword objects. Then
you can directly push them onto the stack by using the push instruction
prior to calling a procedure. However, not all objects fit nicely into 64 bits
(characters, for example). Even those objects that could be 64 bits (for
example, integers) often don’t require the use of so much storage.

One sneaky way to use the push instruction on smaller objects is to use
type coercion. Consider the following calling sequence for CallProc:

push qword ptr k
push qword ptr j
push qword ptr i
call CallProc

This sequence pushes the 64-bit values starting at the addresses associ-
ated with variables i, j, and k, regardless of the size of these variables. If the
i, j, and k variables are smaller objects (perhaps 32-bit integers), these push
instructions will push their values onto the stack along with additional data
beyond these variables. As long as CallProc treats these parameter values as
their actual size (say, 32 bits) and ignores the HO bits pushed for each argu-
ment onto the stack, this will usually work out properly.

Pushing extra data beyond the bounds of the variable onto the stack
creates one possible problem. If the variable is at the very end of a page
in memory and the following page is not readable, then pushing data
beyond the variable may attempt to push data from that next memory page,
resulting in a memory access violation (which will crash your program).
Therefore, if you use this technique, you must ensure that such variables do
not appear at the very end of a memory page (with the possibility that the
next page in memory is inaccessible). The easiest way to do this is to make
sure the variables you push on the stack in this fashion are never the last
variables you declare in your data sections; for example:

i dword ?
j dword ?
k dword ?
pad qword ? ; Ensures that there are at least 64 bits
 ; beyond the k variable

While pushing extra data beyond a variable will work, it’s still a ques-
tionable programming practice. A better technique is to abandon the push
instructions altogether and use a different technique to move the param-
eter data onto the stack.

Another way to “push” data onto the stack is to drop the RSP register
down an appropriate amount in memory and then simply move data onto

Procedures 251

the stack by using a mov (or similar) instruction. Consider the following call-
ing sequence for CallProc:

sub rsp, 12
mov eax, k
mov [rsp+8], eax
mov eax, j
mov [rsp+4], eax
mov eax, i
mov [rsp], eax
call CallProc

Although this takes twice as many instructions as the previous examples
(eight versus four), this sequence is safe (no possibility of accessing inaccessible
memory pages). Furthermore, it pushes exactly the amount of data needed for
the parameters onto the stack (32 bits for each object, for a total of 12 bytes).

The major problem with this approach is that it is a really bad idea to have
an address in the RSP register that is not aligned on an 8-byte boundary. In
the worst case, having a nonaligned (to 8 bytes) stack will crash your program;
in the very best case, it will affect the performance of your program. So even if
you want to pass the parameters as 32-bit integers, you should always allocate
a multiple of 8 bytes for parameters on the stack prior to a call. The previous
example would be encoded as follows:

sub rsp, 16 ; Allocate a multiple of 8 bytes
mov eax, k
mov [rsp+8], eax
mov eax, j
mov [rsp+4], eax
mov eax, i
mov [rsp], eax
call CallProc

Note that CallProc will simply ignore the extra 4 bytes allocated on the
stack in this fashion (don’t forget to remove this extra storage from the stack
on return).

To satisfy the requirement of the Microsoft ABI (and, in fact, of most appli-
cation binary interfaces for the x86-64 CPUs) that each parameter consume
exactly 8 bytes (even if their native data size is smaller), you can use the follow-
ing code (same number of instructions, just uses a little more stack space):

sub rsp, 24 ; Allocate a multiple of 8 bytes
mov eax, k
mov [rsp+16], eax
mov eax, j
mov [rsp+8], eax
mov eax, i
mov [rsp], eax
call CallProc

252 Chapter 5

The mov instructions spread out the data on 8-byte boundaries. The HO
dword of each 64-bit entry on the stack will contain garbage (whatever data
was in stack memory prior to this sequence). That’s okay; the CallProc proce-
dure (presumably) will ignore that extra data and operate only on the LO
32 bits of each parameter value.

Upon entry into CallProc, using this sequence, the x86-64’s stack looks
like Figure 5-7.

Previous stack contents

k‘s current value

j‘s current value

i‘s current value

Return address RSP

Garbage bits

Garbage bits

Garbage bits

RSP + 28

+ 24

+ 20

+ 16

+ 12

+ 8

+ 0

Figure 5-7: Stack layout upon entry into CallProc

If your procedure includes the standard entry and exit sequences, you
may directly access the parameter values in the activation record by index-
ing off the RBP register. Consider the layout of the activation record for
CallProc that uses the following declaration:

CallProc proc
 push rbp ; This is the standard entry sequence
 mov rbp, rsp ; Get base address of activation record into RBP
 .
 .
 .
 leave
 ret 24

Assuming you’ve pushed three quad-word parameters onto the stack, it
should look something like Figure 5-8 immediately after the execution of
mov rbp, rsp in CallProc.

Now you can access the parameters by indexing off the RBP register:

mov eax, [rbp+32] ; Accesses the k parameter
mov ebx, [rbp+24] ; Accesses the j parameter
mov ecx, [rbp+16] ; Accesses the i parameter

Procedures 253

RBP + 8

RBP + 16

RBP + 24

Previous stack contents

k‘s current value

j‘s current value

i‘s current value

RSP, RBP

RBP + 32

Garbage bits

Garbage bits

Garbage bits

Old RBP value

Return address

Figure 5-8: Activation record for CallProc after standard
entry sequence execution

5.5.3.4 Accessing Value Parameters on the Stack

Accessing parameters passed by value is no different from accessing a local
variable object. One way to accomplish this is by using equates, as was dem-
onstrated for local variables earlier. Listing 5-12 provides an example
program whose procedure accesses a parameter that the main program
passes to it by value.

; Listing 5-12

; Accessing a parameter on the stack.

 option casemap:none

nl = 10
stdout = -11

 .const
ttlStr byte "Listing 5-12", 0
fmtStr1 byte "Value of parameter: %d", nl, 0

 .data
value1 dword 20
value2 dword 30

 .code
 externdef printf:proc

254 Chapter 5

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

theParm equ <[rbp+16]>
ValueParm proc
 push rbp
 mov rbp, rsp

 sub rsp, 32 ; "Magic" instruction

 lea rcx, fmtStr1
 mov edx, theParm
 call printf

 leave
 ret
ValueParm endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

 mov eax, value1
 mov [rsp], eax ; Store parameter on stack
 call ValueParm

 mov eax, value2
 mov [rsp], eax
 call ValueParm

; Clean up, as per Microsoft ABI:

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-12: Demonstration of value parameters

Although you could access the value of theParm by using the anonymous
address [RBP+16] within your code, using the equate in this fashion makes
your code more readable and maintainable.

Procedures 255

5.5.4 Declaring Parameters with the proc Directive
MASM provides another solution for declaring parameters for procedures
using the proc directive. You can supply a list of parameters as operands to
the proc directive, as follows:

proc_name proc parameter_list

where parameter_list is a list of one or more parameter declarations sepa-
rated by commas. Each parameter declaration takes the form

parm_name:type

where parm_name is a valid MASM identifier, and type is one of the usual
MASM types (proc, byte, word, dword, and so forth). With one exception, the
parameter list declarations are identical to the local directive’s operands: the
exception is that MASM doesn’t allow arrays as parameters. (MASM param-
eters assume that the Microsoft ABI is being used, and the Microsoft ABI
allows only 64-bit parameters.)

The parameter declarations appearing as proc operands assume that
a standard entry sequence is executed and that the program will access
parameters off the RBP register, with the saved RBP and return address val-
ues at offsets 0 and 8 from the RBP register (so the first parameter will start
at offset 16). MASM assigns offsets for each parameter that are 8 bytes apart
(per the Microsoft ABI). As an example, consider the following parameter
declaration:

procWithParms proc k:byte, j:word, i:dword
 .
 .
 .
procWithParms endp

k will have the offset [RBP+16], j will have the offset [RBP+24], and i will
have the offset [RBP+32]. Again, the offsets are always 8 bytes, regardless of
the parameter data type.

As per the Microsoft ABI, MASM will allocate storage on the stack for
the first four parameters, even though you would normally pass these param-
eters in RCX, RDX, R8, and R9. These 32 bytes of storage (starting at RBP+16)
are called shadow storage in Microsoft ABI nomenclature. Upon entry into
the procedure, the parameter values do not appear in this shadow storage
(instead, the values are in the registers). The procedure can save the register
values in this preallocated storage, or it can use the shadow storage for any
purpose it desires (such as for additional local variable storage). However, if
the procedure refers to the parameter names declared in the proc operand
field, expecting to access the parameter data, the procedure should store the
values from these registers into that shadow storage (assuming the param-
eters were passed in the RCX, RDX, R8, and R9 registers). Of course, if you

256 Chapter 5

push these arguments on the stack prior to the call (in assembly language,
ignoring the Microsoft ABI calling convention), then the data is already in
place, and you don’t have to worry about shadow storage issues.

When calling a procedure whose parameters you declare in the oper-
and field of a proc directive, don’t forget that MASM assumes you push the
parameters onto the stack in the reverse order they appear in the param-
eter list, to ensure that the first parameter in the list is at the lowest memory
address on the stack. For example, if you call the procWithParms procedure
from the previous code snippet, you’d typically use code like the following
to push the parameters:

mov eax, dwordValue
push rax ; Parms are always 64 bits
mov ax, wordValue
push rax
mov al, byteValue
push rax
call procWithParms

Another possible solution (a few bytes longer, but often faster) is to use
the following code:

sub rsp, 24 ; Reserve storage for parameters
mov eax, dwordValue ; i
mov [rsp+16], eax
mov ax, wordValue
mov [rsp+8], ax ; j
mov al, byteValue
mov [rsp], al ; k
call procWithParms

Don’t forget that if it is the callee’s responsibility to clean up the stack,
you’d probably use an add rsp, 24 instruction after the preceding two
sequences to remove the parameters from the stack. Of course, you can also
have the procedure itself clean up the stack by specifying the number to add
to RSP as a ret instruction operand, as explained earlier in this chapter.

5.5.5 Accessing Reference Parameters on the Stack
Because you pass the addresses of objects as reference parameters, access-
ing the reference parameters within a procedure is slightly more difficult
than accessing value parameters because you have to dereference the point-
ers to the reference parameters.

In Listing 5-13, the RefParm procedure has a single pass-by-reference
parameter. A pass-by-reference parameter is always a (64-bit) pointer to an
object. To access the value associated with the parameter, this code has to load
that quad-word address into a 64-bit register and access the data indirectly.
The mov rax, theParm instruction in Listing 5-13 fetches this pointer into the
RAX register, and then the procedure RefParm uses the [RAX] addressing mode
to access the actual value of theParm.

Procedures 257

; Listing 5-13

; Accessing a reference parameter on the stack.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 5-13", 0
fmtStr1 byte "Value of parameter: %d", nl, 0

 .data
value1 dword 20
value2 dword 30

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

theParm equ <[rbp+16]>
RefParm proc
 push rbp
 mov rbp, rsp

 sub rsp, 32 ; "Magic" instruction

 lea rcx, fmtStr1
 mov rax, theParm ; Dereference parameter
 mov edx, [rax]
 call printf

 leave
 ret
RefParm endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

 lea rax, value1
 mov [rsp], rax ; Store address on stack
 call RefParm

258 Chapter 5

 lea rax, value2
 mov [rsp], rax
 call RefParm

; Clean up, as per Microsoft ABI:

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-13: Accessing a reference parameter

Here are the build commands and program output for Listing 5-13:

C:\>build listing5-13

C:\>echo off
 Assembling: listing5-13.asm
c.cpp

C:\>listing5-13
Calling Listing 5-13:
Value of parameter: 20
Value of parameter: 30
Listing 5-13 terminated

As you can see, accessing (small) pass-by-reference parameters is a little
less efficient than accessing value parameters because you need an extra
instruction to load the address into a 64-bit pointer register (not to mention
you have to reserve a 64-bit register for this purpose). If you access refer-
ence parameters frequently, these extra instructions can really begin to add
up, reducing the efficiency of your program. Furthermore, it’s easy to forget
to dereference a reference parameter and use the address of the value in
your calculations. Therefore, unless you really need to affect the value of
the actual parameter, you should use pass by value to pass small objects to a
procedure.

Passing large objects, like arrays and records, is where using reference
parameters becomes efficient. When passing these objects by value, the call-
ing code has to make a copy of the actual parameter; if it is a large object,
the copy process can be inefficient. Because computing the address of a
large object is just as efficient as computing the address of a small scalar
object, no efficiency is lost when passing large objects by reference. Within
the procedure, you must still dereference the pointer to access the object,
but the efficiency loss due to indirection is minimal when you contrast this
with the cost of copying that large object. The program in Listing 5-14 dem-
onstrates how to use pass by reference to initialize an array of records.

; Listing 5-14

; Passing a large object by reference.

Procedures 259

 option casemap:none

nl = 10
NumElements = 24

Pt struct
x byte ?
y byte ?
Pt ends

 .const
ttlStr byte "Listing 5-14", 0
fmtStr1 byte "RefArrayParm[%d].x=%d ", 0
fmtStr2 byte "RefArrayParm[%d].y=%d", nl, 0

 .data
index dword ?
Pts Pt NumElements dup ({})

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

ptArray equ <[rbp+16]>
RefAryParm proc
 push rbp
 mov rbp, rsp

 mov rdx, ptArray
 xor rcx, rcx ; RCX = 0

; While ECX < NumElements, initialize each
; array element. x = ECX/8, y = ECX % 8.

ForEachEl: cmp ecx, NumElements
 jnl LoopDone

 mov al, cl
 shr al, 3 ; AL = ECX / 8
 mov [rdx][rcx*2].Pt.x, al

 mov al, cl
 and al, 111b ; AL = ECX % 8
 mov [rdx][rcx*2].Pt.y, al
 inc ecx
 jmp ForEachEl

LoopDone: leave

260 Chapter 5

 ret
RefAryParm endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 40

; Initialize the array of points:

 lea rax, Pts
 mov [rsp], rax ; Store address on stack
 call RefAryParm

; Display the array:

 mov index, 0
dispLp: cmp index, NumElements
 jnl dispDone

 lea rcx, fmtStr1
 mov edx, index ; Zero-extends!
 lea r8, Pts ; Get array base
 movzx r8, [r8][rdx*2].Pt.x ; Get x field
 call printf

 lea rcx, fmtStr2
 mov edx, index ; Zero-extends!
 lea r8, Pts ; Get array base
 movzx r8, [r8][rdx*2].Pt.y ; Get y field
 call printf

 inc index
 jmp dispLp

; Clean up, as per Microsoft ABI:

dispDone:
 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-14: Passing an array of records by referencing

Here are the build commands and output for Listing 5-14:

C:\>build listing5-14

C:\>echo off

Procedures 261

 Assembling: listing5-14.asm
c.cpp

C:\>listing5-14
Calling Listing 5-14:
RefArrayParm[0].x=0 RefArrayParm[0].y=0
RefArrayParm[1].x=0 RefArrayParm[1].y=1
RefArrayParm[2].x=0 RefArrayParm[2].y=2
RefArrayParm[3].x=0 RefArrayParm[3].y=3
RefArrayParm[4].x=0 RefArrayParm[4].y=4
RefArrayParm[5].x=0 RefArrayParm[5].y=5
RefArrayParm[6].x=0 RefArrayParm[6].y=6
RefArrayParm[7].x=0 RefArrayParm[7].y=7
RefArrayParm[8].x=1 RefArrayParm[8].y=0
RefArrayParm[9].x=1 RefArrayParm[9].y=1
RefArrayParm[10].x=1 RefArrayParm[10].y=2
RefArrayParm[11].x=1 RefArrayParm[11].y=3
RefArrayParm[12].x=1 RefArrayParm[12].y=4
RefArrayParm[13].x=1 RefArrayParm[13].y=5
RefArrayParm[14].x=1 RefArrayParm[14].y=6
RefArrayParm[15].x=1 RefArrayParm[15].y=7
RefArrayParm[16].x=2 RefArrayParm[16].y=0
RefArrayParm[17].x=2 RefArrayParm[17].y=1
RefArrayParm[18].x=2 RefArrayParm[18].y=2
RefArrayParm[19].x=2 RefArrayParm[19].y=3
RefArrayParm[20].x=2 RefArrayParm[20].y=4
RefArrayParm[21].x=2 RefArrayParm[21].y=5
RefArrayParm[22].x=2 RefArrayParm[22].y=6
RefArrayParm[23].x=2 RefArrayParm[23].y=7
Listing 5-14 terminated

As you can see from this example, passing large objects by reference is
very efficient.

 5.6 Calling Conventions and the Microsoft ABI
Back in the days of 32-bit programs, different compilers and languages typi-
cally used completely different parameter-passing conventions. As a result,
a program written in Pascal could not call a C/C++ function (at least, using
the native Pascal parameter-passing conventions). Similarly, C/C++ programs
couldn’t call FORTRAN, or BASIC, or functions written in other languages,
without special help from the programmer. It was literally a Tower of Babel
situation, as the languages were incompatible with one another.10

To resolve these problems, CPU manufacturers, such as Intel, devised
a set of protocols known as the application binary interface (ABI) to pro-
vide conformity to procedure calls. Languages that conformed to the CPU

10. In the Tower of Babel story, from Genesis in the Bible, God changed the spoken lan-
guages of the people constructing the tower so they couldn’t communicate with one
another.

262 Chapter 5

manufacturer’s ABI were able to call functions and procedures written in
other languages that also conformed to the same ABI. This brought a modi-
cum of sanity to the world of programming language interoperability.

For programs running under Windows, Microsoft took a subset of the
Intel ABI and created the Microsoft calling convention (which most people
call the Microsoft ABI). The next section covers the Microsoft calling conven-
tions in detail. However, first it’s worthwhile to discuss many of the other
calling conventions that existed prior to the Microsoft ABI.11

One of the older formal calling conventions is the Pascal calling convention.
In this convention, a caller pushes parameters on the stack in the order that
they appear in the actual parameter list (from left to right). On the 80x86/
x86-64 CPUs, where the stack grows down in memory, the first parameter
winds up at the highest address on the stack, and the last parameter winds up
at the lowest address on the stack.

While it might look like the parameters appear backward on the stack,
the computer doesn’t really care. After all, the procedure will access the
parameters by using a numeric offset, and it doesn’t care about the offset’s
value.12 On the other hand, for simple compilers, it’s much easier to gener-
ate code that pushes the parameters in the order they appear in the source
file, so the Pascal calling convention makes life a little easier for compiler
writers (though optimizing compilers often rearrange the code anyway).

Another feature of the Pascal calling convention is that the callee (the
procedure itself) is responsible for removing parameter data from the
stack upon subroutine return. This localizes the cleanup code to the pro-
cedure so that parameter cleanup isn’t duplicated across every call to the
procedure.

The big drawback to the Pascal calling sequence is that handling vari-
able parameter lists is difficult. If one call to a procedure has three parame-
ters, and a second call has four parameters, the offset to the first parameter
will vary depending on the actual number of parameters. Furthermore, it’s
more difficult (though certainly not impossible) for a procedure to clean up
the stack after itself if the number of parameters varies. This is not an issue
for Pascal programs, as standard Pascal does not allow user-written proce-
dures and functions to have varying parameter lists. For languages like
C/C++, however, this is an issue.

Because C (and other C-based programming languages) supports
varying parameter lists (for example, the printf() function), C adopted
a different calling convention: the C calling convention, also known as the
cdecl calling convention. In C, the caller pushes parameters on the stack
in the reverse order that they appear in the actual parameter list. So,
it pushes the last parameter first and pushes the first parameter last.

11. It’s important to note here that Intel’s ABI and Microsoft’s ABI are not exactly the same.
A compiler that adheres to the Intel ABI is not necessarily compatible with Microsoft lan-
guages (and other languages that adhere to the Microsoft ABI).

12. Strictly speaking, this is not true. Offsets in the range ±127 require only a 1-byte encoding,
so smaller offsets are preferable to larger offsets. However, having more than 128 bytes of
parameters is rare, so this isn’t a big issue for most programs.

Procedures 263

Because the stack is a LIFO data structure, the first parameter winds up
at the lowest address on the stack (and at a fixed offset from the return
address, typically right above it in memory; this is true regardless of how
many actual parameters appear on the stack). Also, because C supports
varying parameter lists, it is up to the caller to clean up the parameters
on the stack after the return from the function.

The third common calling convention in use on 32-bit Intel machines,
STDCALL, is basically a combination of the Pascal and C/C++ calling con-
ventions. Parameters are passed right to left (as in C/C++). However, the
callee is responsible for cleaning up the parameters on the stack before
returning.

One problem with these three calling conventions is that they all use
only memory to pass their parameters to a procedure. Of course, the most
efficient place to pass parameters is in machine registers. This led to a
fourth common calling convention known as the FASTCALL calling conven-
tion. In this convention, the calling program passes parameters in registers
to a procedure. However, as registers are a limited resource on most CPUs,
the FASTCALL calling convention typically passes only the first three to
six parameters in registers. If more parameters are needed, the FASTCALL
passes the remaining parameters on the stack (typically in reverse order,
like the C/C++ and STDCALL calling conventions).

 5.7 The Microsoft ABI and Microsoft Calling Convention
This chapter has repeatedly referred to the Microsoft ABI. Now it’s time to
formally describe the Microsoft calling convention.

N O T E Remember that adhering to the Microsoft ABI is necessary only if you need to call
another function that uses it, or if outside code is calling your function and expects
the function to use the Microsoft ABI. If this is not the case, you can use any calling
conventions that are convenient for your code.

5.7.1 Data Types and the Microsoft ABI
As noted in “Microsoft ABI Notes” in Chapters 1, 3, and 4, the native data
type sizes are 1, 2, 4, and 8 bytes (see Table 1-6 in Chapter 1). All such vari-
ables should be aligned in memory on their native size.

For parameters, all procedure/function parameters must consume
exactly 64 bits. If a data object is smaller than 64 bits, the HO bits of the
parameter value (the bits beyond the actual parameter’s native size) are
undefined (and not guaranteed to be zero). Procedures should access only
the actual data bits for the parameter’s native type and ignore the HO bits.

If a parameter’s native type is larger than 64 bits, the Microsoft ABI
requires the caller to pass the parameter by reference rather than by value
(that is, the caller must pass the address of the data).

264 Chapter 5

5.7.2 Parameter Locations
The Microsoft ABI uses a variant of the FASTCALL calling convention that
requires the caller to pass the first four parameters in registers. Table 5-2
lists the register locations for these parameters.

Table 5-2: FASTCALL Parameter Locations

Parameter If scalar/reference If floating point

1 RCX XMM0

2 RDX XMM1

3 R8 XMM2

4 R9 XMM3

5 to n On stack, right to left On stack, right to left

If the procedure has floating-point parameters, the calling convention
skips the use of the general-purpose register for that same parameter loca-
tion. Say you have the following C/C++ function:

void someFunc(int a, double b, char *c, double d)

Then the Microsoft calling convention would expect the caller to
pass a in (the LO 32 bits of) RCX, b in XMM1, a pointer to c in R8, and
d in XMM3, skipping RDX, R9, XMM0, and XMM2. This rule has an
exception: for vararg (variable number of parameters) or unprototyped
functions, floating-point values must be duplicated in the correspond-
ing general-purpose register (see https://docs.microsoft.com/en-us/cpp/build/
x64-calling-convention?view=msvc-160#parameter-passing/).

Although the Microsoft calling convention passes the first four param-
eters in registers, it still requires the caller to allocate storage on the stack
for these parameters (shadow storage).13 In fact, the Microsoft calling conven-
tion requires the caller to allocate storage for four parameters on the stack
even if the procedure doesn’t have four parameters (or any parameters
at all). The caller doesn’t need to copy the parameter data into this stack
storage area—leaving the parameter data only in the registers is sufficient.
However, that stack space must be present. Microsoft compilers assume the
stack space is there and will use that stack space to save the register values
(for example, if the procedure calls another procedure and needs to pre-
serve the registers across that other call). Sometimes Microsoft’s compilers
use this shadow storage as local variables.

If you’re calling an external function (such as a C/C++ library function)
that adheres to the Microsoft calling convention and you do not allocate
the shadow storage, the application will almost certainly crash.

13. Also called shadow store in various documents.

https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160#parameter-passing/
https://docs.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-160#parameter-passing/

Procedures 265

5.7.3 Volatile and Nonvolatile Registers
As noted way back in Chapter 1, the Microsoft ABI declares certain regis-
ters to be volatile and others to be nonvolatile. Volatile means that a proce-
dure can modify the contents of the register without preserving its value.
Nonvolatile means that a procedure must preserve a register’s value if it
modifies that value. Table 5-3 lists the registers and their volatility.

Table 5-3: Register Volatility

Register Volatile/nonvolatile

RAX Volatile

RBX Nonvolatile

RCX Volatile

RDX Volatile

RDI Nonvolatile

RSI Nonvolatile

RBP Nonvolatile

RSP Nonvolatile

R8 Volatile

R9 Volatile

R10 Volatile

R11 Volatile

R12 Nonvolatile

R13 Nonvolatile

R14 Nonvolatile

R15 Nonvolatile

XMM0/YMM0 Volatile

XMM1/YMM1 Volatile

XMM2/YMM2 Volatile

XMM3/YMM3 Volatile

XMM4/YMM4 Volatile

XMM5/YMM5 Volatile

XMM6/YMM6 XMM6 Nonvolatile, upper half of YMM6 volatile

XMM7/YMM7 XMM7 Nonvolatile, upper half of YMM7 volatile

XMM8/YMM8 XMM8 Nonvolatile, upper half of YMM8 volatile

XMM9/YMM9 XMM9 Nonvolatile, upper half of YMM9 volatile

XMM10/YMM10 XMM10 Nonvolatile, upper half of YMM10 volatile

XMM11/YMM11 XMM11 Nonvolatile, upper half of YMM11 volatile

(continued)

266 Chapter 5

Register Volatile/nonvolatile

XMM12/YMM12 XMM12 Nonvolatile, upper half of YMM12 volatile

XMM13/YMM13 XMM13 Nonvolatile, upper half of YMM13 volatile

XMM14/YMM14 XMM14 Nonvolatile, upper half of YMM14 volatile

XMM15/YMM15 XMM15 Nonvolatile, upper half of YMM15 volatile

FPU Volatile, but FPU stack must be empty upon return

Direction flag Must be cleared upon return

It is perfectly reasonable to use nonvolatile registers within a procedure.
However, you must preserve those register values so that they are unchanged
upon return from a function. If you’re not using the shadow storage for any-
thing else, this is a good place to save and restore nonvolatile register values
during a procedure call; for example:

someProc proc
 push rbp
 mov rbp, rsp
 mov [rbp+16], rbx ; Save RBX in parm 1's shadow
 .
 . ; Procedure's code
 .
 mov rbx, [rbp+16] ; Restore RBX from shadow
 leave
 ret
someProc endp

Of course, if you’re using the shadow storage for another purpose, you
can always save nonvolatile register values in local variables or can even
push and pop the register values:

someProc proc ; Save RBX via push
 push rbx ; Note that this affects parm offsets
 push rbp
 mov rbp, rsp
 .
 . ; Procedure's code
 .
 leave
 pop rbx ; Restore RBX from stack
 ret
someProc endp

someProc2 proc ; Save RBX in a local
 push rbp
 mov rbp, rsp
 sub rsp, 16 ; Keep stack aligned
 mov [rbp-8], rbx ; Save RBX
 .
 . ; Procedure's code
 .

Table 5-3: Register Volatility (continued)

Procedures 267

 mov rbx, [rbp-8] ; Restore RBX
 leave
 ret
someProc2 endp

5.7.4 Stack Alignment
As I’ve mentioned many times now, the Microsoft ABI requires the stack to
be aligned on a 16-byte boundary whenever you make a call to a procedure.
When Windows transfers control to your assembly code (or when another
Windows ABI–compliant code calls your assembly code), you’re guaran-
teed that the stack will be aligned on an 8-byte boundary that is not also a
16-byte boundary (because the return address consumed 8 bytes after the
stack was 16-byte-aligned). If, within your assembly code, you don’t care
about 16-byte alignment, you can do anything you like with the stack (how-
ever, you should keep it aligned on at least an 8-byte boundary).

On the other hand, if you ever plan on calling code that uses the
Microsoft calling conventions, you need to be able to ensure that the stack
is properly aligned before the call. There are two ways to do this: carefully
manage any modifications to the RSP register after entry into your code (so
you know the stack is 16-byte-aligned whenever you make a call), or force
the stack to an appropriate alignment prior to making a call. Forcing align-
ment to 16 bytes is easily achieved using this instruction:

and rsp, -16

However, you must execute this instruction before setting up parameters
for a call. If you execute this instruction immediately before a call instruc-
tion (but after placing all the parameters on the stack), this could shift RSP
down in memory, and then the parameters will not be at the expected off-
set upon entry into the procedure.

Suppose you don’t know the state of RSP and need to make a call to a
procedure that expects five parameters (40 bytes, which is not a multiple of
16 bytes). Here’s a typical calling sequence you would use:

 sub rsp, 40 ; Make room for 4 shadow parms plus a 5th parm
 and rsp, -16 ; Guarantee RSP is now 16-byte-aligned

; Code to move four parameters into registers and the
; 5th parameter to location [RSP+32]:

 mov rcx, parm1
 mov rdx, parm2
 mov r8, parm3
 mov r9, parm4
 mov rax, parm5
 mov [rsp+32], rax
 call procWith5Parms

The only problem with this code is that it is hard to clean up the stack
upon return (because you don’t know exactly how many bytes you reserved

268 Chapter 5

on the stack as a result of the and instruction). However, as you’ll see in the
next section, you’ll rarely clean up the stack after an individual procedure
call, so you don’t have to worry about the stack cleanup here.

5.7.5 Parameter Setup and Cleanup (or “What’s with These Magic
Instructions?”)

The Microsoft ABI requires the caller to set up the parameters and then
clean them up (remove them from the stack) upon return from the func-
tion. In theory, this means that a call to a Microsoft ABI–compliant func-
tion is going to look something like the following:

; Make room for parameters. parm_size is a constant
; with the number of bytes of parameters required
; (including 32 bytes for the shadow parameters).

 sub rsp, parm_size

 Code that copies parameters to the stack

 call procedure

; Clean up the stack after the call:

 add rsp, parm_size

This allocation and cleanup sequence has two problems. First, you have
to repeat the sequence (sub rsp, parm_size and add rsp, parm_size) for every
call in your program (which can be rather inefficient). Second, as you saw
in the preceding section, sometimes aligning the stack to a 16-byte bound-
ary forces you to adjust the stack downward by an unknown amount, so you
don’t know how many bytes to add to RSP in order to clean up the stack.

If you have several calls sprinkled through a given procedure, you can
optimize the process of allocating and deallocating parameters on the stack
by doing this operation just once. To understand how this works, consider
the following code sequence:

; 1st procedure call:

 sub rsp, parm_size ; Allocate storage for proc1 parms
 Code that copies parameters to the registers and stack
 call proc1
 add rsp, parm_size ; Clean up the stack

; 2nd procedure call:

 sub rsp, parm_size2 ; Allocate storage for proc2 parms
 Code that copies parameters to the registers and stack
 call proc2
 add rsp, parm_size2 ; Clean up the stack

If you study this code, you should be able to convince yourself that the first
add and second sub are somewhat redundant. If you were to modify the first sub

Procedures 269

instruction to reduce the stack size by the greater of parm_size and parm_size2,
and replace the final add instruction with this same value, you could eliminate
the add and sub instructions appearing between the two calls:

; 1st procedure call:

 sub rsp, max_parm_size ; Allocate storage for all parms
 Code that copies parameters to the registers and stack for proc1
 call proc1

 Code that copies parameters to the registers and stack for proc2
 call proc2
 add rsp, max_parm_size ; Clean up the stack

If you determine the maximum number of bytes of parameters needed
by all calls within your procedure, you can eliminate all the individual stack
allocations and cleanups throughout the procedure (don’t forget, the mini-
mum parameter size is 32 bytes, even if the procedure has no parameters at
all, because of the shadow storage requirements).

It gets even better, though. If your procedure has local variables, you
can combine the sub instruction that allocates local variables with the
one that allocates storage for your parameters. Similarly, if you’re using the
standard entry/exit sequence, the leave instruction at the end of your pro-
cedure will automatically deallocate all the parameters (as well as the local
variables) when you exit your procedure.

Throughout this book, you’ve seen lots of “magic” add and subtract
instructions that have been offered without much in the way of explanation.
Now you know what those instructions have been doing: they’ve been allocat-
ing storage for local variables and all the parameter space for the procedures
being called as well as keeping the stack 16-byte-aligned.

Here’s one last example of a procedure that uses the standard entry/exit
procedure to set up locals and parameter space:

rbxSave equ [rbp-8]
someProc proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Also leave stack 16-byte-aligned
 mov rbxSave, rbx ; Preserve RBX
 .
 .
 .
 lea rcx, fmtStr
 mov rdx, rbx ; Print value in RBX (presumably)
 call printf
 .
 .
 .
 mov rbx, rbxSave ; Restore RBX
 leave ; Clean up stack
 ret
someProc endp

270 Chapter 5

However, if you use this trick to allocate storage for your procedures’
parameters, you will not be able to use the push instructions to move the
data onto the stack. The storage has already been allocated on the stack
for the parameters; you must use mov instructions to copy the data onto the
stack (using the [RSP+constant] addressing mode) when copying the fifth
and greater parameters.

 5.8 Functions and Function Results
Functions are procedures that return a result to the caller. In assembly lan-
guage, few syntactical differences exist between a procedure and a function,
which is why MASM doesn’t provide a specific declaration for a function.
Nevertheless, there are some semantic differences; although you can declare
them the same way in MASM, you use them differently.

Procedures are a sequence of machine instructions that fulfill a task. The
result of the execution of a procedure is the accomplishment of that activity.
Functions, on the other hand, execute a sequence of machine instructions
specifically to compute a value to return to the caller. Of course, a function
can perform an activity as well, and procedures can undoubtedly compute
values, but the main difference is that the purpose of a function is to return a
computed result; procedures don’t have this requirement.

In assembly language, you don’t specifically define a function by using
special syntax. To MASM, everything is a proc. A section of code becomes
a function by virtue of the fact that the programmer explicitly decides to
return a function result somewhere (typically in a register) via the proce-
dure’s execution.

The x86-64’s registers are the most common place to return function
results. The strlen() routine in the C Standard Library is a good example
of a function that returns a value in one of the CPU’s registers. It returns
the length of the string (whose address you pass as a parameter) in the
RAX register.

By convention, programmers try to return 8-, 16-, 32-, and 64-bit (non-
real) results in the AL, AX, EAX, and RAX registers, respectively. This
is where most high-level languages return these types of results, and it’s
where the Microsoft ABI states that you should return function results. The
exception is floating-point values. The Microsoft ABI states that you should
return floating-point values in the XMM0 register.

Of course, there is nothing particularly sacred about the AL, AX, EAX,
and RAX registers. You could return function results in any register if it is more
convenient to do so. Of course, if you’re calling a Microsoft ABI–compliant
function (such as strlen()), you have no choice but to expect the function’s
return result in the RAX register (strlen() returns a 64-bit integer in RAX, for
example).

If you need to return a function result that is larger than 64 bits,
you obviously must return it somewhere other than in RAX (which can
hold only 64-bit values). For values slightly larger than 64 bits (for example,
128 bits or maybe even as many as 256 bits), you can split the result into
pieces and return those parts in two or more registers. It is common to

Procedures 271

see functions returning 128-bit values in the RDX:RAX register pair. Of
course, the XMM/YMM registers are another good place to return large
values. Just remember that these schemes are not Microsoft ABI–compliant,
so they’re practical only when calling code you’ve written.

If you need to return a large object as a function result (say, an array
of 1000 elements), you obviously are not going to be able to return the func-
tion result in the registers. You can deal with large function return results
in two common ways: either pass the return value as a reference parameter
or allocate storage on the heap (for example, using the C Standard Library
malloc() function) for the object and return a pointer to it in a 64-bit register.
Of course, if you return a pointer to storage you’ve allocated on the heap, the
calling program must free this storage when it has finished with it.

 5.9 Recursion
Recursion occurs when a procedure calls itself. The following, for example,
is a recursive procedure:

Recursive proc

 call Recursive
 ret

Recursive endp

Of course, the CPU will never return from this procedure. Upon entry
into Recursive, this procedure will immediately call itself again, and control
will never pass to the end of the procedure. In this particular case, runaway
recursion results in an infinite loop.14

Like a looping structure, recursion requires a termination condition in
order to stop infinite recursion. Recursive could be rewritten with a termina-
tion condition as follows:

Recursive proc

 dec eax
 jz allDone
 call Recursive
allDone:
 ret

Recursive endp

This modification to the routine causes Recursive to call itself the number
of times appearing in the EAX register. On each call, Recursive decrements the
EAX register by 1 and then calls itself again. Eventually, Recursive decrements
EAX to 0 and returns from each call until it returns to the original caller.

14. Well, not really infinite. The stack will overflow, and Windows will raise an exception at
that point.

272 Chapter 5

So far, however, there hasn’t been a real need for recursion. After all,
you could efficiently code this procedure as follows:

Recursive proc
iterLp:
 dec eax
 jnz iterLp
 ret
Recursive endp

Both examples would repeat the body of the procedure the number
of times passed in the EAX register.15 As it turns out, there are only a few
recursive algorithms that you cannot implement in an iterative fashion.
However, many recursively implemented algorithms are more efficient than
their iterative counterparts, and most of the time the recursive form of the
algorithm is much easier to understand.

The quicksort algorithm is probably the most famous algorithm that usu-
ally appears in recursive form. A MASM implementation of this algorithm
appears in Listing 5-15.

; Listing 5-15

; Recursive quicksort.

 option casemap:none

nl = 10
numElements = 10

 .const
ttlStr byte "Listing 5-15", 0
fmtStr1 byte "Data before sorting: ", nl, 0
fmtStr2 byte "%d " ; Use nl and 0 from fmtStr3
fmtStr3 byte nl, 0
fmtStr4 byte "Data after sorting: ", nl, 0

 .data
theArray dword 1,10,2,9,3,8,4,7,5,6

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

15. The latter version will do it considerably faster because it doesn’t have the overhead of the
call/ret instructions.

Procedures 273

; quicksort - Sorts an array using the
; quicksort algorithm.

; Here's the algorithm in C, so you can follow along:

 void quicksort(int a[], int low, int high)
 {
 int i,j,Middle;
 if(low < high)
 {
 Middle = a[(low+high)/2];
 i = low;
 j = high;
 do
 {
 while(a[i] <= Middle) i++;
 while(a[j] > Middle) j--;
 if(i <= j)
 {
 swap(a[i],a[j]);
 i++;
 j--;
 }
 } while(i <= j);

 // Recursively sort the two subarrays.

 if(low < j) quicksort(a,low,j-1);
 if(i < high) quicksort(a,j+1,high);
 }
 }

; Args:
 ; RCX (_a): Pointer to array to sort
 ; RDX (_lowBnd): Index to low bound of array to sort
 ; R8 (_highBnd): Index to high bound of array to sort

_a equ [rbp+16] ; Ptr to array
_lowBnd equ [rbp+24] ; Low bounds of array
_highBnd equ [rbp+32] ; High bounds of array

; Local variables (register save area):

saveR9 equ [rbp+40] ; Shadow storage for R9
saveRDI equ [rbp-8]
saveRSI equ [rbp-16]
saveRBX equ [rbp-24]
saveRAX equ [rbp-32]

; Within the procedure body, these registers
; have the following meaning:

; RCX: Pointer to base address of array to sort.
; EDX: Lower bound of array (32-bit index).
; R8D: Higher bound of array (32-bit index).

274 Chapter 5

; EDI: index (i) into array.
; ESI: index (j) into array.
; R9D: Middle element to compare against.

quicksort proc
 push rbp
 mov rbp, rsp
 sub rsp, 32

; This code doesn't mess with RCX. No
; need to save it. When it does mess
; with RDX and R8, it saves those registers
; at that point.

; Preserve other registers we use:

 mov saveRAX, rax
 mov saveRBX, rbx
 mov saveRSI, rsi
 mov saveRDI, rdi
 mov saveR9, r9

 mov edi, edx ; i = low
 mov esi, r8d ; j = high

; Compute a pivotal element by selecting the
; physical middle element of the array.

 lea rax, [rsi+rdi*1] ; RAX = i+j
 shr rax, 1 ; (i + j)/2
 mov r9d, [rcx][rax*4] ; Middle = ary[(i + j)/2]

; Repeat until the EDI and ESI indexes cross one
; another (EDI works from the start toward the end
; of the array, ESI works from the end toward the
; start of the array).

rptUntil:

; Scan from the start of the array forward
; looking for the first element greater or equal
; to the middle element):

 dec edi ; To counteract inc, below
while1: inc edi ; i = i + 1
 cmp r9d, [rcx][rdi*4] ; While Middle > ary[i]
 jg while1

; Scan from the end of the array backward, looking
; for the first element that is less than or equal
; to the middle element.

 inc esi ; To counteract dec, below
while2: dec esi ; j = j - 1

Procedures 275

 cmp r9d, [rcx][rsi*4] ; While Middle < ary[j]
 jl while2

; If we've stopped before the two pointers have
; passed over one another, then we've got two
; elements that are out of order with respect
; to the middle element, so swap these two elements.

 cmp edi, esi ; If i <= j
 jnle endif1

 mov eax, [rcx][rdi*4] ; Swap ary[i] and ary[j]
 mov r9d, [rcx][rsi*4]
 mov [rcx][rsi*4], eax
 mov [rcx][rdi*4], r9d

 inc edi ; i = i + 1
 dec esi ; j = j - 1

endif1: cmp edi, esi ; Until i > j
 jng rptUntil

; We have just placed all elements in the array in
; their correct positions with respect to the middle
; element of the array. So all elements at indexes
; greater than the middle element are also numerically
; greater than this element. Likewise, elements at
; indexes less than the middle (pivotal) element are
; now less than that element. Unfortunately, the
; two halves of the array on either side of the pivotal
; element are not yet sorted. Call quicksort recursively
; to sort these two halves if they have more than one
; element in them (if they have zero or one elements, then
; they are already sorted).

 cmp edx, esi ; If lowBnd < j
 jnl endif2

 ; Note: a is still in RCX,
 ; low is still in RDX.
 ; Need to preserve R8 (high).
 ; Note: quicksort doesn't require stack alignment.

 push r8
 mov r8d, esi
 call quicksort ; (a, low, j)
 pop r8

endif2: cmp edi, r8d ; If i < high
 jnl endif3

 ; Note: a is still in RCX,
 ; High is still in R8D.
 ; Need to preserve RDX (low).
 ; Note: quicksort doesn't require stack alignment.

276 Chapter 5

 push rdx
 mov edx, edi
 call quicksort ; (a, i, high)
 pop rdx

; Restore registers and leave:

endif3:
 mov rax, saveRAX
 mov rbx, saveRBX
 mov rsi, saveRSI
 mov rdi, saveRDI
 mov r9, saveR9
 leave
 ret
quicksort endp

; Little utility to print the array elements:

printArray proc
 push r15
 push rbp
 mov rbp, rsp
 sub rsp, 40 ; Shadow parameters

 lea r9, theArray
 mov r15d, 0
whileLT10: cmp r15d, numElements
 jnl endwhile1

 lea rcx, fmtStr2
 lea r9, theArray
 mov edx, [r9][r15*4]
 call printf

 inc r15d
 jmp whileLT10

endwhile1: lea rcx, fmtStr3
 call printf
 leave
 pop r15
 ret
printArray endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 32 ; Shadow storage

Procedures 277

; Display unsorted array:

 lea rcx, fmtStr1
 call printf
 call printArray

; Sort the array:

 lea rcx, theArray
 xor rdx, rdx ; low = 0
 mov r8d, numElements-1 ; high = 9
 call quicksort ; (theArray, 0, 9)

; Display sorted results:

 lea rcx, fmtStr4
 call printf
 call printArray

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 5-15: Recursive quicksort program

Here is the build command and sample output for the quicksort program:

C:\>build listing5-15

C:\>echo off
 Assembling: listing5-15.asm
c.cpp

C:\>listing5-15
Calling Listing 5-15:
Data before sorting:
1
10
2
9
3
8
4
7
5
6

Data after sorting:
1
2
3

278 Chapter 5

4
5
6
7
8
9
10

Listing 5-15 terminated

Note that this quicksort procedure uses registers for all local variables.
The quicksort function is a leaf function; it doesn’t call any other functions.
Therefore, it doesn’t need to align the stack on a 16-byte boundary. Also, as
is a good idea for any pure-assembly procedure (that will be called only by
other assembly language procedures), this quicksort procedure preserves
all the registers whose values it modifies (even the volatile registers). That’s
just good programming practice even if it is a little less efficient.

 5.10 Procedure Pointers
The x86-64 call instruction allows three basic forms: PC-relative calls (via a
procedure name), indirect calls through a 64-bit general-purpose register,
and indirect calls through a quad-word pointer variable. The call instruc-
tion supports the following (low-level) syntax:

call proc_name ; Direct call to procedure proc_name
call reg64 ; Indirect call to procedure whose address
 ; appears in the reg64
call qwordVar ; Indirect call to the procedure whose address
 ; appears in the qwordVar quad-word variable

We’ve been using the first form throughout this book, so there is little
need to discuss it here. The second form, the register indirect call, calls
the procedure whose address is held in the specified 64-bit register. The
address of a procedure is the byte address of the first instruction to execute
within that procedure. On a von Neumann architecture machine (like the
x86-64), the system stores machine instructions in memory along with other
data. The CPU fetches the instruction opcode values from memory prior
to executing them. When you execute the register indirect call instruction,
the x86-64 first pushes the return address onto the stack and then begins
fetching the next opcode byte (instruction) from the address specified by
the register’s value.

The third form of the preceding call instruction fetches the address
of a procedure’s first instruction from a quad-word variable in memory.
Although this instruction suggests that the call uses the direct addressing of
the procedure, you should realize that any legal memory addressing mode
is also legal here. For example, call procPtrTable[rbx*8] is perfectly legiti-
mate; this statement fetches the quad word from the array of quad words
(procPtrTable) and calls the procedure whose address is the value contained
within that quad word.

Procedures 279

MASM treats procedure names like static objects. Therefore, you can
compute the address of a procedure by using the offset operator along with
the procedure’s name or by using the lea instruction. For example, offset
proc_name is the address of the very first instruction of the proc_name pro-
cedure. So, all three of the following code sequences wind up calling the
proc_name procedure:

call proc_name
 .
 .
 .
mov rax, offset proc_name
call rax
 .
 .
 .
lea rax, proc_name
call rax

Because the address of a procedure fits in a 64-bit object, you can store
such an address into a quad-word variable; in fact, you can initialize a quad-
word variable with the address of a procedure by using code like the following:

p proc
 .
 .
 .
p endp
 .
 .
 .
 .data
ptrToP qword offset p
 .
 .
 .
 call ptrToP ; Calls p if ptrToP has not changed

As with all pointer objects, you should not attempt to indirectly call a
procedure through a pointer variable unless you’ve initialized that variable
with an appropriate address. You can initialize a procedure pointer variable
in two ways: .data and .const objects allow an initializer, or you can compute
the address of a routine (as a 64-bit value) and store that 64-bit address
directly into the procedure pointer at runtime. The following code frag-
ment demonstrates both ways to initialize a procedure pointer:

 .data
ProcPointer qword offset p ; Initialize ProcPointer with
 ; the address of p
 .
 .
 .
 call ProcPointer ; First invocation calls p

280 Chapter 5

; Reload ProcPointer with the address of q.

 lea rax, q
 mov ProcPointer, rax
 .
 .
 .
 call ProcPointer ; This invocation calls q

Although all the examples in this section use static variable declarations
(.data, .const, .data?), don’t think you can declare simple procedure pointers
only in the static variable declaration sections. You can also declare proce-
dure pointers (which are just qword variables) as local variables, pass them
as parameters, or declare them as fields of a record or a union.

 5.11 Procedural Parameters
One place where procedure pointers are quite invaluable is in parameter
lists. Selecting one of several procedures to call by passing the address of a
procedure is a common operation. Of course, a procedural parameter is just
a quad-word parameter containing the address of a procedure, so this is
really no different from using a local variable to hold a procedure pointer
(except, of course, that the caller initializes the parameter with the address
of the procedure to call indirectly).

When using parameter lists with the MASM proc directive, you can spec-
ify a procedure pointer type by using the proc type specifier; for example:

procWithProcParm proc parm1:word, procParm:proc

You can call the procedure pointed at by this parameter by using the
following call instruction:

call procParm

 5.12 Saving the State of the Machine, Part II
“Saving the State of the Machine” on page 220 described the use of the push
and pop instructions to save the state of the registers across a procedure call
(callee register preservation). While this is certainly one way to preserve
registers across a procedure call, it certainly isn’t the only way, nor is it
always (or even usually) the best way to save and restore registers.

The push and pop instructions have a couple of major benefits: they are
short (pushing or popping a 64-bit register uses a 1-byte instruction opcode),
and they work with constant and memory operands. These instructions do
have drawbacks, however: they modify the stack pointer, they work with
only 2- or 8-byte registers, they work only with the general-purpose integer
registers (and the FLAGS register), and they might be slower than an equiva-
lent instruction that moves the register data onto the stack. Often, a better

Procedures 281

solution is to reserve storage in the local variable space and simply move the
registers to/from those local variables on the stack.

Consider the following procedure declaration that preserves registers
by using push and pop instructions:

preserveRegs proc
 push rax
 push rbx
 push rcx
 .
 .
 .
 pop rcx
 pop rbx
 pop rax
 ret
preserveRegs endp

You can achieve the same thing with the following code:

preserveRegs proc
saveRAX textequ <[rsp+16]>
saveRBX textequ <[rsp+8]>
saveRCX textequ <[rsp]>

 sub rsp, 24 ; Make room for locals
 mov saveRAX, rax
 mov saveRBX, rbx
 mov saveRCX, rcx
 .
 .
 .
 mov rcx, saveRCX
 mov rbx, saveRBX
 mov rax, saveRAX
 add rsp, 24 ; Deallocate locals
 ret
preserveRegs endp

The disadvantage to this code is that two extra instructions are needed
to allocate (and deallocate) storage on the stack for the local variables that
hold the register values. The push and pop instructions automatically allocate
this storage, sparing you from having to supply these extra instructions. For
a simple situation such as this, the push and pop instructions probably are the
better solution.

For more complex procedures, especially those that expect parameters
on the stack or have local variables, the procedure is already setting up
the activation record, and subtracting a larger number from RSP doesn’t
require any additional instructions:

 option prologue:PrologueDef
 option epilogue:EpilogueDef
preserveRegs proc parm1:byte, parm2:dword

282 Chapter 5

 local localVar1:dword, localVar2:qword
 local saveRAX:qword, saveRBX:qword
 local saveRCX:qword

 mov saveRAX, rax
 mov saveRBX, rbx
 mov saveRCX, rcx
 .
 .
 .
 mov rcx, saveRCX
 mov rbx, saveRBX
 mov rax, saveRAX
 ret
preserveRegs endp

MASM automatically generates the code to allocate the storage for
saveRAX, saveRBX, and saveRCX (along with all the other local variables) on
the stack, as well as clean up the local storage on return.

When allocating local variables on the stack along with storage for
any parameters a procedure might pass to functions it calls, pushing and
popping registers to preserve them becomes problematic. For example,
consider the following procedure:

callsFuncs proc
saveRAX textequ <[rbp-8]>
saveRBX textequ <[rbp-16]>
saveRCX textequ <[rbp-24]>
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Make room for locals and parms
 mov saveRAX, rax ; Preserve registers in
 mov saveRBX, rbx ; local variables
 mov saveRCX, rcx

 .
 .
 .
 mov [rsp], rax ; Store parm1
 mov [rsp+8], rbx ; Store parm2
 mov [rsp+16], rcx ; Store parm3
 call theFunction
 .
 .
 .
 mov rcx, saveRCX ; Restore registers
 mov rbx, saveRBX
 mov rax, saveRAX
 leave ; Deallocate locals
 ret
callsFuncs endp

Procedures 283

Had this function pushed RAX, RBX, and RCX on the stack after
subtracting 48 from RSP, those save registers would have wound up on the
stack where the function passes parm1, parm2, and parm3 to theFunction. That’s
why the push and pop instructions don’t work well when working with func-
tions that build an activation record containing local storage.

 5.13 Microsoft ABI Notes
This chapter has all but completed the discussion of the Microsoft calling
conventions. Specifically, a Microsoft ABI–compliant function must follow
these rules:

•	 (Scalar) parameters must be passed in RCX, RDX, R8, and R9, then
pushed on the stack. Floating-point parameters substitute XMM0,
XMM1, XMM2, and XMM3 for RCX, RDX, R8, and R9, respectively.

•	 Varargs functions (functions with a variable number of parameters,
such as printf()) and unprototyped functions must pass floating-point
values in both the general-purpose (integer) registers and in the XMM
registers. (For what it’s worth, printf() seems to be happy with just pass-
ing the floating-point values in the integer registers, though that might
be a happy accident with the version of MSVC used in the preparation
of this book.)

•	 All parameters must be less than or equal to 64 bits in size; larger
parameters must be passed by reference.

•	 On the stack, parameters always consume 64 bits (8 bytes) regardless of
their actual size; the HO bits of smaller objects are undefined.

•	 Immediately before a call instruction, the stack must be aligned on a
16-byte boundary.

•	 Registers RAX, RCX, RDX, R8, R9, R10, R11, and XMM0/YMM0 to
XMM5/YMM5 are volatile. The caller must preserve the registers
across a call if it needs their values to be saved across the call. Also note
that the HO 128 bits of YMM0 to YMM15 are volatile, and the caller
must preserve these registers if it needs these bits to be preserved across
a call.

•	 Registers RBX, RSI, RDI, RBP, RSP, R12 to R15, and XMM6 to XMM15
are nonvolatile. The callee must preserve these registers if it changes
their values. As noted earlier, while YMM0L to YMM15L (the LO 128 bits)
are nonvolatile, the upper 128 bits of these registers can be considered
volatile. However, if a procedure is saving the LO 128 bits of YMM0 to
YMM15, it may as well preserve all the bits (this inconsistency in the
Microsoft ABI is to support legacy code running on CPUs that don’t
support the YMM registers).

•	 Scalar function returns (64 bits or fewer) come back in the RAX reg-
ister. If the data type is smaller than 64 bits, the HO bits of RAX are
undefined.

284 Chapter 5

•	 Functions that return values larger than 64 bits must allocate storage
for the return value and pass the address of that storage in the first
parameter (RCX) to the function. On return, the function must return
this pointer in the RAX register.

•	 Functions return floating-point results (double or single) in the XMM0
register.

 5.14 For More Information
The electronic edition of the 32-bit edition this book (found at https://artofasm
.randallhyde.com/) contains a whole “volume” on advanced and intermediate
procedures. Though that book covers 32-bit assembly language programming,
the concepts apply directly to 64-bit assembly by simply using 64-bit addresses
rather than 32-bit addresses.

While the information appearing in this chapter covers 99 percent of
the material that assembly programmers typically use, there is additional
information on procedures and parameters that you may find interesting.
In particular, the electronic edition covers additional parameter-passing
mechanisms (pass by value/result, pass by result, pass by name, and pass by
lazy evaluation) and goes into greater detail about the places you can pass
parameters. The electronic version also covers iterators, thunks, and other
advanced procedure types. Finally, a good compiler construction textbook
will cover additional details about runtime support for procedures.

For more information on the Microsoft ABI, search for Microsoft calling
conventions on the Microsoft website (or on the internet).

 5.15 Test Yourself

1. Explain, step by step, how the call instruction works.

2. Explain, step by step, how the ret instruction works.

3. What does the ret instruction, with a numeric constant operand, do?

4. What value is pushed on the stack for a return address?

5. What is namespace pollution?

6. How do you define a single global symbol in a procedure?

7. How would you make all symbols in a procedure non-scoped (that is, all
the symbols in a procedure would be global)?

8. Explain how to use the push and pop instructions to preserve registers in
a function.

9. What is the main disadvantage of caller preservation?

10. What is the main problem with callee preservation?

11. What happens if you fail to pop a value in a function that you pushed
on the stack at the beginning of the function?

https://artofasm.randallhyde.com/
https://artofasm.randallhyde.com/

Procedures 285

12. What happens if you pop extra data off the stack in a function (data
that you did not push on the stack in the function)?

13. What is an activation record?

14. What register usually points at an activation record, providing access to
the data in that record?

15. How many bytes are reserved for a typical parameter on the stack when
using the Microsoft ABI?

16. What is the standard entry sequence for a procedure (the instructions)?

17. What is the standard exit sequence for a procedure (the instructions)?

18. What instruction can you use to force 16-byte alignment of the stack
pointer if the current value in RSP is unknown?

19. What is the scope of a variable?

20. What is the lifetime of a variable?

21. What is an automatic variable?

22. When does the system allocate storage for an automatic variable?

23. Explain two ways to declare local/automatic variables in a procedure.

24. Given the following procedure source code snippet, provide the offsets
for each of the local variables:

procWithLocals proc
 local var1:word, local2:dword, dVar:byte
 local qArray[2]:qword, rlocal[2]:real4
 local ptrVar:qword
 .
 . ; Other statements in the procedure.
 .
 procWithLocals endp

25. What statement(s) would you insert in the source file to tell MASM to
automatically generate the standard entry and standard exit sequences
for a procedure?

26. When MASM automatically generates a standard entry sequence for a
procedure, how does it determine where to put the code sequence?

27. When MASM automatically generates a standard exit sequence for a
procedure, how does it determine where to put the code sequence?

28. What value does a pass-by-value parameter pass to a function?

29. What value does a pass-by-reference parameter pass to a function?

30. When passing four integer parameters to a function, where does the
Windows ABI state those parameters are to be passed?

31. When passing a floating-point value as one of the first four parameters,
where does the Windows ABI insist the values will be passed?

32. When passing more than four parameters to a function, where does the
Windows ABI state the parameters will be passed?

286 Chapter 5

33. What is the difference between a volatile and nonvolatile register in the
Windows ABI?

34. Which registers are volatile in the Windows ABI?

35. Which registers are nonvolatile in the Windows ABI?

36. When passing parameters in the code stream, how does a function access
the parameter data?

37. What is a shadow parameter?

38. How many bytes of shadow storage will a function require if it has a single
32-bit integer parameter?

39. How many bytes of shadow storage will a function require if it has two
64-bit integer parameters?

40. How many bytes of shadow storage will a function require if it has six
64-bit integer parameters?

41. What offsets will MASM associate with each of the parameters in the
following proc declaration?

procWithParms proc parm1:byte, parm2:word, parm3:dword, parm4:qword

42. Suppose that parm4 in the preceding question is a pass-by-reference
character parameter. How would you load that character into the AL
register (provide a code sequence)?

43. What offsets will MASM associate with each of the local variables in the
following proc snippet?

procWithLocals proc
 local lclVar1:byte, lclVar2:word, lclVar3:dword,
lclVar4:qword

44. What is the best way to pass a large array to a procedure?

45. What does ABI stand for?

46. Where is the most common place to return a function result?

47. What is a procedural parameter?

48. How would you call a procedure passed as a parameter to a function/
procedure?

49. If a procedure has local variables, what is the best way to preserve
registers within that procedure?

6
A R I T H M E T I C

This chapter discusses arithmetic computa-
tion in assembly language. By the end of

this chapter, you should be able to translate
arithmetic expressions and assignment state-

ments from high-level languages like Pascal and C/C++
into x86-64 assembly language.

 6.1 x86-64 Integer Arithmetic Instructions
Before you learn how to encode arithmetic expressions in assembly lan-
guage, it would be a good idea to first discuss the remaining arithmetic
instructions in the x86-64 instruction set. Previous chapters have covered
most of the arithmetic and logical instructions, so this section covers the
few remaining instructions you’ll need.

288 Chapter 6

6.1.1 Sign- and Zero-Extension Instructions
Several arithmetic operations require sign- or zero-extended values before
the operation. So let’s first consider the sign- and zero-extension instruc-
tions. The x86-64 provides several instructions to sign- or zero-extend
a smaller number to a larger number. Table 6-1 lists instructions that will
sign-extend the AL, AX, EAX, and RAX registers.

Table 6-1: Instructions for Extending AL, AX, EAX, and RAX

Instruction Explanation

cbw Converts the byte in AL to a word in AX via sign extension

cwd Converts the word in AX to a double word in DX:AX via sign extension

cdq Converts the double word in EAX to a quad word in EDX:EAX via sign
extension

cqo Converts the quad word in RAX to an octal word in RDX:RAX via sign
extension

cwde Converts the word in AX to a double word in EAX via sign extension

cdqe Converts the double word in EAX to a quad word in RAX via sign
extension

Note that the cwd (convert word to double word) instruction does not sign-
extend the word in AX to a double word in EAX. Instead, it stores the HO word
of the sign extension into the DX register (the notation DX:AX indicates that
you have a double-word value, with DX containing the upper 16 bits and AX
containing the lower 16 bits of the value). If you want the sign extension of AX
to go into EAX, you should use the cwde (convert word to double word, extended)
instruction. In a similar fashion, the cdq instruction sign-extends EAX into
EDX:EAX. Use the cdqe instruction if you want to sign-extend EAX into RAX.

For general sign-extension operations, the x86-64 provides an exten-
sion of the mov instruction, movsx (move with sign extension), that copies data
and sign-extends the data while copying it. The movsx instruction’s syntax is
similar to that of mov:

movsxd dest, source ; If dest is 64 bits and source is 32 bits
movsx dest, source ; For all other operand combinations

The big difference in syntax between these instructions and the mov
instruction is that the destination operand must usually be larger than the
source operand.1 For example, if the source operand is a byte, then the desti-
nation operand must be a word, dword, or qword. The destination operand
must also be a register; the source operand, however, can be a memory
location.2 The movsx instruction does not allow constant operands.

1. In two special cases, the operands are the same size. Those two instructions, however,
aren’t especially useful.

2. This doesn’t turn out to be much of a limitation because sign extension almost always pre-
cedes an arithmetic operation that must take place in a register.

Arithmetic 289

For whatever reason, MASM requires a different instruction mnemonic
(instruction name) when sign-extending a 32-bit operand into a 64-bit reg-
ister (movsxd rather than movsx).

To zero-extend a value, you can use the movzx instruction. It does not
have the restrictions of movsx; as long as the destination operand is larger
than the source operand, the instruction works fine. It allows 8 to 16, 32, or
64 bits, and 16 to 32 or 64 bits. There is no 32- to 64-bit version (it turns out
this is unnecessary).

The x86-64 CPUs, for historical reasons, will always zero-extend a regis-
ter from 32 bits to 64 bits when performing 32-bit operations. Therefore, to
zero-extend a 32-bit register into a 64-bit register, you need only move the
(32-bit) register into itself; for example:

mov eax, eax ; Zero-extends EAX into RAX

Zero-extending certain 8-bit registers (AL, BL, CL, and DL) into their
corresponding 16-bit registers is easily accomplished without using movzx by
loading the complementary HO register (AH, BH, CH, or DH) with 0. To
zero-extend AX into DX:AX or EAX into EDX:EAX, all you need to do is
load DX or EDX with 0.3

Because of instruction-encoding limitations, the x86-64 does not allow
you to zero- or sign-extend the AH, BH, CH, or DH registers into any of the
64-bit registers.

6.1.2 The mul and imul Instructions
You’ve already seen a subset of the imul instructions available in the x86-64
instruction set (see “The imul Instruction” in Chapter 4). This section presents
the extended-precision version of imul along with the unsigned mul instruction.

The multiplication instructions provide you with another taste of
irregularity in the x86-64’s instruction set. Instructions like add, sub, and
many others in the x86-64 instruction set support two operands, just like
the mov instruction. Unfortunately, there weren’t enough bits in the origi-
nal 8086 opcode byte to support all instructions, so the x86-64 treats
the mul (unsigned multiply) and imul (signed integer multiply) instructions as
single-operand instructions, just like the inc, dec, and neg instructions.
Of course, multiplication is a two-operand function. To work around this
fact, the x86-64 always assumes the accumulator (AL, AX, EAX, or RAX)
is the destination operand.

Another problem with the mul and imul instructions is that you cannot
use them to multiply the accumulator by a constant. Intel quickly discovered
the need to support multiplication by a constant and added the more gen-
eral versions of the imul instruction to overcome this problem. Nevertheless,
you must be aware that the basic mul and imul instructions do not support the
full range of operands as the imul appearing in Chapter 4 does.

3. Zero-extending into DX:AX or EDX:EAX is just as necessary as the cwd and cdq instruc-
tions, as you will eventually see.

290 Chapter 6

The multiply instruction has two forms: unsigned multiplication (mul)
and signed multiplication (imul). Unlike addition and subtraction, you need
separate instructions for signed and unsigned operations.

The single-operand multiply instructions take the following forms:
Unsigned multiplication:

mul reg8 ; Returns AX
mul reg16 ; Returns DX:AX
mul reg32 ; Returns EDX:EAX
mul reg64 ; Returns RDX:RAX

mul mem8 ; Returns AX
mul mem16 ; Returns DX:AX
mul mem32 ; Returns EDX:EAX
mul mem64 ; Returns RDX:RAX

Signed (integer) multiplication:

imul reg8 ; Returns AX
imul reg16 ; Returns DX:AX
imul reg32 ; Returns EDX:EAX
imul reg64 ; Returns RDX:RAX

imul mem8 ; Returns AX
imul mem16 ; Returns DX:AX
imul mem32 ; Returns EDX:EAX
imul mem64 ; Returns RDX:RAX

The result of multiplying two n -bit values may require as many as
2 × n bits. Therefore, if the operand is an 8-bit quantity, the result could
require 16 bits. Likewise, a 16-bit operand produces a 32-bit result, a 32-bit
operand produces 64 bits, and a 64-bit operand requires as many as 128 bits
to hold the result. Table 6-2 lists the various computations.

Table 6-2: mul and imul Operations

Instruction Computes

mul operand8 AX = AL × operand8 (unsigned)

imul operand8 AX = AL × operand8 (signed)

mul operand16 DX:AX = AX × operand16 (unsigned)

imul operand16 DX:AX = AX × operand16 (signed)

mul operand32 EDX:EAX = EAX × operand32 (unsigned)

imul operand32 EDX:EAX = EAX × operand32 (signed)

mul operand64 RDX:RAX = RAX × operand64 (unsigned)

imul operand64 RDX:RAX = RAX × operand64 (signed)

If an 8×8-, 16×16-, 32×32-, or 64×64-bit product requires more than 8,
16, 32, or 64 bits (respectively), the mul and imul instructions set the carry
and overflow flags. mul and imul scramble the sign and zero flags.

Arithmetic 291

N O T E The sign and zero flags do not contain meaningful values after the execution of these
two instructions.

You’ll use the single-operand mul and imul instructions quite a lot
when you learn about extended-precision arithmetic in Chapter 8. Unless
you’re doing multiprecision work, however, you’ll probably want to use the
more generic multi-operand version of the imul instruction in place of the
extended-precision mul or imul. However, the generic imul (see Chapter 4)
is not a complete replacement for these two instructions; in addition to the
number of operands, several differences exist. The following rules apply
specifically to the generic (multi-operand) imul instruction:

•	 There isn’t an 8×8-bit multi-operand imul instruction available.

•	 The generic imul instruction does not produce a 2×n-bit result, but trun-
cates the result to n bits. That is, a 16×16-bit multiplication produces a
16-bit result. Likewise, a 32×32-bit multiplication produces a 32-bit result.
These instructions set the carry and overflow flags if the result does not
fit into the destination register.

6.1.3 The div and idiv Instructions
The x86-64 divide instructions perform a 128/64-bit division, a 64/32-bit
division, a 32/16-bit division, or a 16/8-bit division. These instructions take
the following forms:

div reg8
div reg16
div reg32
div reg64

div mem8
div mem16
div mem32
div mem64

idiv reg8
idiv reg16
idiv reg32
idiv reg64

idiv mem8
idiv mem16
idiv mem32
idiv mem64

The div instruction is an unsigned division operation. If the operand
is an 8-bit operand, div divides the AX register by the operand, leaving
the quotient in AL and the remainder (modulo) in AH. If the operand is a
16-bit quantity, the div instruction divides the 32-bit quantity in DX:AX by
the operand, leaving the quotient in AX and the remainder in DX. With

292 Chapter 6

32-bit operands, div divides the 64-bit value in EDX:EAX by the operand,
leaving the quotient in EAX and the remainder in EDX. Finally, with 64-bit
operands, div divides the 128-bit value in RDX:RAX by the operand, leav-
ing the quotient in RAX and the remainder in RDX.

There is no variant of the div or idiv instructions that allows you to
divide a value by a constant. If you want to divide a value by a constant, you
need to create a memory object (preferably in the .const section) that is ini-
tialized with the constant, and then use that memory value as the div/idiv
operand. For example:

 .const
ten dword 10
 .
 .
 .
 div ten ; Divides EDX:EAX by 10

The idiv instruction computes a signed quotient and remainder. The
syntax for the idiv instruction is identical to div (except for the use of the
idiv mnemonic), though creating signed operands for idiv may require a
different sequence of instructions prior to executing idiv than for div.

You cannot, on the x86-64, simply divide one unsigned 8-bit value by
another. If the denominator is an 8-bit value, the numerator must be a
16-bit value. If you need to divide one unsigned 8-bit value by another, you
must zero-extend the numerator to 16 bits by loading the numerator into
the AL register and then moving 0 into the AH register. Failing to zero-extend
AL before executing div may cause the x86-64 to produce incorrect results! When
you need to divide two 16-bit unsigned values, you must zero-extend the
AX register (which contains the numerator) into the DX register. To do
this, just load 0 into the DX register. If you need to divide one 32-bit value
by another, you must zero-extend the EAX register into EDX (by loading
a 0 into EDX) before the division. Finally, to divide one 64-bit number by
another, you must zero-extend RAX into RDX (for example, using an xor
rdx, rdx instruction) prior to the division.

When dealing with signed integer values, you will need to sign-extend
AL into AX, AX into DX, EAX into EDX, or RAX into RDX before execut-
ing idiv. To do so, use the cbw, cwd, cdq, or cqo instructions.4 Failure to do so
may produce incorrect results.

The x86-64’s divide instructions have one other issue: you can get a fatal
error when using this instruction. First, of course, you can attempt to divide
a value by 0. Another problem is that the quotient may be too large to fit
into the RAX, EAX, AX, or AL register. For example, the 16/8-bit division
8000h/2 produces the quotient 4000h with a remainder of 0. 4000h will
not fit into 8 bits. If this happens, or you attempt to divide by 0, the x86-64
will generate a division exception or integer overflow exception. This usu-
ally means your program will crash. If this happens to you, chances are you

4. You could also use movsx to sign-extend AL into AX.

Arithmetic 293

didn’t sign- or zero-extend your numerator before executing the division
operation. Because this error may cause your program to crash, you should
be very careful about the values you select when using division.

The x86-64 leaves the carry, overflow, sign, and zero flags undefined
after a division operation. Therefore, you cannot test for problems after a
division operation by checking the flag bits.

6.1.4 The cmp Instruction, Revisited
As noted in “The cmp Instruction and Corresponding Conditional Jumps”
in Chapter 2, the cmp instruction updates the x86-64’s flags according to the
result of the subtraction operation (leftOperand - rightOperand). The x86-64
sets the flags in an appropriate fashion so that we can read this instruction
as “compare leftOperand to rightOperand.” You can test the result of the com-
parison by using the conditional set instructions to check the appropriate
flags in the FLAGS register (see “The setcc Instructions” on page 295) or
the conditional jump instructions (Chapter 2 or Chapter 7).

Probably the first place to start when exploring the cmp instruction
is to look at exactly how it affects the flags. Consider the following cmp
instruction:

cmp ax, bx

This instruction performs the computation AX – BX and sets the flags
depending on the result of the computation. The flags are set as follows
(also see Table 6-3):

ZF

The zero flag is set if and only if AX = BX. This is the only time AX
– BX produces a 0 result. Hence, you can use the zero flag to test for
equality or inequality.

SF

The sign flag is set to 1 if the result is negative. At first glance, you might
think that this flag would be set if AX is less than BX, but this isn’t always
the case. If AX = 7FFFh and BX = –1 (0FFFFh), then subtracting AX
from BX produces 8000h, which is negative (and so the sign flag will be
set). So, for signed comparisons anyway, the sign flag doesn’t contain
the proper status. For unsigned operands, consider AX = 0FFFFh and
BX = 1. Here, AX is greater than BX, but their difference is 0FFFEh,
which is still negative. As it turns out, the sign flag and the overflow flag,
taken together, can be used for comparing two signed values.

OF

The overflow flag is set after a cmp operation if the difference of AX and
BX produced an overflow or underflow. As mentioned previously, the sign
and overflow flags are both used when performing signed comparisons.

294 Chapter 6

CF

The carry flag is set after a cmp operation if subtracting BX from AX
requires a borrow. This occurs only when AX is less than BX, where AX
and BX are both unsigned values.

Table 6-3: Condition Code Settings After cmp

Unsigned operands Signed operands

ZF: Equality/inequality ZF: Equality/inequality

CF: Left < Right (C = 1)
 Left ≥ Right (C = 0)

CF: No meaning

SF: No meaning SF: See discussion in this section

OF: No meaning OF: See discussion in this section

Given that the cmp instruction sets the flags in this fashion, you can test
the comparison of the two operands with the following flags:

cmp Left, Right

For signed comparisons, the SF (sign) and OF (overflow) flags, taken
together, have the following meanings:

•	 If [(SF = 0) and (OF = 1)] or [(SF = 1) and (OF = 0)], then Left < Right for
a signed comparison.

•	 If [(SF = 0) and (OF = 0)] or [(SF = 1) and (OF = 1)], then Left ≥ Right for
a signed comparison.

Note that (SF xor OF) is 1 if the left operand is less than the right oper-
and. Conversely, (SF xor OF) is 0 if the left operand is greater than or equal
to the right operand.

To understand why these flags are set in this manner, consider the
examples in Table 6-4.

Table 6-4: Sign and Overflow Flag Settings After Subtraction

Left Minus Right SF OF

0FFFFh (–1) – 0FFFEh (–2) 0 0

8000h (–32,768) – 0001h 0 1

0FFFEh (–2) – 0FFFFh (–1) 1 0

7FFFh (32767) – 0FFFFh (–1) 1 1

Remember, the cmp operation is really a subtraction; therefore, the first
example in Table 6-4 computes (–1) – (–2), which is (+1). The result is posi-
tive and an overflow did not occur, so both the S and O flags are 0. Because
(SF xor OF) is 0, Left is greater than or equal to Right.

Arithmetic 295

In the second example, the cmp instruction computes (–32,768) – (+1),
which is (–32,769). Because a 16-bit signed integer cannot represent this
value, the value wraps around to 7FFFh (+32,767) and sets the overflow flag.
The result is positive (at least as a 16-bit value), so the CPU clears the sign
flag. (SF xor OF) is 1 here, so Left is less than Right.

In the third example, cmp computes (–2) – (–1), which produces (–1). No
overflow occurred, so the OF is 0, and the result is negative, so the SF is 1.
Because (SF xor OF) is 1, Left is less than Right.

In the fourth (and final) example, cmp computes (+32,767) – (–1). This
produces (+32,768), setting the overflow flag. Furthermore, the value wraps
around to 8000h (–32,768), so the sign flag is set as well. Because (SF xor
OF) is 0, Left is greater than or equal to Right.

6.1.5 The setcc Instructions
The setcc (set on condition) instructions set a single-byte operand (register
or memory) to 0 or 1 depending on the values in the FLAGS register. The
general formats for the setcc instructions are as follows:

setcc reg8
setcc mem8

The setcc represents a mnemonic appearing in Tables 6-5, 6-6, and 6-7.
These instructions store a 0 in the corresponding operand if the condition
is false, and they store a 1 in the 8-bit operand if the condition is true.

Table 6-5: setcc Instructions That Test Flags

Instruction Description Condition Comments

setc Set if carry Carry = 1 Same as setb,
setnae

setnc Set if no carry Carry = 0 Same as setnb,
setae

setz Set if zero Zero = 1 Same as sete

setnz Set if not zero Zero = 0 Same as setne

sets Set if sign Sign = 1

setns Set if no sign Sign = 0

seto Set if overflow Overflow = 1

setno Set if no overflow Overflow = 0

setp Set if parity Parity = 1 Same as setpe

setpe Set if parity even Parity = 1 Same as setp

setnp Set if no parity Parity = 0 Same as setpo

setpo Set if parity odd Parity = 0 Same as setnp

296 Chapter 6

The setcc instructions in Table 6-5 simply test the flags without any
other meaning attached to the operation. You could, for example, use setc
to check the carry flag after a shift, rotate, bit test, or arithmetic operation.

The setp/setpe and setnp/setpo instructions check the parity flag. These
instructions appear here for completeness, but this book will not spend
much time discussing the parity flag; in modern code, it’s typically used
only to check for an FPU not-a-number (NaN) condition.

The cmp instruction works synergistically with the setcc instructions.
Immediately after a cmp operation, the processor flags provide information
concerning the relative values of those operands. They allow you to see if
one operand is less than, equal to, or greater than the other.

Two additional groups of setcc instructions are useful after a cmp operation.
The first group deals with the result of an unsigned comparison (Table 6-6);
the second group deals with the result of a signed comparison (Table 6-7).

Table 6-6: setcc Instructions for Unsigned Comparisons

Instruction Description Condition Comments

seta Set if above (>) Carry = 0, Zero = 0 Same as setnbe

setnbe Set if not below or
equal (not ≤)

Carry = 0, Zero = 0 Same as seta

setae Set if above or
equal (≥)

Carry = 0 Same as setnc,
setnb

setnb Set if not below
(not <)

Carry = 0 Same as setnc,
setae

setb Set if below (<) Carry = 1 Same as setc,
setnae

setnae Set if not above or
equal (not ≥)

Carry = 1 Same as setc, setb

setbe Set if below or
equal (≤)

Carry = 1 or
Zero = 1

Same as setna

setna Set if not above
(not >)

Carry = 1 or
Zero = 1

Same as setbe

sete Set if equal (==) Zero = 1 Same as setz

setne Set if not equal (≠) Zero = 0 Same as setnz

Table 6-7: setcc Instructions for Signed Comparisons

Instruction Description Condition Comments

setg Set if greater (>) Sign == Overflow
and
Zero == 0

Same as setnle

setnle Set if not less than
or equal (not ≤)

Sign == Overflow or
Zero == 0

Same as setg

Arithmetic 297

Instruction Description Condition Comments

setge Set if greater than
or equal (≥)

Sign == Overflow Same as setnl

setnl Set if not less than
(not <)

Sign == Overflow Same as setge

setl Set if less than (<) Sign ≠ Overflow Same as setnge

setnge Set if not greater or
equal (not ≥)

Sign ≠ Overflow Same as setl

setle Set if less than or
equal (≤)

Sign ≠ Overflow or
Zero == 1

Same as setng

setng Set if not greater
than (not >)

Sign ≠ Overflow or
Zero == 1

Same as setle

sete Set if equal (=) Zero == 1 Same as setz

setne Set if not equal (≠) Zero == 0 Same as setnz

The setcc instructions are particularly valuable because they can con-
vert the result of a comparison to a Boolean value (false/true or 0/1). This
is especially important when translating statements from a high-level lan-
guage like Swift or C/C++ into assembly language. The following example
shows how to use these instructions in this manner:

; bool = a <= b:

 mov eax, a
 cmp eax, b
 setle bool ; bool is a byte variable

Because the setcc instructions always produce 0 or 1, you can use the
results with the and and or instructions to compute complex Boolean values:

; bool = ((a <= b) && (d == e)):

 mov eax, a
 cmp eax, b
 setle bl
 mov eax, d
 cmp eax, e
 sete bh
 and bh, bl
 mov bool, bh

6.1.6 The test Instruction
The x86-64 test instruction is to the and instruction what the cmp instruction
is to sub. That is, the test instruction computes the logical AND of its two
operands and sets the condition code flags based on the result; it does not,

298 Chapter 6

however, store the result of the logical AND back into the destination oper-
and. The syntax for the test instruction is similar to and:

test operand1, operand2

The test instruction sets the zero flag if the result of the logical AND
operation is 0. It sets the sign flag if the HO bit of the result contains a 1.
The test instruction always clears the carry and overflow flags.

The primary use of the test instruction is to check whether an indi-
vidual bit contains a 0 or a 1. Consider the instruction test al, 1. This
instruction logically ANDs AL with the value 1; if bit 0 of AL contains 0, the
result will be 0 (setting the zero flag) because all the other bits in the con-
stant 1 are 0. Conversely, if bit 0 of AL contains 1, then the result is not 0, so
test clears the zero flag. Therefore, you can test the zero flag after this test
instruction to see if bit 0 contains a 0 or a 1 (for example, using setz or setnz
instructions, or the jz/jnz instructions).

The test instruction can also check whether all the bits in a specified
set of bits contain 0. The instruction test al, 0fh sets the zero flag if and
only if the LO 4 bits of AL all contain 0.

One important use of the test instruction is to check whether a register
contains 0. The instruction test reg, reg, where both operands are the same
register, will logically AND that register with itself. If the register contains
0, the result is 0 and the CPU will set the zero flag. However, if the register
contains a nonzero value, logically ANDing that value with itself produces
that same nonzero value, so the CPU clears the zero flag. Therefore, you
can check the zero flag immediately after the execution of this instruction
(for example, using the setz or setnz instructions or the jz and jnz instruc-
tions) to see if the register contains 0. Here are some examples:

 test eax, eax
 setz bl ; BL is set to 1 if EAX contains 0
 .
 .
 .
 test bl, bl
 jz bxIs0

 Do something if BL != 0

bxIs0:

One major failing of the test instruction is that immediate (constant)
operands can be no larger than 32 bits (as is the case with most instruc-
tions), which makes it difficult to use this instruction to test for set bits
beyond bit position 31. For testing individual bits, you can use the bt (bit
test) instruction (see “Instructions That Manipulate Bits” in Chapter 12).
Otherwise, you’ll have to move the 64-bit constant into a register (the mov
instruction does support 64-bit immediate operands) and then test your
target register against the 64-bit constant value in the newly loaded register.

Arithmetic 299

 6.2 Arithmetic Expressions
Probably the biggest shock to beginners facing assembly language for the first
time is the lack of familiar arithmetic expressions. Arithmetic expressions, in most
high-level languages, look similar to their algebraic equivalents. For example:

x = y * z;

In assembly language, you’ll need several statements to accomplish this
same task:

mov eax, y
imul eax, z
mov x, eax

Obviously, the HLL version is much easier to type, read, and understand.
Although a lot of typing is involved, converting an arithmetic expression into
assembly language isn’t difficult at all. By attacking the problem in steps,
the same way you would solve the problem by hand, you can easily break any
arithmetic expression into an equivalent sequence of assembly language
statements.

6.2.1 Simple Assignments
The easiest expressions to convert to assembly language are simple assign-
ments. Simple assignments copy a single value into a variable and take one of
two forms:

variable = constant

or

var1 = var2

Converting the first form to assembly language is simple—just use this
assembly language statement:

mov variable, constant

This mov instruction copies the constant into the variable.
The second assignment is slightly more complicated because the x86-64

doesn’t provide a memory-to-memory mov instruction. Therefore, to copy
one memory variable into another, you must move the data through a reg-
ister. By convention (and for slight efficiency reasons), most programmers
tend to favor AL, AX, EAX, or RAX for this purpose. For example:

var1 = var2;

becomes

mov eax, var2
mov var1, eax

300 Chapter 6

assuming that var1 and var2 are 32-bit variables. Use AL if they are
8-bit variables, use AX if they are 16-bit variables, or use RAX if they
are 64-bit variables.

Of course, if you’re already using AL, AX, EAX, or RAX for something
else, one of the other registers will suffice. Regardless, you will generally
use a register to transfer one memory location to another.

6.2.2 Simple Expressions
The next level of complexity is a simple expression. A simple expression takes
the form

var1 = term1 op term2;

where var1 is a variable, term1 and term2 are variables or constants, and op
is an arithmetic operator (addition, subtraction, multiplication, and so on).
Most expressions take this form. It should come as no surprise, then, that
the x86-64 architecture was optimized for just this type of expression.

A typical conversion for this type of expression takes the form

mov eax, term1
op eax, term2
mov var1, eax

where op is the mnemonic that corresponds to the specified operation (for
example, + is add, – is sub, and so forth).

Note that the simple expression var1 = const1 op const2; is easily handled
with a compile-time expression and a single mov instruction. For example, to
compute var1 = 5 + 3;, use the single instruction mov var1, 5 + 3.

You need to be aware of a few inconsistencies. When dealing with the
(i)mul and (i)div instructions on the x86-64, you must use the AL, AX,
EAX, and RAX registers and the AH, DX, EDX, and RDX registers. You
cannot use arbitrary registers as you can with other operations. Also, don’t
forget the sign-extension instructions if you’re performing a division opera-
tion to divide one 16-, 32-, or 64-bit number by another. Finally, don’t forget
that some instructions may cause overflow. You may want to check for an
overflow (or underflow) condition after an arithmetic operation.

Here are examples of common simple expressions:

; x = y + z:

 mov eax, y
 add eax, z
 mov x, eax

; x = y - z:

 mov eax, y

Arithmetic 301

 sub eax, z
 mov x, eax

; x = y * z; (unsigned):

 mov eax, y
 mul z ; Don't forget this wipes out EDX
 mov x, eax

; x = y * z; (signed):

 mov eax, y
 imul eax, z ; Does not affect EDX!
 mov x, eax

; x = y div z; (unsigned div):

 mov eax, y
 xor edx, edx ; Zero-extend EAX into EDX
 div z
 mov x, eax

; x = y idiv z; (signed div):

 mov eax, y
 cdq ; Sign-extend EAX into EDX
 idiv z
 mov x, eax

; x = y % z; (unsigned remainder):

 mov eax, y
 xor edx, edx ; Zero-extend EAX into EDX
 div z
 mov x, edx ; Note that remainder is in EDX

; x = y % z; (signed remainder):

 mov eax, y
 cdq ; Sign-extend EAX into EDX
 idiv z
 mov x, edx ; Remainder is in EDX

Certain unary operations also qualify as simple expressions, producing
additional inconsistencies to the general rule. A good example of a unary
operation is negation. In a high-level language, negation takes one of two
possible forms:

var = –var

or

var1 = –var2

302 Chapter 6

Note that var = –constant is really a simple assignment, not a simple
expression. You can specify a negative constant as an operand to the mov
instruction:

mov var, -14

To handle var1 = –var1, use this single assembly language statement:

; var1 = -var1;

neg var1

If two different variables are involved, use the following:

; var1 = -var2;

mov eax, var2
neg eax
mov var1, eax

6.2.3 Complex Expressions
A complex expression is any arithmetic expression involving more than two
terms and one operator. Such expressions are commonly found in programs
written in a high-level language. Complex expressions may include paren-
theses to override operator precedence, function calls, array accesses, and so
on. This section outlines the rules for converting such expressions.

A complex expression that is easy to convert to assembly language is
one that involves three terms and two operators. For example:

w = w - y - z;

Clearly the straightforward assembly language conversion of this state-
ment requires two sub instructions. However, even with an expression as
simple as this, the conversion is not trivial. There are actually two ways to
convert the preceding statement into assembly language:

mov eax, w
sub eax, y
sub eax, z
mov w, eax

and

mov eax, y
sub eax, z
sub w, eax

The second conversion, because it is shorter, looks better. However, it
produces an incorrect result (assuming C-like semantics for the original state-
ment). Associativity is the problem. The second sequence in the preceding
example computes w = w – (y – z), which is not the same as w = (w – y) – z.

Arithmetic 303

How we place the parentheses around the subexpressions can affect the
result. Note that if you are interested in a shorter form, you can use the fol-
lowing sequence:

mov eax, y
add eax, z
sub w, eax

This computes w = w – (y + z), equivalent to w = (w – y) – z.
Precedence is another issue. Consider this expression:

x = w * y + z;

Once again, we can evaluate this expression in two ways:

x = (w * y) + z;

or

x = w * (y + z);

By now, you’re probably thinking that this explanation is crazy. Everyone
knows the correct way to evaluate these expressions is by the former form.
However, you’d be wrong. The APL programming language, for example,
evaluates expressions solely from right to left and does not give one operator
precedence over another. Which way is “correct” depends entirely on how
you define precedence in your arithmetic system.

Consider this expression:

x op1 y op2 z

If op1 takes precedence over op2, then this evaluates to (x op1 y) op2 z.
Otherwise, if op2 takes precedence over op1, this evaluates to x op1 (y op2 z).
Depending on the operators and operands involved, these two computa-
tions could produce different results.

Most high-level languages use a fixed set of precedence rules to describe
the order of evaluation in an expression involving two or more different
operators. Such programming languages usually compute multiplication
and division before addition and subtraction. Those that support exponen-
tiation (for example, FORTRAN and BASIC) usually compute that before
multiplication and division. These rules are intuitive because almost every-
one learns them before high school.

When converting expressions into assembly language, you must be sure
to compute the subexpression with the highest precedence first. The follow-
ing example demonstrates this technique:

; w = x + y * z:

 mov ebx, x
 mov eax, y ; Must compute y * z first because "*"
 imul eax, z ; has higher precedence than "+"

304 Chapter 6

 add eax, ebx
 mov w, eax

If two operators appearing within an expression have the same pre-
cedence, you determine the order of evaluation by using associativity rules.
Most operators are left-associative, meaning they evaluate from left to right.
Addition, subtraction, multiplication, and division are all left-associative. A
right-associative operator evaluates from right to left. The exponentiation oper-
ator in FORTRAN is a good example of a right-associative operator:

2**2**3

is equal to

2**(2**3)

not

(2**2)**3

The precedence and associativity rules determine the order of evaluation.
Indirectly, these rules tell you where to place parentheses in an expression to
determine the order of evaluation. Of course, you can always use parentheses
to override the default precedence and associativity. However, the ultimate
point is that your assembly code must complete certain operations before
others to correctly compute the value of a given expression. The following
examples demonstrate this principle:

; w = x - y - z:

 mov eax, x ; All the same operator precedence,
 sub eax, y ; so we need to evaluate from left
 sub eax, z ; to right because they are left-
 mov w, eax ; associative

; w = x + y * z:

 mov eax, y ; Must compute y * z first because
 imul eax, z ; multiplication has a higher
 add eax, x ; precedence than addition
 mov w, eax

; w = x / y - z:

 mov eax, x ; Here we need to compute division
 cdq ; first because it has the highest
 idiv y ; precedence
 sub eax, z
 mov w, eax

Arithmetic 305

; w = x * y * z:

 mov eax, y ; Addition and multiplication are
 imul eax, z ; commutative; therefore, the order
 imul eax, x ; of evaluation does not matter
 mov w, eax

The associativity rule has one exception: if an expression involves mul-
tiplication and division, it is generally better to perform the multiplication
first. For example, given an expression of the form

w = x / y * z ; Note: This is (x * z) / y, not x / (y * z)

it is usually better to compute x * z and then divide the result by y rather
than divide x by y and multiply the quotient by z.

This approach is better for two reasons. First, remember that the imul
instruction always produces a 64-bit result (assuming 32-bit operands). By
doing the multiplication first, you automatically sign-extend the product
into the EDX register so you do not have to sign-extend EAX prior to the
division.

A second reason for doing the multiplication first is to increase the
accuracy of the computation. Remember, (integer) division often produces an
inexact result. For example, if you compute 5 / 2, you will get the value 2, not
2.5. Computing (5 / 2) × 3 produces 6. However, if you compute (5 × 3) / 2,
you get the value 7, which is a little closer to the real quotient (7.5). Therefore,
if you encounter an expression of the form

w = x / y * z;

you can usually convert it to the following assembly code:

mov eax, x
imul z ; Note the use of extended imul!
idiv y
mov w, eax

If the algorithm you’re encoding depends on the truncation effect of
the division operation, you cannot use this trick to improve the algorithm.
Moral of the story: always make sure you fully understand any expression
you are converting to assembly language. If the semantics dictate that you
must perform the division first, then do so.

Consider the following statement:

w = x – y * x;

 Because subtraction is not commutative, you cannot compute y * x and
then subtract x from this result. Rather than use a straightforward multipli-
cation-and-addition sequence, you’ll have to load x into a register, multiply

306 Chapter 6

y and x (leaving their product in a different register), and then subtract this
product from x. For example:

mov ecx, x
mov eax, y
imul eax, x
sub ecx, eax
mov w, ecx

This trivial example demonstrates the need for temporary variables in
an expression. The code uses the ECX register to temporarily hold a copy
of x until it computes the product of y and x. As your expressions increase
in complexity, the need for temporaries grows. Consider the following C
statement:

w = (a + b) * (y + z);

Following the normal rules of algebraic evaluation, you compute the
subexpressions inside the parentheses first (that is, the two subexpressions
with the highest precedence) and set their values aside. When you’ve com-
puted the values for both subexpressions, you can compute their product.
One way to deal with a complex expression like this is to reduce it to a
sequence of simple expressions whose results wind up in temporary vari-
ables. For example, you can convert the preceding single expression into
the following sequence:

temp1 = a + b;
temp2 = y + z;
w = temp1 * temp2;

Because converting simple expressions to assembly language is quite
easy, it’s now a snap to compute the former complex expression in assembly.
The code is shown here:

mov eax, a
add eax, b
mov temp1, eax
mov eax, y
add eax, z
mov temp2, eax
mov eax, temp1
imul eax, temp2
mov w, eax

This code is grossly inefficient and requires that you declare a couple
of temporary variables in your data segment. However, it is easy to optimize
this code by keeping temporary variables, as much as possible, in x86-64
registers. By using x86-64 registers to hold the temporary results, this code
becomes the following:

mov eax, a
add eax, b

Arithmetic 307

mov ebx, y
add ebx, z
imul eax, ebx
mov w, eax

Here’s yet another example:

x = (y + z) * (a - b) / 10;

This can be converted to a set of four simple expressions:

temp1 = (y + z)
temp2 = (a - b)
temp1 = temp1 * temp2
x = temp1 / 10

You can convert these four simple expressions into the following assem-
bly language statements:

 .const
ten dword 10
 .
 .
 .
 mov eax, y ; Compute EAX = y + z
 add eax, z
 mov ebx, a ; Compute EBX = a - b
 sub ebx, b
 imul ebx ; This sign-extends EAX into EDX
 idiv ten
 mov x, eax

The most important thing to keep in mind is that you should keep tem-
porary values in registers for efficiency. Use memory locations to hold tempo-
raries only if you’ve run out of registers.

Ultimately, converting a complex expression to assembly language is
very similar to solving the expression by hand, except instead of actually
computing the result at each stage of the computation, you simply write the
assembly code that computes the result.

6.2.4 Commutative Operators
If op represents an operator, that operator is commutative if the following
relationship is always true:

(A op B) = (B op A)

As you saw in the previous section, commutative operators are nice
because the order of their operands is immaterial, and this lets you rear-
range a computation, often making it easier or more efficient. Often,
rearranging a computation allows you to use fewer temporary variables.
Whenever you encounter a commutative operator in an expression, you

308 Chapter 6

should always check whether you can use a better sequence to improve
the size or speed of your code.

Tables 6-8 and 6-9, respectively, list the commutative and noncommuta-
tive operators you typically find in high-level languages.

Table 6-8: Common Commutative Binary Operators

Pascal C/C++ Description

+ + Addition

* * Multiplication

and && or & Logical or bitwise AND

or || or | Logical or bitwise OR

xor ^ (Logical or) bitwise exclusive-OR

= == Equality

<> != Inequality

Table 6-9: Common Noncommutative Binary
Operators

Pascal C/C++ Description

- - Subtraction

/ or div / Division

mod % Modulo or remainder

< < Less than

<= <= Less than or equal

> > Greater than

>= >= Greater than or equal

 6.3 Logical (Boolean) Expressions
Consider the following expression from a C/C++ program:

b = ((x == y) && (a <= c)) || ((z - a) != 5);

Here, b is a Boolean variable, and the remaining variables are all
integers.

Although it takes only a single bit to represent a Boolean value, most
assembly language programmers allocate a whole byte or word to represent
Boolean variables. Most programmers (and, indeed, some programming
languages like C) choose 0 to represent false and anything else to represent
true. Some people prefer to represent true and false with 1 and 0 (respec-
tively) and not allow any other values. Others select all 1 bits (0FFFF_FFFF
_FFFF_FFFFh, 0FFFF_FFFFh, 0FFFFh, or 0FFh) for true and 0 for false.
You could also use a positive value for true and a negative value for false.
All these mechanisms have their advantages and drawbacks.

Arithmetic 309

Using only 0 and 1 to represent false and true offers two big advantages.
First, the setcc instructions produce these results, so this scheme is compat-
ible with those instructions. Second, the x86-64 logical instructions (and, or,
xor, and, to a lesser extent, not) operate on these values exactly as you would
expect. That is, if you have two Boolean variables a and b, then the following
instructions perform the basic logical operations on these two variables:

; d = a AND b:

 mov al, a
 and al, b
 mov d, al

; d = a || b:

 mov al, a
 or al, b
 mov d, al

; d = a XOR b:

 mov al, a
 xor al, b
 mov d, al

; b = NOT a:

 mov al, a ; Note that the NOT instruction does not
 not al ; properly compute AL = NOT all by itself.
 and al, 1 ; That is, (NOT 0) does not equal 1. The AND
 mov b, al ; instruction corrects this problem

 mov al, a ; Another way to do b = NOT a;
 xor al, 1 ; Inverts bit 0
 mov b, al

As pointed out here, the not instruction will not properly compute logi-
cal negation. The bitwise not of 0 is 0FFh, and the bitwise not of 1 is 0FEh.
Neither result is 0 or 1. However, by ANDing the result with 1, you get the
proper result. Note that you can implement the not operation more effi-
ciently by using the xor al, 1 instruction because it affects only the LO bit.

As it turns out, using 0 for false and anything else for true has a lot of
subtle advantages. Specifically, the test for true or false is often implicit
in the execution of any logical instruction. However, this mechanism suf-
fers from a big disadvantage: you cannot use the x86-64 and, or, xor, and
not instructions to implement the Boolean operations of the same name.
Consider the two values 55h and 0AAh. They’re both nonzero, so they both
represent the value true. However, if you logically AND 55h and 0AAh
together by using the x86-64 and instruction, the result is 0. True AND true
should produce true, not false. Although you can account for situations like
this, it usually requires a few extra instructions and is somewhat less effi-
cient when computing Boolean operations.

310 Chapter 6

A system that uses nonzero values to represent true and 0 to represent
false is an arithmetic logical system. A system that uses two distinct values like
0 and 1 to represent false and true is called a Boolean logical system, or simply
a Boolean system. You can use either system, as convenient. Consider again
this Boolean expression:

b = ((x == y) and (a <= d)) || ((z - a) != 5);

The resulting simple expressions might be as follows:

mov eax, x
cmp eax, y
sete al ; AL = x == y;

mov ebx, a
cmp ebx, d
setle bl ; BL = a <= d;
and bl, al ; BL = (x = y) and (a <= d);

mov eax, z
sub eax, a
cmp eax, 5
setne al
or al, bl ; AL = ((x == y) && (a <= d)) ||
mov b, al ; ((z - a) != 5);

When working with Boolean expressions, don’t forget that you might
be able to optimize your code by simplifying them with algebraic transfor-
mations. In Chapter 7, you’ll also see how to use control flow to calculate a
Boolean result, which is generally quite a bit more efficient than using com-
plete Boolean evaluation, as the examples in this section teach.

 6.4 Machine and Arithmetic Idioms
An idiom is an idiosyncrasy (a peculiarity). Several arithmetic operations
and x86-64 instructions have idiosyncrasies that you can take advantage
of when writing assembly language code. Some people refer to the use of
machine and arithmetic idioms as tricky programming that you should always
avoid in well-written programs. While it is wise to avoid tricks just for the
sake of tricks, many machine and arithmetic idioms are well known and
commonly found in assembly language programs. You will see some impor-
tant idioms all the time, so it makes sense to discuss them.

6.4.1 Multiplying Without mul or imul
When multiplying by a constant, you can sometimes write faster code by using
shifts, additions, and subtractions in place of multiplication instructions.

Remember, a shl instruction computes the same result as multiplying the
specified operand by 2. Shifting to the left two bit positions multiplies the
operand by 4. Shifting to the left three bit positions multiplies the operand

Arithmetic 311

by 8. In general, shifting an operand to the left n bits multiplies it by 2n. You
can multiply any value by a constant by using a series of shifts and addi-
tions or shifts and subtractions. For example, to multiply the AX register
by 10, you need only multiply it by 8 and then add two times the original
value. That is, 10 × AX = 8 × AX + 2 × AX. The code to accomplish this is as
follows:

shl ax, 1 ; Multiply AX by 2
mov bx, ax ; Save 2 * AX for later
shl ax, 2 ; Multiply AX by 8 (*4 really,
 ; but AX contains *2)
add ax, bx ; Add in AX * 2 to AX * 8 to get AX * 10

If you look at the instruction timings, the preceding shift-and-add
example requires fewer clock cycles on some processors in the 80x86 family
than the mul instruction. Of course, the code is somewhat larger (by a few
bytes), but the performance improvement is usually worth it.

You can also use subtraction with shifts to perform a multiplication
operation. Consider the following multiplication by 7:

mov ebx, eax ; Save EAX * 1
shl eax, 3 ; EAX = EAX * 8
sub eax, ebx ; EAX * 8 - EAX * 1 is EAX * 7

A common error that beginning assembly language programmers make
is subtracting or adding 1 or 2 rather than EAX × 1 or EAX × 2. The follow-
ing does not compute EAX × 7:

shl eax, 3
sub eax, 1

It computes (8 × EAX) – 1, something entirely different (unless, of
course, EAX = 1). Beware of this pitfall when using shifts, additions, and
subtractions to perform multiplication operations.

You can also use the lea instruction to compute certain products. The
trick is to use the scaled-index addressing modes. The following examples
demonstrate some simple cases:

lea eax, [ecx][ecx] ; EAX = ECX * 2
lea eax, [eax][eax * 2] ; EAX = ECX * 3
lea eax, [eax * 4] ; EAX = ECX * 4
lea eax, [ebx][ebx * 4] ; EAX = EBX * 5
lea eax, [eax * 8] ; EAX = EAX * 8
lea eax, [edx][edx * 8] ; EAX = EDX * 9

As time has progressed, Intel (and AMD) has improved the perfor-
mance of the imul instruction to the point that it rarely makes sense to
try to improve performance by using strength-reduction optimizations such as
substituting shifts and additions for a multiplication. You should consult the
Intel and AMD documentation (particularly the section on instruction tim-
ing) to see if a multi-instruction sequence is faster. Generally, a single shift

312 Chapter 6

instruction (for multiplication by a power of 2) or lea is going to produce
better results than imul; beyond that, it’s best to measure and see.

6.4.2 Dividing Without div or idiv
Just as the shl instruction is useful for simulating a multiplication by a
power of 2, the shr and sar instructions can simulate a division by a power of
two. Unfortunately, you cannot easily use shifts, additions, and subtractions
to perform division by an arbitrary constant. Therefore, this trick is useful
only when dividing by powers of 2. Also, don’t forget that the sar instruction
rounds toward negative infinity, unlike the idiv instruction, which rounds
toward 0.

You can also divide by a value by multiplying by its reciprocal. Because
the mul instruction is faster than the div instruction, multiplying by a
reciprocal is usually faster than division.

To multiply by a reciprocal when dealing with integers, we must cheat.
If you want to multiply by 1/10, there is no way you can load the value 1/10
into an x86-64 integer register prior to performing the multiplication.
However, we could multiply 1/10 by 10, perform the multiplication, and
then divide the result by 10 to get the final result. Of course, this wouldn’t
buy you anything; in fact, it would make things worse because you’re now
doing a multiplication by 10 as well as a division by 10. However, suppose
you multiply 1/10 by 65,536 (6554), perform the multiplication, and then
divide by 65,536. This would still perform the correct operation, and, as it
turns out, if you set up the problem correctly, you can get the division opera-
tion for free. Consider the following code that divides AX by 10:

mov dx, 6554 ; 6554 = round(65,536 / 10)
mul dx

This code leaves AX/10 in the DX register.
To understand how this works, consider what happens when you use the

mul instruction to multiply AX by 65,536 (1_0000h). This moves AX into DX
and sets AX to 0 (a multiplication by 1_0000h is equivalent to a shift left by
16 bits). Multiplying by 6554 (65,536 divided by 10) puts AX divided by 10
into the DX register. Because mul is faster than div, this technique runs a
little faster than using division.

Multiplying by a reciprocal works well when you need to divide by a
constant. You could even use this approach to divide by a variable, but the
overhead to compute the reciprocal pays off only if you perform the divi-
sion many, many times by the same value.

6.4.3 Implementing Modulo-N Counters with AND
If you want to implement a counter variable that counts up to 2n – 1 and
then resets to 0, use the following code:

inc CounterVar
and CounterVar, n_bits

Arithmetic 313

where n_bits is a binary value containing n bits of 1s right-justified in the
number. For example, to create a counter that cycles between 0 and 15
(24 – 1), you could use the following:

inc CounterVar
and CounterVar, 00001111b

 6.5 Floating-Point Arithmetic
Integer arithmetic does not let you represent fractional numeric values.
Therefore, modern CPUs support an approximation of real arithmetic:
floating-point arithmetic. To represent real numbers, most floating-point for-
mats employ scientific notation and use a certain number of bits to repre-
sent a mantissa and a smaller number of bits to represent an exponent.

For example, in the number 3.456e+12, the mantissa consists of 3.456,
and the exponent digits are 12. Because the number of bits is fixed in
computer-based representations, computers can represent only a certain
number of digits (known as significant digits) in the mantissa. For example,
if a floating-point representation could handle only three significant
digits, then the fourth digit in 3.456e+12 (the 6) could not be accurately
represented with that format, as three significant digits can represent only
3.45e+12 correctly.

Because computer-based floating-point representations also use a finite
number of bits to represent the exponent, it also has a limited range of val-
ues, ranging from 10±38 for the single-precision format to 10±308 for the
double-precision format (and up to 10±4932 for the extended-precision
format). This is known as the dynamic range of the value.

A big problem with floating-point arithmetic is that it does not follow
the standard rules of algebra. Normal algebraic rules apply only to infinite-
precision arithmetic.

Consider the simple statement x = x + 1, where x is an integer. On any
modern computer, this statement follows the normal rules of algebra as
long as overflow does not occur. That is, this statement is valid only for certain
values of x (minint ≤ x < maxint). Most programmers do not have a problem
with this because they are well aware that integers in a program do not fol-
low the standard algebraic rules (for example, 5 / 2 does not equal 2.5).

Integers do not follow the standard rules of algebra because the com-
puter represents them with a finite number of bits. You cannot represent any
of the (integer) values above the maximum integer or below the minimum
integer. Floating-point values suffer from this same problem, only worse.
After all, integers are a subset of real numbers. Therefore, the floating-point
values must represent the same infinite set of integers. However, an infinite
number of real values exists between any two integer values. In addition to
having to limit your values between a maximum and minimum range, you
cannot represent all the values between any pair of integers, either.

To demonstrate the impact of limited-precision arithmetic, we will
adopt a simplified decimal floating-point format for our examples. Our

314 Chapter 6

floating-point format will provide a mantissa with three significant digits
and a decimal exponent with two digits. The mantissa and exponents are
both signed values, as shown in Figure 6-1.

e ±±

Figure 6-1: A floating-point format

When adding and subtracting two numbers in scientific notation, we must
adjust the two values so that their exponents are the same. Multiplication and
division don’t require the exponents to be the same; instead, the exponent
after a multiplication is the sum of the two operand exponents, and the expo-
nent after a division is the difference of the dividend and divisor’s exponents.

For example, when adding 1.2e1 and 4.5e0, we must adjust the values
so they have the same exponent. One way to do this is to convert 4.5e0
to 0.45e1 and then add. This produces 1.65e1. Because the computation
and result require only three significant digits, we can compute the cor-
rect result via the representation shown in Figure 6-1. However, suppose we
want to add the two values 1.23e1 and 4.56e0. Although both values can
be represented using the three-significant-digit format, the computation
and result do not fit into three significant digits. That is, 1.23e1 + 0.456e1
requires four digits of precision in order to compute the correct result of
1.686, so we must either round or truncate the result to three significant
digits. Rounding generally produces the most accurate result, so let’s
round the result to obtain 1.69e1.

In fact, the rounding does not occur after adding the two values together
(that is, producing the sum 1.686e1 and then rounding this to 1.69e1). The
rounding actually occurs when converting 4.56e0 to 0.456e1, because the
value 0.456e1 requires four digits of precision to maintain. Therefore, during
the conversion, we have to round it to 0.46e1 so that the result fits into three
significant digits. Then, the sum of 1.23e1 and 0.46e1 produces the final
(rounded) sum of 1.69e1.

As you can see, the lack of precision (the number of digits or bits we
maintain in a computation) affects the accuracy (the correctness of the
computation).

In the addition/subtraction example, we were able to round the result
because we maintained four significant digits during the calculation (specifi-
cally, when converting 4.56e0 to 0.456e1). If our floating-point calculation
had been limited to three significant digits during computation, we would
have had to truncate the last digit of the smaller number, obtaining 0.45e1,
resulting in a sum of 1.68e1, a value that is even less accurate.

To improve the accuracy of floating-point calculations, it is useful to
maintain one or more extra digits for use during the calculation (such as
the extra digit used to convert 4.56e0 to 0.456e1). Extra digits available
during a computation are known as guard digits (or guard bits in the case
of a binary format). They greatly enhance accuracy during a long chain of
computations.

Arithmetic 315

In a sequence of floating-point operations, the error can accumulate
and greatly affect the computation itself. For example, suppose we were to
add 1.23e3 to 1.00e0. Adjusting the numbers so their exponents are the
same before the addition produces 1.23e3 + 0.001e3. The sum of these two
values, even after rounding, is 1.23e3. This might seem perfectly reasonable
to you; after all, we can maintain only three significant digits, so adding in
a small value shouldn’t affect the result at all. However, suppose we were to
add 1.00e0 to 1.23e3 10 times.5 The first time we add 1.00e0 to 1.23e3, we
get 1.23e3. Likewise, we get this same result the second, third, fourth . . .
and tenth times when we add 1.00e0 to 1.23e3. On the other hand, had we
added 1.00e0 to itself 10 times, then added the result (1.00e1) to 1.23e3,
we would have gotten a different result, 1.24e3. This is an important fact to
know about limited-precision arithmetic:

The order of evaluation can affect the accuracy of the result.

You will get more accurate results if the relative magnitudes (the expo-
nents) are close to one another when adding and subtracting floating-point
values. If you are performing a chain calculation involving addition and
subtraction, you should attempt to group the values appropriately.

Another problem with addition and subtraction is that you can wind up
with false precision. Consider the computation 1.23e0 – 1.22e0, which pro-
duces 0.01e0. Although the result is mathematically equivalent to 1.00e – 2,
this latter form suggests that the last two digits are exactly 0. Unfortunately,
we have only a single significant digit at this time (remember, the original
result was 0.01e0, and those two leading 0s were significant digits). Indeed,
some floating-point unit (FPU) or software packages might actually insert
random digits (or bits) into the LO positions. This brings up a second
important rule concerning limited-precision arithmetic:

Subtracting two numbers with the same signs (or adding two
numbers with different signs) can produce high-order significant
digits (bits) that are 0. This reduces the number of significant
digits (bits) by a like amount in the final result.

By themselves, multiplication and division do not produce particularly
poor results. However, they tend to multiply any error that already exists in
a value. For example, if you multiply 1.23e0 by 2, when you should be mul-
tiplying 1.24e0 by 2, the result is even less accurate. This brings up a third
important rule when working with limited-precision arithmetic:

When performing a chain of calculations involving addition, sub-
traction, multiplication, and division, try to perform the multipli-
cation and division operations first.

Often, by applying normal algebraic transformations, you can arrange
a calculation so the multiply and divide operations occur first. For example,
suppose you want to compute x * (y + z). Normally, you would add y and

5. But not in the same calculation, where guard digits could maintain the fourth digit during
the calculation.

316 Chapter 6

z together and multiply their sum by x. However, you will get a little more
accuracy if you transform x * (y + z) to get x * y + x * z and compute the
result by performing the multiplications first.6

Multiplication and division are not without their own problems. When
two very large or very small numbers are multiplied, it is quite possible
for overflow or underflow to occur. The same situation occurs when divid-
ing a small number by a large number, or dividing a large number by a
small (fractional) number. This brings up a fourth rule you should attempt
to follow when multiplying or dividing values:

When multiplying and dividing sets of numbers, try to arrange
the multiplications so that they multiply large and small numbers
together; likewise, try to divide numbers that have the same rela-
tive magnitudes.

Given the inaccuracies present in any computation (including convert-
ing an input string to a floating-point value), you should never compare two
floating-point values to see if they are equal. In a binary floating-point for-
mat, different computations that produce the same (mathematical) result
may differ in their least significant bits. For example, 1.31e0 + 1.69e0 should
produce 3.00e0. Likewise, 1.50e0 + 1.50e0 should produce 3.00e0. However,
if you were to compare (1.31e0 + 1.69e0) against (1.50e0 + 1.50e0), you
might find out that these sums are not equal to one another. The test for
equality succeeds if and only if all bits (or digits) in the two operands are
exactly the same. Because this is not necessarily true after two different
floating-point computations that should produce the same result, a straight
test for equality may not work. Instead, you should use the following test:

if Value1 >= (Value2 - error) and Value1 <= (Value2 + error) then ...

Another common way to handle this same comparison is to use a state-
ment of this form:

if abs(Value1 - Value2) <= error then ...

error should be a value slightly greater than the largest amount of error
that will creep into your computations. The exact value will depend on the
particular floating-point format you use. Here is the final rule we will state
in this section:

When comparing two floating-point numbers, always compare
one value to see if it is in the range given by the second value plus
or minus a small error value.

Many other little problems can occur when using floating-point values.
This book can point out only some of the major problems and make you
aware that you cannot treat floating-point arithmetic like real arithmetic

6. Of course, the drawback is that you must now perform two multiplications rather than one,
so the result may be slower.

Arithmetic 317

because of the inaccuracies present in limited-precision arithmetic. A good
text on numerical analysis or even scientific computing can help fill in the
details. If you are going to be working with floating-point arithmetic in any
language, you should take the time to study the effects of limited-precision
arithmetic on your computations.

6.5.1 Floating-Point on the x86-64
When the 8086 CPU first appeared in the late 1970s, semiconductor tech-
nology was not to the point where Intel could put floating-point instructions
directly on the 8086 CPU. Therefore, Intel devised a scheme to use a sec-
ond chip to perform the floating-point calculations—the 8087 floating-point
unit (or x87 FPU).7 By the release of the Intel Pentium chip, semiconductor
technology had advanced to the point that the FPU was fully integrated
onto the x86 CPU. Today, the x86-64 still contains the x87 FPU device, but
it has also expanded the floating-point capabilities by using the SSE, SSE2,
AVX, and AVX2 instruction sets.

This section describes the x86 FPU instruction set. Later sections (and
chapters) discuss the more advanced floating-point capabilities of the SSE
through AVX2 instruction sets.

6.5.2 FPU Registers
The x87 FPUs add 14 registers to the x86-64: eight floating-point data regis-
ters, a control register, a status register, a tag register, an instruction pointer,
a data pointer, and an opcode register. The data registers are similar to the
x86-64’s general-purpose register set insofar as all floating-point calcula-
tions take place in these registers. The control register contains bits that let you
decide how the FPU handles certain degenerate cases like rounding of inac-
curate computations; it also contains bits that control precision and so on.
The status register is similar to the x86-64’s FLAGS register; it contains the con-
dition code bits and several other floating-point flags that describe the state
of the FPU. The tag register contains several groups of bits that determine
the state of the value in each of the eight floating-point data registers. The
instruction, data pointer, and opcode registers contain certain state information
about the last floating-point instruction executed. We do not consider the
last four registers here; see the Intel documentation for more details.

6.5.2.1 FPU Data Registers

The FPUs provide eight 80-bit data registers organized as a stack, a signifi-
cant departure from the organization of the general-purpose registers on
the x86-64 CPU. MASM refers to these registers as ST(0), ST(1), . . . ST(7).8

7. Intel has also referred to this device as the Numeric Data Processor (NDP), Numeric Processor
Extension (NPX), and math coprocessor.

8. Often, programmers will create text equates for these register names to use the identifiers
ST0 to ST7.

318 Chapter 6

The biggest difference between the FPU register set and the x86-64
register set is the stack organization. On the x86-64 CPU, the AX register
is always the AX register, no matter what happens. On the FPU, however,
the register set is an eight-element stack of 80-bit floating-point values
(Figure 6-2).

ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)

ST(0)
79 63 0

Figure 6-2: FPU floating-point register stack

ST(0) refers to the item on the top of stack, ST(1) refers to the next
item on the stack, and so on. Many floating-point instructions push and
pop items on the stack; therefore, ST(1) will refer to the previous contents
of ST(0) after you push something onto the stack. Getting used to the reg-
ister numbers changing will take some thought and practice, but this is an
easy problem to overcome.

6.5.2.2 The FPU Control Register

When Intel designed the 8087 (and, essentially, the IEEE floating-point
standard), there were no standards in floating-point hardware. Different
(mainframe and mini) computer manufacturers all had different and
incompatible floating-point formats. Unfortunately, several applications
had been written taking into account the idiosyncrasies of these different
floating-point formats.

Intel wanted to design an FPU that could work with the majority of
the software out there (keep in mind that the IBM PC was three to four
years away when Intel began designing the 8087, so Intel couldn’t rely on
that “mountain” of software available for the PC to make its chip popular).
Unfortunately, many of the features found in these older floating-point
formats were mutually incompatible. For example, in some floating-point
systems, rounding would occur when there was insufficient precision; in
others, truncation would occur. Some applications would work with one
floating-point system but not with the other.

Intel wanted as many applications as possible to work with as few changes
as possible on its 8087 FPUs, so it added a special register, the FPU control
register, that lets the user choose one of several possible operating modes for
the FPU. The 80x87 control register contains 16 bits organized as shown in
Figure 6-3.

Arithmetic 319

Round
00 – To nearest or even
01 – Down
10 – Up
11 – Truncate result

Reserved

Underflow
Precision

Overflow
Zero divide

Denormalized
Invalid operation

00 – 24 bits
01 – Reserved
10 – 53 bits
11 – 64 bits

Precision
control

Rounding
control

Exception masks

0891011 5

Figure 6-3: FPU control register

Bits 10 and 11 of the FPU control register provide rounding control
according to the values in Table 6-10.

Table 6-10: Rounding Control

Bits 10 and 11 Function

00 To nearest or even

01 Round down

10 Round up

11 Truncate

The 00 setting is the default. The FPU rounds up values above one-half
of the least significant bit. It rounds down values below one-half of the least
significant bit. If the value below the least significant bit is exactly one-half
of the least significant bit, the FPU rounds the value toward the value whose
least significant bit is 0. For long strings of computations, this provides a
reasonable, automatic way to maintain maximum precision.

The round-up and round-down options are present for those computa-
tions requiring accuracy. By setting the rounding control to round down
and performing the operation, then repeating the operation with the
rounding control set to round up, you can determine the minimum and
maximum ranges between which the true result will fall.

The truncate option forces all computations to truncate any excess bits.
You will rarely use this option if accuracy is important. However, you might
use this option to help when porting older software to the FPU. This option
is also extremely useful when converting a floating-point value to an inte-
ger. Because most software expects floating-point–to–integer conversions to

320 Chapter 6

truncate the result, you will need to use the truncation/rounding mode to
achieve this.

Bits 8 and 9 of the control register specify the precision during compu-
tation. This capability is provided to allow compatibility with older software
as required by the IEEE 754 standard. The precision-control bits use the
values in Table 6-11.

Table 6-11: Mantissa Precision-
Control Bits

Bits 8 and 9 Precision control

00 24 bits

01 Reserved

10 53 bits

11 64 bits

Some CPUs may operate faster with floating-point values whose preci-
sion is 53 bits (that is, 64-bit floating-point format) rather than 64 bits (that
is, 80-bit floating-point format). See the documentation for your specific
processor for details. Generally, the CPU defaults these bits to 11 to select
the 64-bit mantissa precision.

Bits 0 to 5 are the exception masks. These are similar to the interrupt
enable bit in the x86-64’s FLAGS register. If these bits contain a 1, the cor-
responding condition is ignored by the FPU. However, if any bit contains 0s,
and the corresponding condition occurs, then the FPU immediately gener-
ates an interrupt so the program can handle the degenerate condition.

Bit 0 corresponds to an invalid operation error, which generally occurs
as the result of a programming error. Situations that raise the invalid
operation exception include pushing more than eight items onto the stack
or attempting to pop an item off an empty stack, taking the square root of a
negative number, or loading a non-empty register.

Bit 1 masks the denormalized interrupt that occurs whenever you try to
manipulate denormalized values. Denormalized exceptions occur when
you load arbitrary extended-precision values into the FPU or work with very
small numbers just beyond the range of the FPU’s capabilities. Normally,
you would probably not enable this exception. If you enable this exception
and the FPU generates this interrupt, the Windows runtime system raises
an exception.

Bit 2 masks the zero-divide exception. If this bit contains 0, the FPU will
generate an interrupt if you attempt to divide a nonzero value by 0. If you
do not enable the zero-divide exception, the FPU will produce NaN when-
ever you perform a zero division. It’s probably a good idea to enable this
exception by programming a 0 into this bit. Note that if your program gen-
erates this interrupt, the Windows runtime system will raise an exception.

Bit 3 masks the overflow exception. The FPU will raise the overflow
exception if a calculation overflows or if you attempt to store a value that is
too large to fit into the destination operand (for example, storing a large

Arithmetic 321

extended-precision value into a single-precision variable). If you enable this
exception and the FPU generates this interrupt, the Windows runtime sys-
tem raises an exception.

Bit 4, if set, masks the underflow exception. Underflow occurs when
the result is too small to fit in the destination operand. Like overflow, this
exception can occur whenever you store a small extended-precision value
into a smaller variable (single or double precision) or when the result of a
computation is too small for extended precision. If you enable this excep-
tion and the FPU generates this interrupt, the Windows runtime system
raises an exception.

Bit 5 controls whether the precision exception can occur. A precision
exception occurs whenever the FPU produces an imprecise result, generally
the result of an internal rounding operation. Although many operations
will produce an exact result, many more will not. For example, dividing 1
by 10 will produce an inexact result. Therefore, this bit is usually 1 because
inexact results are common. If you enable this exception and the FPU gen-
erates this interrupt, the Windows runtime system raises an exception.

Bits 6 and 7, and 12 to 15, in the control register are currently unde-
fined and reserved for future use (bits 7 and 12 were valid on older FPUs
but are no longer used).

The FPU provides two instructions, fldcw (load control word) and fstcw
(store control word), that let you load and store the contents of the control reg-
ister, respectively. The single operand to these instructions must be a 16-bit
memory location. The fldcw instruction loads the control register from the
specified memory location. fstcw stores the control register into the specified
memory location. The syntax for these instructions is shown here:

fldcw mem16
fstcw mem16

Here’s some example code that sets the rounding control to truncate
result and sets the rounding precision to 24 bits:

 .data
fcw16 word ?
 .
 .
 .
 fstcw fcw16
 mov ax, fcw16
 and ax, 0f0ffh ; Clears bits 8-11
 or ax, 0c00h ; Rounding control = %11, Precision = %00
 mov fcw16, ax
 fldcw fcw16

6.5.2.3 The FPU Status Register

The 16-bit FPU status register provides the status of the FPU at the instant
you read it; its layout appears in Figure 6-4. The fstsw instruction stores the
16-bit floating-point status register into a word variable.

322 Chapter 6

Exception flags

Top of stack
pointer

0123456789101112131415

Busy C3 C2 C1 C0

Condition codes

Precision
Underflow

Stack fault
Exception flag

Overflow
Zero divide

Denormalized
Invalid operation

Figure 6-4: The FPU status register

Bits 0 through 5 are the exception flags. These bits appear in the same
order as the exception masks in the control register. If the corresponding
condition exists, the bit is set. These bits are independent of the exception
masks in the control register. The FPU sets and clears these bits regardless
of the corresponding mask setting.

Bit 6 indicates a stack fault. A stack fault occurs whenever a stack over-
flow or underflow occurs. When this bit is set, the C1 condition code bit
determines whether there was a stack overflow (C1 = 1) or stack underflow
(C1 = 0) condition.

Bit 7 of the status register is set if any error condition bit is set. It is the
logical or of bits 0 through 5. A program can test this bit to quickly deter-
mine if an error condition exists.

Bits 8, 9, 10, and 14 are the coprocessor condition code bits. Various
instructions set the condition code bits, as shown in Tables 6-12 and 6-13,
respectively.

Table 6-12: FPU Comparison Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits Condition

C3 C2 C1 C0

fcom
fcomp
fcompp
ficom
ficomp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
ST or source not comparable

ftst 0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST is positive
ST is negative
ST is 0 (+ or –)
ST is not comparable

}

Arithmetic 323

Instruction Condition code bits Condition

C3 C2 C1 C0

fxam 0
0
0
0
1
1
1
1
0
0
0
0
1

0
0
1
1
0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0
1
0
1
X

0
0
0
0
0
0
0
0
1
1
1
1
1

Unsupported
Unsupported
+ Normalized
– Normalized
+ 0
– 0
+ Denormalized
– Denormalized
+ NaN
– NaN
+ Infinity
– Infinity
Empty register

fucom
fucomp
fucompp

0
0
1
1

0
0
0
1

X
X
X
X

0
1
0
1

ST > source
ST < source
ST = source
Unordered/not comparable

Table 6-13: FPU Condition Code Bits (X = “Don’t care”)

Instruction Condition code bits

C3 C2 C1 C0

fcom, fcomp, fcompp,
ftst, fucom, fucomp,
fucompp, ficom,
ficomp

Result of com-
parison, see
Table 6-12.

Operands are not
comparable.

Set to 0. Result of com-
parison, see
Table 6-12.

fxam See Table 6-12. See Table 6-12. Sign of result, or
stack overflow/
underflow if stack
exception bit is set.

See Table 6-12.

fprem, fprem1 Bit 0 of quotient 0—reduction done
1—reduction
incomplete

Bit 0 of quotient,
or stack overflow/
underflow if stack
exception bit is set.

Bit 2 of quotient

fist, fbstp, frndint,
fst, fstp, fadd, fmul,
fdiv, fdivr, fsub,
fsubr, fscale, fsqrt,
fpatan, f2xm1, fyl2x,
fyl2xp1

Undefined Undefined Rounding direction
if exception; other-
wise, set to 0.

Undefined

fptan, fsin, fcos,
fsincos

Undefined Set to 1 if within
range; otherwise, 0.

Round-up occurred
or stack overflow/
underflow if stack
exception bit is set.
Undefined if C2
is set.

Undefined

(continued)

324 Chapter 6

Instruction Condition code bits

C3 C2 C1 C0

fchs, fabs, fxch,
fincstp, fdecstp,
const loads, fxtract,
fld, fild, fbld, fstp
(80 bit)

Undefined Undefined Set to 0 or stack
overflow/underflow
if stack exception
bit is set.

Undefined

fldenv, frstor Restored from
memory operand

Restored from
memory operand

Restored from
memory operand

Restored from
memory operand

fldcw, fstenv, fstcw,
fstsw, fclex

Undefined Undefined Undefined Undefined

finit, fsave Cleared to 0 Cleared to 0 Cleared to 0 Cleared to 0

Bits 11 to 13 of the FPU status register provide the register number of
the top of stack. During computations, the FPU adds (modulo 8) the logical
register numbers supplied by the programmer to these 3 bits to determine
the physical register number at runtime.

Bit 15 of the status register is the busy bit. It is set whenever the FPU is
busy. This bit is a historical artifact from the days when the FPU was a sepa-
rate chip; most programs will have little reason to access this bit.

6.5.3 FPU Data Types
The FPU supports seven data types: three integer types, a packed deci-
mal type, and three floating-point types. The integer type supports 16-, 32-,
and 64-bit integers, although it is often faster to do the integer arithmetic
by using the integer unit of the CPU. The packed decimal type provides an
18-digit signed decimal (BCD) integer. The primary purpose of the BCD
format is to convert between strings and floating-point values. The remain-
ing three data types are the 32-, 64-, and 80-bit floating-point data types. The
80x87 data types appear in Figures 6-5, 6-6, and 6-7. Just note, for future
reference, that the largest BCD value the x87 supports is an 18-digit BCD
value (bits 72 to 78 are unused in this format).

31

32-bit single-precision floating-point format

64-bit single-precision floating-point format

80-bit single-precision floating-point format

... ...

... ...

63 52

79 64

23 16 15

078

078

078

Figure 6-5: FPU floating-point formats

Table 6-13: FPU Condition Code Bits (X = “Don’t care”) (continued)

Arithmetic 325

The FPU generally stores values in a normalized format. The HO bit of
the mantissa is always 1 when a floating-point number is normalized. In the
32- and 64-bit floating-point formats, the FPU does not actually store this
bit; the FPU always assumes that it is 1. Therefore, 32- and 64-bit floating-
point numbers are always normalized. In the extended-precision 80-bit
floating-point format, the FPU does not assume that the HO bit of the man-
tissa is 1; the HO bit of the mantissa appears as part of the string of bits.

16-bit two’s complement integer

32-bit two’s complement integer

64-bit two’s complement integer

07815

078

... ...

151631

07863

Figure 6-6: FPU integer formats

Normalized values provide the greatest precision for a given number of
bits. However, many non-normalized values cannot be represented with the
80-bit format. These values are very close to 0 and represent the set of val-
ues whose mantissa HO bit is not 0. The FPUs support a special 80-bit form
known as denormalized values. Denormalized values allow the FPU to encode
very small values it cannot encode using normalized values, but denormal-
ized values offer fewer bits of precision than normalized values. Therefore,
using denormalized values in a computation may introduce slight inaccu-
racy. Of course, this is always better than underflowing the denormalized
value to 0 (which could make the computation even less accurate), but you
must keep in mind that if you work with very small values, you may lose some
accuracy in your computations. The FPU status register contains a bit you
can use to detect when the FPU uses a denormalized value in a computation.

79

Sign Unused d17 d16

80-bit packed-decimal integer (BCD)

d15 d2 d1 d0

72 71 68 63 59
...

8 4 0

Figure 6-7: FPU packed decimal format

6.5.4 The FPU Instruction Set
The FPU adds many instructions to the x86-64 instruction set. We can
classify these instructions as data movement instructions, conversions,
arithmetic instructions, comparisons, constant instructions, transcenden-
tal instructions, and miscellaneous instructions. The following sections
describe each of the instructions in these categories.

326 Chapter 6

6.5.5 FPU Data Movement Instructions
The data movement instructions transfer data between the internal FPU regis-
ters and memory. The instructions in this category are fld, fst, fstp, and fxch.
The fld instruction always pushes its operand onto the floating-point stack.
The fstp instruction always pops the top of stack after storing it. The remain-
ing instructions do not affect the number of items on the stack.

6.5.5.1 The fld Instruction

The fld instruction loads a 32-, 64-, or 80-bit floating-point value onto the
stack. This instruction converts 32- and 64-bit operands to an 80-bit extended-
precision value before pushing the value onto the floating-point stack.

The fld instruction first decrements the TOS pointer (bits 11 to 13 of the
status register) and then stores the 80-bit value in the physical register speci-
fied by the new TOS pointer. If the source operand of the fld instruction is a
floating-point data register, st(i), then the actual register that the FPU uses
for the load operation is the register number before decrementing the TOS
pointer. Therefore, fld st(0) duplicates the value on the top of stack.

The fld instruction sets the stack fault bit if stack overflow occurs. It sets
the denormalized exception bit if you load an 80-bit denormalized value. It
sets the invalid operation bit if you attempt to load an empty floating-point
register onto the TOS (or perform another invalid operation).

Here are some examples:

fld st(1)
fld real4_variable
fld real8_variable
fld real10_variable
fld real8 ptr [rbx]

There is no way to directly load a 32-bit integer register onto the floating-
point stack, even if that register contains a real4 value. To do so, you must first
store the integer register into a memory location, and then push that memory
location onto the FPU stack by using the fld instruction. For example:

mov tempReal4, eax ; Save real4 value in EAX to memory
fld tempReal4 ; Push that value onto the FPU stack

6.5.5.2 The fst and fstp Instructions

The fst and fstp instructions copy the value on the top of the floating-point
stack to another floating-point register or to a 32-, 64-, or (fstp only) 80-bit
memory variable. When copying data to a 32- or 64-bit memory variable, the
FPU rounds the 80-bit extended-precision value on the TOS to the smaller
format as specified by the rounding control bits in the FPU control register.

By incrementing the TOS pointer in the status register after accessing
the data in ST(0), the fstp instruction pops the value off the top of stack

Arithmetic 327

when moving it to the destination location. If the destination operand is a
floating-point register, the FPU stores the value at the specified register
number before popping the data off the top of stack.

Executing an fstp st(0) instruction effectively pops the data off the top
of stack with no data transfer. Here are some examples:

fst real4_variable
fst real8_variable
fst realArray[rbx * 8]
fst st(2)
fstp st(1)

The last example effectively pops ST(1) while leaving ST(0) on the top
of stack.

The fst and fstp instructions will set the stack exception bit if a stack
underflow occurs (attempting to store a value from an empty register stack).
They will set the precision bit if a loss of precision occurs during the store
operation (for example, when storing an 80-bit extended-precision value
into a 32- or 64-bit memory variable and some bits are lost during conver-
sion). They will set the underflow exception bit when storing an 80-bit value
into a 32- or 64-bit memory variable, but the value is too small to fit into
the destination operand. Likewise, these instructions will set the overflow
exception bit if the value on the top of stack is too big to fit into a 32- or
64-bit memory variable. They set the invalid operation flag if an invalid
operation (such as storing into an empty register) occurs. Finally, these
instructions set the C1 condition bit if rounding occurs during the store
operation (this occurs only when storing into a 32- or 64-bit memory vari-
able and you have to round the mantissa to fit into the destination) or if a
stack fault occurs.

N O T E Because of an idiosyncrasy in the FPU instruction set related to the encoding of the
instructions, you cannot use the fst instruction to store data into a real10 memory
variable. You may, however, store 80-bit data by using the fstp instruction.

6.5.5.3 The fxch Instruction

The fxch instruction exchanges the value on the top of stack with one of the
other FPU registers. This instruction takes two forms: one with a single FPU
register as an operand and the second without any operands. The first form
exchanges the top of stack with the specified register. The second form of
fxch swaps the top of stack with ST(1).

Many FPU instructions (for example, fsqrt) operate only on the top of
the register stack. If you want to perform such an operation on a value that
is not on top, you can use the fxch instruction to swap that register with TOS,
perform the desired operation, and then use fxch to swap the TOS with the
original register. The following example takes the square root of ST(2):

fxch st(2)
fsqrt
fxch st(2)

328 Chapter 6

The fxch instruction sets the stack exception bit if the stack is empty;
it sets the invalid operation bit if you specify an empty register as the oper-
and; and it always clears the C1 condition code bit.

6.5.6 Conversions
The FPU performs all arithmetic operations on 80-bit real quantities. In a
sense, the fld and fst/fstp instructions are conversion instructions because
they automatically convert between the internal 80-bit real format and the
32- and 64-bit memory formats. Nonetheless, we’ll classify them as data
movement operations, rather than conversions, because they are moving
real values to and from memory. The FPU provides six other instructions
that convert to or from integer or BCD format when moving data. These
instructions are fild, fist, fistp, fisttp, fbld, and fbstp.

6.5.6.1 The fild Instruction

The fild (integer load) instruction converts a 16-, 32-, or 64-bit two’s comple-
ment integer to the 80-bit extended-precision format and pushes the result
onto the stack. This instruction always expects a single operand: the address
of a word, double-word, or quad-word integer variable. You cannot specify
one of the x86-64’s 16-, 32-, or 64-bit general-purpose registers. If you want
to push the value of an x86-64 general-purpose register onto the FPU stack,
you must first store it into a memory variable and then use fild to push that
memory variable.

The fild instruction sets the stack exception bit and C1 (accordingly)
if stack overflow occurs while pushing the converted value. Look at these
examples:

fild word_variable
fild dword_val[rcx * 4]
fild qword_variable
fild sqword ptr [rbx]

6.5.6.2 The fist, fistp, and fisttp Instructions

The fist, fistp, and fisttp instructions convert the 80-bit extended-preci-
sion variable on the top of stack to a 16-, 32-, or (fistp/fistpp only) 64-bit
integer and store the result away into the memory variable specified by the
single operand. The fist and fistp instructions convert the value on TOS
to an integer according to the rounding setting in the FPU control register
(bits 10 and 11). The fisttp instruction always does the conversion using the
truncation mode. As with the fild instruction, the fist, fistp, and fisttp
instructions will not let you specify one of the x86-64’s general-purpose 16-,
32-, or 64-bit registers as the destination operand.

The fist instruction converts the value on the top of stack to an integer
and then stores the result; it does not otherwise affect the floating-point
register stack. The fistp and fisttp instructions pop the value off the floating-
point register stack after storing the converted value.

Arithmetic 329

These instructions set the stack exception bit if the floating-point regis-
ter stack is empty (this will also clear C1). They set the precision (imprecise
operation) and C1 bits if rounding occurs (that is, if the value in ST(0) has
any fractional component). These instructions set the underflow exception
bit if the result is too small (less than 1 but greater than 0, or less than 0 but
greater than –1). Here are some examples:

fist word_var[rbx * 2]
fist dword_var
fisttp dword_var
fistp qword_var

The fist and fistp instructions use the rounding control settings to
determine how they will convert the floating-point data to an integer during
the store operation. By default, the rounding control is usually set to round
mode; yet, most programmers expect fist/fistp to truncate the decimal
portion during conversion. If you want fist/fistp to truncate floating-point
values when converting them to an integer, you will need to set the rounding
control bits appropriately in the floating-point control register (or use the
fisttp instruction to truncate the result regardless of the rounding control
bits). Here’s an example:

 .data
fcw16 word ?
fcw16_2 word ?
IntResult sdword ?
 .
 .
 .
 fstcw fcw16
 mov ax, fcw16
 or ax, 0c00h ; Rounding = %11 (truncate)
 mov fcw16_2, ax ; Store and reload the ctrl word
 fldcw fcw16_2

 fistp IntResult ; Truncate ST(0) and store as int32

 fldcw fcw16 ; Restore original rounding control

6.5.6.3 The fbld and fbstp Instructions

The fbld and fbstp instructions load and store 80-bit BCD values. The fbld
instruction converts a BCD value to its 80-bit extended-precision equiva-
lent and pushes the result onto the stack. The fbstp instruction pops the
extended-precision real value on TOS, converts it to an 80-bit BCD value
(rounding according to the bits in the floating-point control register), and
stores the converted result at the address specified by the destination mem-
ory operand. There is no fbst instruction.

The fbld instruction sets the stack exception bit and C1 if stack overflow
occurs. The results are undefined if you attempt to load an invalid BCD

330 Chapter 6

value. The fbstp instruction sets the stack exception bit and clears C1 if
stack underflow occurs (the stack is empty). It sets the underflow flag under
the same conditions as fist and fistp. Look at these examples:

; Assuming fewer than eight items on the stack, the following
; code sequence is equivalent to an fbst instruction:

 fld st(0)
 fbstp tbyte_var

; The following example easily converts an 80-bit BCD value to
; a 64-bit integer:

 fbld tbyte_var
 fistp qword_var

These two instructions are especially useful for converting between
string and floating-point formats. Along with the fild and fist instructions,
you can use fbld and fbstp to convert between integer and string formats
(see “Converting Unsigned Decimal Values to Strings” in Chapter 9).

6.5.7 Arithmetic Instructions
Arithmetic instructions make up a small but important subset of the FPU’s
instruction set. These instructions fall into two general categories: those
that operate on real values and those that operate on a real and an integer
value.

6.5.7.1 The fadd, faddp, and fiadd Instructions

The fadd, faddp, and fiadd instructions take the following forms:

fadd
faddp
fadd st(i), st(0)
fadd st(0), st(i)
faddp st(i), st(0)
fadd mem32
fadd mem64
fiadd mem16
fiadd mem32

The fadd instruction, with no operands, is a synonym for faddp. The
faddp instruction (also with no operands) pops the two values on the top of
stack, adds them, and pushes their sum back onto the stack.

The next two forms of the fadd instruction, those with two FPU register
operands, behave like the x86-64’s add instruction. They add the value in
the source register operand to the value in the destination register oper-
and. One of the register operands must be ST(0).

Arithmetic 331

The faddp instruction with two operands adds ST(0) (which must always
be the source operand) to the destination operand and then pops ST(0).
The destination operand must be one of the other FPU registers.

The last two forms, fadd with a memory operand, adds a 32- or 64-bit
floating-point variable to the value in ST(0). This instruction will convert
the 32- or 64-bit operands to an 80-bit extended-precision value before
performing the addition. Note that this instruction does not allow an 80-bit
memory operand. There are also instructions for adding 16- and 32-bit inte-
gers in memory to ST(0): fiadd mem16 and fiadd mem32.

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If a stack
fault exception occurs, C1 denotes stack overflow or underflow, or the
rounding direction (see Table 6-13).

Listing 6-1 demonstrates the various forms of the fadd instruction.

; Listing 6-1

; Demonstration of various forms of fadd.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-1", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtAdd1 byte "fadd: st0:%f", nl, 0
fmtAdd2 byte "faddp: st0:%f", nl, 0
fmtAdd3 byte "fadd st(1), st(0): st0:%f, st1:%f", nl, 0
fmtAdd4 byte "fadd st(0), st(1): st0:%f, st1:%f", nl, 0
fmtAdd5 byte "faddp st(1), st(0): st0:%f", nl, 0
fmtAdd6 byte "fadd mem: st0:%f", nl, 0

zero real8 0.0
one real8 1.0
two real8 2.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

332 Chapter 6

; printFP - Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; Demonstrate various fadd instructions:

 mov rax, qword ptr one
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fadd (same as faddp):

 fld one
 fld minusTwo
 fadd ; Pops st(0)!
 fstp st0

 lea rcx, fmtAdd1
 call printFP

; faddp:

 fld one
 fld minusTwo
 faddp ; Pops st(0)!
 fstp st0

Arithmetic 333

 lea rcx, fmtAdd2
 call printFP

; fadd st(1), st(0):

 fld one
 fld minusTwo
 fadd st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtAdd3
 call printFP

; fadd st(0), st(1):

 fld one
 fld minusTwo
 fadd st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtAdd4
 call printFP

; faddp st(1), st(0):

 fld one
 fld minusTwo
 faddp st(1), st(0)
 fstp st0

 lea rcx, fmtAdd5
 call printFP

; faddp mem64:

 fld one
 fadd two
 fstp st0

 lea rcx, fmtAdd6
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-1: Demonstration of fadd instructions

334 Chapter 6

Here’s the build command and output for the program in Listing 6-1:

C:\>build listing6-1

C:\>echo off
 Assembling: listing6-1.asm
c.cpp

C:\>listing6-1
Calling Listing 6-1:
st(0):-2.000000, st(1):1.000000
fadd: st0:-1.000000
faddp: st0:-1.000000
fadd st(1), st(0): st0:-2.000000, st1:-1.000000
fadd st(0), st(1): st0:-1.000000, st1:1.000000
faddp st(1), st(0): st0:-1.000000
fadd mem: st0:3.000000
Listing 6-1 terminated

6.5.7.2 The fsub, fsubp, fsubr, fsubrp, fisub, and fisubr Instructions

These six instructions take the following forms:

fsub
fsubp
fsubr
fsubrp

fsub st(i), st(0)
fsub st(0), st(i)
fsubp st(i), st(0)
fsub mem32
fsub mem64

fsubr st(i), st(0)
fsubr st(0), st(i)
fsubrp st(i), st(0)
fsubr mem32
fsubr mem64

fisub mem16
fisub mem32
fisubr mem16
fisubr mem32

With no operands, fsub is the same as fsubp (without operands). With
no operands, the fsubp instruction pops ST(0) and ST(1) from the register
stack, computes ST(1) – ST(0), and then pushes the difference back onto
the stack. The fsubr and fsubrp instructions (reverse subtraction) operate in
an identical fashion except they compute ST(0) – ST(1).

With two register operands (destination, source), the fsub instruction
computes destination = destination – source. One of the two registers must be

Arithmetic 335

ST(0). With two registers as operands, the fsubp also computes destination =
destination – source, and then it pops ST(0) off the stack after computing the
difference. For the fsubp instruction, the source operand must be ST(0).

With two register operands, the fsubr and fsubrp instructions work in
a similar fashion to fsub and fsubp, except they compute destination = source
– destination.

The fsub mem32, fsub mem64, fsubr mem32, and fsubr mem64 instructions accept
a 32- or 64-bit memory operand. They convert the memory operand to
an 80-bit extended-precision value and subtract this from ST(0) (fsub) or
subtract ST(0) from this value (fsubr) and store the result back into ST(0).
There are also instructions for subtracting 16- and 32-bit integers in memory
from ST(0): fisub mem16 and fisub mem32 (also fisubr mem16 and fisubr mem32).

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If a stack
fault exception occurs, C1 denotes stack overflow or underflow, or indicates
the rounding direction (see Table 6-13).

Listing 6-2 demonstrates the fsub/fsubr instructions.

; Listing 6-2

; Demonstration of various forms of fsub/fsubrl.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-2", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtSub1 byte "fsub: st0:%f", nl, 0
fmtSub2 byte "fsubp: st0:%f", nl, 0
fmtSub3 byte "fsub st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub4 byte "fsub st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub5 byte "fsubp st(1), st(0): st0:%f", nl, 0
fmtSub6 byte "fsub mem: st0:%f", nl, 0
fmtSub7 byte "fsubr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtSub8 byte "fsubr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtSub9 byte "fsubrp st(1), st(0): st0:%f", nl, 0
fmtSub10 byte "fsubr mem: st0:%f", nl, 0

zero real8 0.0
three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

336 Chapter 6

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP - Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; Demonstrate various fsub instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fsub (same as fsubp):

 fld three
 fld minusTwo
 fsub ; Pops st(0)!
 fstp st0

 lea rcx, fmtSub1
 call printFP

Arithmetic 337

; fsubp:

 fld three
 fld minusTwo
 fsubp ; Pops st(0)!
 fstp st0

 lea rcx, fmtSub2
 call printFP

; fsub st(1), st(0):

 fld three
 fld minusTwo
 fsub st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtSub3
 call printFP

; fsub st(0), st(1):

 fld three
 fld minusTwo
 fsub st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtSub4
 call printFP

; fsubp st(1), st(0):

 fld three
 fld minusTwo
 fsubp st(1), st(0)
 fstp st0

 lea rcx, fmtSub5
 call printFP

; fsub mem64:

 fld three
 fsub minusTwo
 fstp st0

 lea rcx, fmtSub6
 call printFP

; fsubr st(1), st(0):

 fld three
 fld minusTwo

338 Chapter 6

 fsubr st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtSub7
 call printFP

; fsubr st(0), st(1):

 fld three
 fld minusTwo
 fsubr st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtSub8
 call printFP

; fsubrp st(1), st(0):

 fld three
 fld minusTwo
 fsubrp st(1), st(0)
 fstp st0

 lea rcx, fmtSub9
 call printFP

; fsubr mem64:

 fld three
 fsubr minusTwo
 fstp st0

 lea rcx, fmtSub10
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-2: Demonstration of the fsub instructions

Here’s the build command and output for Listing 6-2:

C:\>build listing6-2

C:\>echo off
 Assembling: listing6-2.asm
c.cpp

Arithmetic 339

C:\>listing6-2
Calling Listing 6-2:
st(0):-2.000000, st(1):3.000000
fsub: st0:5.000000
fsubp: st0:5.000000
fsub st(1), st(0): st0:-2.000000, st1:5.000000
fsub st(0), st(1): st0:-5.000000, st1:3.000000
fsubp st(1), st(0): st0:5.000000
fsub mem: st0:5.000000
fsubr st(1), st(0): st0:-2.000000, st1:-5.000000
fsubr st(0), st(1): st0:5.000000, st1:3.000000
fsubrp st(1), st(0): st0:-5.000000
fsubr mem: st0:-5.000000
Listing 6-2 terminated

6.5.7.3 The fmul, fmulp, and fimul Instructions

The fmul and fmulp instructions multiply two floating-point values. The fimul
instruction multiples an integer and a floating-point value. These instruc-
tions allow the following forms:

fmul
fmulp

fmul st(0), st(i)
fmul st(i), st(0)
fmul mem32
fmul mem64

fmulp st(i), st(0)

fimul mem16
fimul mem32

With no operands, fmul is a synonym for fmulp. The fmulp instruction,
with no operands, will pop ST(0) and ST(1), multiply these values, and push
their product back onto the stack. The fmul instructions with two register
operands compute destination = destination × source. One of the registers
(source or destination) must be ST(0).

The fmulp st(0), st(i) instruction computes ST(i) = ST(i) × ST(0) and
then pops ST(0). This instruction uses the value for i before popping ST(0).
The fmul mem32 and fmul mem64 instructions require a 32- or 64-bit memory
operand, respectively. They convert the specified memory variable to an
80-bit extended-precision value and then multiply ST(0) by this value.
There are also instructions for multiplying 16- and 32-bit integers in mem-
ory by ST(0): fimul mem16 and fimul mem32.

These instructions can raise the stack, precision, underflow, overflow,
denormalized, and illegal operation exceptions, as appropriate. If rounding
occurs during the computation, these instructions set the C1 condition code
bit. If a stack fault exception occurs, C1 denotes stack overflow or underflow.

340 Chapter 6

Listing 6-3 demonstrates the various forms of the fmul instruction.

; Listing 6-3

; Demonstration of various forms of fmul.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-3", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtMul1 byte "fmul: st0:%f", nl, 0
fmtMul2 byte "fmulp: st0:%f", nl, 0
fmtMul3 byte "fmul st(1), st(0): st0:%f, st1:%f", nl, 0
fmtMul4 byte "fmul st(0), st(1): st0:%f, st1:%f", nl, 0
fmtMul5 byte "fmulp st(1), st(0): st0:%f", nl, 0
fmtMul6 byte "fmul mem: st0:%f", nl, 0

zero real8 0.0
three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP - Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf

Arithmetic 341

 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; Demonstrate various fmul instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fmul (same as fmulp):

 fld three
 fld minusTwo
 fmul ; Pops st(0)!
 fstp st0

 lea rcx, fmtMul1
 call printFP

; fmulp:

 fld three
 fld minusTwo
 fmulp ; Pops st(0)!
 fstp st0

 lea rcx, fmtMul2
 call printFP

; fmul st(1), st(0):

 fld three
 fld minusTwo
 fmul st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtMul3
 call printFP

; fmul st(0), st(1):

 fld three

342 Chapter 6

 fld minusTwo
 fmul st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtMul4
 call printFP

; fmulp st(1), st(0):

 fld three
 fld minusTwo
 fmulp st(1), st(0)
 fstp st0

 lea rcx, fmtMul5
 call printFP

; fmulp mem64:

 fld three
 fmul minusTwo
 fstp st0

 lea rcx, fmtMul6
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-3: Demonstration of the fmul instruction

Here is the build command and output for Listing 6-3:

C:\>build listing6-3

C:\>echo off
 Assembling: listing6-3.asm
c.cpp

C:\>listing6-3
Calling Listing 6-3:
st(0):-2.000000, st(1):3.000000
fmul: st0:-6.000000
fmulp: st0:-6.000000
fmul st(1), st(0): st0:-2.000000, st1:-6.000000
fmul st(0), st(1): st0:-6.000000, st1:3.000000
fmulp st(1), st(0): st0:-6.000000
fmul mem: st0:-6.000000
Listing 6-3 terminated

Arithmetic 343

6.5.7.4 The fdiv, fdivp, fdivr, fdivrp, fidiv, and fidivr Instructions

These six instructions allow the following forms:

fdiv
fdivp
fdivr
fdivrp

fdiv st(0), st(i)
fdiv st(i), st(0)
fdivp st(i), st(0)

fdivr st(0), st(i)
fdivr st(i), st(0)
fdivrp st(i), st(0)

fdiv mem32
fdiv mem64
fdivr mem32
fdivr mem64

fidiv mem16
fidiv mem32
fidivr mem16
fidivr mem32

With no operands, the fdiv instruction is a synonym for fdivp. The fdivp
instruction with no operands computes ST(1) = ST(1) / ST(0). The fdivr
and fdivrp instructions work in a similar fashion to fdiv and fdivp except
that they compute ST(0) / ST(1) rather than ST(1) / ST(0).

With two register operands, these instructions compute the following
quotients:

fdiv st(0), st(i) ; st(0) = st(0)/st(i)
fdiv st(i), st(0) ; st(i) = st(i)/st(0)
fdivp st(i), st(0) ; st(i) = st(i)/st(0) then pop st0
fdivr st(0), st(i) ; st(0) = st(i)/st(0)
fdivr st(i), st(0) ; st(i) = st(0)/st(i)
fdivrp st(i), st(0) ; st(i) = st(0)/st(i) then pop st0

The fdivp and fdivrp instructions also pop ST(0) after performing the
division operation. The value for i in these two instructions is computed
before popping ST(0).

These instructions can raise the stack, precision, underflow, overflow,
denormalized, zero divide, and illegal operation exceptions, as appropriate.
If rounding occurs during the computation, these instructions set the C1
condition code bit. If a stack fault exception occurs, C1 denotes stack over-
flow or underflow.

344 Chapter 6

Listing 6-4 provides a demonstration of the fdiv/fdivr instructions.

; Listing 6-4

; Demonstration of various forms of fsub/fsubrl.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 6-4", 0
fmtSt0St1 byte "st(0):%f, st(1):%f", nl, 0
fmtDiv1 byte "fdiv: st0:%f", nl, 0
fmtDiv2 byte "fdivp: st0:%f", nl, 0
fmtDiv3 byte "fdiv st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv4 byte "fdiv st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv5 byte "fdivp st(1), st(0): st0:%f", nl, 0
fmtDiv6 byte "fdiv mem: st0:%f", nl, 0
fmtDiv7 byte "fdivr st(1), st(0): st0:%f, st1:%f", nl, 0
fmtDiv8 byte "fdivr st(0), st(1): st0:%f, st1:%f", nl, 0
fmtDiv9 byte "fdivrp st(1), st(0): st0:%f", nl, 0
fmtDiv10 byte "fdivr mem: st0:%f", nl, 0

three real8 3.0
minusTwo real8 -2.0

 .data
st0 real8 0.0
st1 real8 0.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP - Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

Arithmetic 345

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; Demonstrate various fdiv instructions:

 mov rax, qword ptr three
 mov qword ptr st1, rax
 mov rax, qword ptr minusTwo
 mov qword ptr st0, rax
 lea rcx, fmtSt0St1
 call printFP

; fdiv (same as fdivp):

 fld three
 fld minusTwo
 fdiv ; Pops st(0)!
 fstp st0

 lea rcx, fmtDiv1
 call printFP

; fdivp:

 fld three
 fld minusTwo
 fdivp ; Pops st(0)!
 fstp st0

 lea rcx, fmtDiv2
 call printFP

; fdiv st(1), st(0):

 fld three
 fld minusTwo
 fdiv st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtDiv3
 call printFP

346 Chapter 6

; fdiv st(0), st(1):

 fld three
 fld minusTwo
 fdiv st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtDiv4
 call printFP

; fdivp st(1), st(0):

 fld three
 fld minusTwo
 fdivp st(1), st(0)
 fstp st0

 lea rcx, fmtDiv5
 call printFP

; fdiv mem64:

 fld three
 fdiv minusTwo
 fstp st0

 lea rcx, fmtDiv6
 call printFP

; fdivr st(1), st(0):

 fld three
 fld minusTwo
 fdivr st(1), st(0)
 fstp st0
 fstp st1

 lea rcx, fmtDiv7
 call printFP

; fdivr st(0), st(1):

 fld three
 fld minusTwo
 fdivr st(0), st(1)
 fstp st0
 fstp st1

 lea rcx, fmtDiv8
 call printFP

; fdivrp st(1), st(0):

 fld three

Arithmetic 347

 fld minusTwo
 fdivrp st(1), st(0)
 fstp st0

 lea rcx, fmtDiv9
 call printFP

; fdivr mem64:

 fld three
 fdivr minusTwo
 fstp st0

 lea rcx, fmtDiv10
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-4: Demonstration of the fdiv/fdivr instructions

Here’s the build command and sample output for Listing 6-4:

C:\>build listing6-4

C:\>echo off
 Assembling: listing6-4.asm
c.cpp

C:\>listing6-4
Calling Listing 6-4:
st(0):-2.000000, st(1):3.000000
fdiv: st0:-1.500000
fdivp: st0:-1.500000
fdiv st(1), st(0): st0:-2.000000, st1:-1.500000
fdiv st(0), st(1): st0:-0.666667, st1:3.000000
fdivp st(1), st(0): st0:-1.500000
fdiv mem: st0:-1.500000
fdivr st(1), st(0): st0:-2.000000, st1:-0.666667
fdivr st(0), st(1): st0:-1.500000, st1:3.000000
fdivrp st(1), st(0): st0:-0.666667
fdivr mem: st0:-0.666667
Listing 6-4 terminated

6.5.7.5 The fsqrt Instruction

The fsqrt routine does not allow any operands. It computes the square root
of the value on TOS and replaces ST(0) with this result. The value on TOS
must be 0 or positive; otherwise, fsqrt will generate an invalid operation
exception.

348 Chapter 6

This instruction can raise the stack, precision, denormalized, and
invalid operation exceptions, as appropriate. If rounding occurs during the
computation, fsqrt sets the C1 condition code bit. If a stack fault exception
occurs, C1 denotes stack overflow or underflow.

Here’s an example:

; Compute z = sqrt(x**2 + y**2):

 fld x ; Load x
 fld st(0) ; Duplicate x on TOS
 fmulp ; Compute x**2

 fld y ; Load y
 fld st(0) ; Duplicate y
 fmul ; Compute y**2

 faddp ; Compute x**2 + y**2
 fsqrt ; Compute sqrt(x**2 + y**2)
 fstp z ; Store result away into z

6.5.7.6 The fprem and fprem1 Instructions

The fprem and fprem1 instructions compute a partial remainder (a value that
may require additional computation to produce the actual remainder).
Intel designed the fprem instruction before the IEEE finalized its floating-
point standard. In the final draft of that standard, the definition of fprem
was a little different from Intel’s original design. To maintain compatibility
with the existing software that used the fprem instruction, Intel designed a
new version to handle the IEEE partial remainder operation, fprem1. You
should always use fprem1 in new software; therefore, we will discuss only
fprem1 here, although you use fprem in an identical fashion.

fprem1 computes the partial remainder of ST(0) / ST(1). If the differ-
ence between the exponents of ST(0) and ST(1) is less than 64, fprem1 can
compute the exact remainder in one operation. Otherwise, you will have to
execute fprem1 two or more times to get the correct remainder value. The
C2 condition code bit determines when the computation is complete. Note
that fprem1 does not pop the two operands off the stack; it leaves the partial
remainder in ST(0) and the original divisor in ST(1) in case you need to
compute another partial product to complete the result.

The fprem1 instruction sets the stack exception flag if there aren’t two
values on the top of stack. It sets the underflow and denormal exception
bits if the result is too small. It sets the invalid operation bit if the values
on TOS are inappropriate for this operation. It sets the C2 condition code
bit if the partial remainder operation is not complete (or on stack under-
flow). Finally, it loads C1, C2, and C0 with bits 0, 1, and 2 of the quotient,
respectively.

Arithmetic 349

An example follows:

; Compute z = x % y:

 fld y
 fld x
repeatLp:

 fprem1
 fstsw ax ; Get condition code bits into AX
 and ah, 1 ; See if C2 is set
 jnz repeatLp ; Repeat until C2 is clear
 fstp z ; Store away the remainder
 fstp st(0) ; Pop old y value

6.5.7.7 The frndint Instruction

The frndint instruction rounds the value on TOS to the nearest integer by
using the rounding algorithm specified in the control register.

This instruction sets the stack exception flag if there is no value on the
TOS (it will also clear C1 in this case). It sets the precision and denormal
exception bits if a loss of precision occurred. It sets the invalid operation
flag if the value on the TOS is not a valid number. Note that the result on
the TOS is still a floating-point value; it simply does not have a fractional
component.

6.5.7.8 The fabs Instruction

fabs computes the absolute value of ST(0) by clearing the mantissa sign bit
of ST(0). It sets the stack exception bit and invalid operation bits if the stack
is empty.

Here’s an example:

; Compute x = sqrt(abs(x)):

 fld x
 fabs
 fsqrt
 fstp x

6.5.7.9 The fchs Instruction

fchs changes the sign of ST(0)’s value by inverting the mantissa sign bit (this
is the floating-point negation instruction). It sets the stack exception bit and
invalid operation bits if the stack is empty.

Look at this example:

; Compute x = -x if x is positive, x = x if x is negative.
; That is, force x to be a negative value.

350 Chapter 6

 fld x
 fabs
 fchs
 fstp x

6.5.8 Comparison Instructions
The FPU provides several instructions for comparing real values. The fcom,
fcomp, and fcompp instructions compare the two values on the top of stack
and set the condition codes appropriately. The ftst instruction compares
the value on the top of stack with 0.

Generally, most programs test the condition code bits immediately after
a comparison. Unfortunately, no instructions test the FPU condition codes.
Instead, you use the fstsw instruction to copy the floating-point status reg-
ister into the AX register, then the sahf instruction to copy the AH register
into the x86-64’s condition code bits. Then you can test the standard x86-64
flags to check for a condition. This technique copies C0 into the carry flag,
C2 into the parity flag, and C3 into the zero flag. The sahf instruction does
not copy C1 into any of the x86-64’s flag bits.

Because sahf does not copy any FPU status bits into the sign or overflow
flags, you cannot use signed comparison instructions. Instead, use unsigned
operations (for example, seta, setb, ja, jb) when testing the results of a floating-
point comparison. Yes, these instructions normally test unsigned values,
and floating-point numbers are signed values. However, use the unsigned opera-
tions anyway; the fstsw and sahf instructions set the x86-64 FLAGS register
as though you had compared unsigned values with the cmp instruction.

The x86-64 processors provide an extra set of floating-point compari-
son instructions that directly affect the x86-64 condition code flags. These
instructions circumvent having to use fstsw and sahf to copy the FPU status
into the x86-64 condition codes. These instructions include fcomi and fcomip.
You use them just like the fcom and fcomp instructions, except, of course, you
do not have to manually copy the status bits to the FLAGS register.

6.5.8.1 The fcom, fcomp, and fcompp Instructions

The fcom, fcomp, and fcompp instructions compare ST(0) to the specified oper-
and and set the corresponding FPU condition code bits based on the result
of the comparison. The legal forms for these instructions are as follows:

fcom
fcomp
fcompp

fcom st(i)
fcomp st(i)

fcom mem32
fcom mem64
fcomp mem32
fcomp mem64

Arithmetic 351

With no operands, fcom, fcomp, and fcompp compare ST(0) against ST(1)
and set the FPU flags accordingly. In addition, fcomp pops ST(0) off the
stack, and fcompp pops both ST(0) and ST(1) off the stack.

With a single-register operand, fcom and fcomp compare ST(0) against
the specified register. fcomp also pops ST(0) after the comparison.

With a 32- or 64-bit memory operand, the fcom and fcomp instructions
convert the memory variable to an 80-bit extended-precision value and then
compare ST(0) against this value, setting the condition code bits accord-
ingly. fcomp also pops ST(0) after the comparison.

These instructions set C2 (which winds up in the parity flag when using
sahf) if the two operands are not comparable (for example, NaN). If it is
possible for an illegal floating-point value to wind up in a comparison, you
should check the parity flag for an error before checking the desired condi-
tion (for example, with the setp/setnp or jp/jnp instructions).

These instructions set the stack fault bit if there aren’t two items on the
top of the register stack. They set the denormalized exception bit if either
or both operands are denormalized. They set the invalid operation flag if
either or both operands are NaNs. These instructions always clear the C1
condition code.

Let’s look at an example of a floating-point comparison:

 fcompp
 fstsw ax
 sahf
 setb al ; AL = true if st(0) < st(1)
 .
 .
 .
 fcompp
 fstsw ax
 sahf
 jnb st1GEst0

 ; Code that executes if st(0) < st(1).

st1GEst0:

Because all x86-64 64-bit CPUs support the fcomi and fcomip instructions
(described in the next section), you should consider using those instructions
as they spare you from having to store the FPU status word into AX and
then copy AH into the FLAGS register before testing the condition. On
the other hand, fcomi and fcomip support only a limited number of operand
forms (the fcom and fcomp instructions are more general).

Listing 6-5 is a sample program that demonstrates the use of the vari-
ous fcom instructions.

; Listing 6-5

; Demonstration of fcom instructions.

 option casemap:none

352 Chapter 6

nl = 10

 .const
ttlStr byte "Listing 6-5", 0
fcomFmt byte "fcom %f < %f is %d", nl, 0
fcomFmt2 byte "fcom(2) %f < %f is %d", nl, 0
fcomFmt3 byte "fcom st(1) %f < %f is %d", nl, 0
fcomFmt4 byte "fcom st(1) (2) %f < %f is %d", nl, 0
fcomFmt5 byte "fcom mem %f < %f is %d", nl, 0
fcomFmt6 byte "fcom mem %f (2) < %f is %d", nl, 0
fcompFmt byte "fcomp %f < %f is %d", nl, 0
fcompFmt2 byte "fcomp (2) %f < %f is %d", nl, 0
fcompFmt3 byte "fcomp st(1) %f < %f is %d", nl, 0
fcompFmt4 byte "fcomp st(1) (2) %f < %f is %d", nl, 0
fcompFmt5 byte "fcomp mem %f < %f is %d", nl, 0
fcompFmt6 byte "fcomp mem (2) %f < %f is %d", nl, 0
fcomppFmt byte "fcompp %f < %f is %d", nl, 0
fcomppFmt2 byte "fcompp (2) %f < %f is %d", nl, 0

three real8 3.0
zero real8 0.0
minusTwo real8 -2.0

 .data
st0 real8 ?
st1 real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP - Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 movzx r9, al

Arithmetic 353

 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

; fcom demo:

 xor eax, eax
 fld three
 fld zero
 fcom
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt
 call printFP

; fcom demo 2:

 xor eax, eax
 fld zero
 fld three
 fcom
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt2
 call printFP

; fcom st(i) demo:

 xor eax, eax
 fld three
 fld zero
 fcom st(1)
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt3
 call printFP

354 Chapter 6

; fcom st(i) demo 2:

 xor eax, eax
 fld zero
 fld three
 fcom st(1)
 fstsw ax
 sahf
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomFmt4
 call printFP

; fcom mem64 demo:

 xor eax, eax
 fld three ; Never on stack so
 fstp st1 ; copy for output
 fld zero
 fcom three
 fstsw ax
 sahf
 setb al
 fstp st0
 lea rcx, fcomFmt5
 call printFP

; fcom mem64 demo 2:

 xor eax, eax
 fld zero ; Never on stack so
 fstp st1 ; copy for output
 fld three
 fcom zero
 fstsw ax
 sahf
 setb al
 fstp st0
 lea rcx, fcomFmt6
 call printFP

; fcomp demo:

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomp
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt
 call printFP

Arithmetic 355

; fcomp demo 2:

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomp
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt2
 call printFP

; fcomp demo 3:

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomp st(1)
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt3
 call printFP

; fcomp demo 4:

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomp st(1)
 fstsw ax
 sahf
 setb al
 fstp st1
 lea rcx, fcompFmt4
 call printFP

; fcomp demo 5:

 xor eax, eax
 fld three
 fstp st1
 fld zero
 fst st0 ; Because this gets popped
 fcomp three
 fstsw ax
 sahf
 setb al
 lea rcx, fcompFmt5
 call printFP

356 Chapter 6

; fcomp demo 6:

 xor eax, eax
 fld zero
 fstp st1
 fld three
 fst st0 ; Because this gets popped
 fcomp zero
 fstsw ax
 sahf
 setb al
 lea rcx, fcompFmt6
 call printFP

; fcompp demo:

 xor eax, eax
 fld zero
 fst st1 ; Because this gets popped
 fld three
 fst st0 ; Because this gets popped
 fcompp
 fstsw ax
 sahf
 setb al
 lea rcx, fcomppFmt
 call printFP

; fcompp demo 2:

 xor eax, eax
 fld three
 fst st1 ; Because this gets popped
 fld zero
 fst st0 ; Because this gets popped
 fcompp
 fstsw ax
 sahf
 setb al
 lea rcx, fcomppFmt2
 call printFP

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 6-5: Program that demonstrates the fcom instructions

Here’s the build command and output for the program in Listing 6-5:

C:\>build listing6-5

C:\>echo off

Arithmetic 357

 Assembling: listing6-5.asm
c.cpp

C:\>listing6-5
Calling Listing 6-5:
fcom 0.000000 < 3.000000 is 1
fcom(2) 3.000000 < 0.000000 is 0
fcom st(1) 0.000000 < 3.000000 is 1
fcom st(1) (2) 3.000000 < 0.000000 is 0
fcom mem 0.000000 < 3.000000 is 1
fcom mem 3.000000 (2) < 0.000000 is 0
fcomp 3.000000 < 0.000000 is 0
fcomp (2) 0.000000 < 3.000000 is 1
fcomp st(1) 3.000000 < 0.000000 is 0
fcomp st(1) (2) 0.000000 < 3.000000 is 1
fcomp mem 0.000000 < 3.000000 is 1
fcomp mem (2) 3.000000 < 0.000000 is 0
fcompp 3.000000 < 0.000000 is 0
fcompp (2) 0.000000 < 3.000000 is 1
Listing 6-5 terminated

N O T E The x87 FPU also provides instructions that do unordered comparisons: fucom,
fucomp, and fucompp. These are functionally equivalent to fcom, fcomp, and fcompp
except they raise an exception under different conditions. See the Intel documentation
for more details.

6.5.8.2 The fcomi and fcomip Instructions

The fcomi and fcomip instructions compare ST(0) to the specified operand
and set the corresponding FLAGS condition code bits based on the result
of the comparison. You use these instructions in a similar manner to fcom
and fcomp except you can test the CPU’s flag bits directly after the execu-
tion of these instructions without first moving the FPU status bits into the
FLAGS register. The legal forms for these instructions are as follows:

fcomi st(0), st(i)
fcomip st(0), st(i)

Note that a pop-pop version (fcomipp) does not exist. If all you want to do
is compare the top two items on the FPU stack, you will have to explicitly
pop that item yourself (for example, by using the fstp st(0) instruction).

Listing 6-6 is a sample program that demonstrates the operation of the
fcomi and fcomip instructions.

; Listing 6-6

; Demonstration of fcomi and fcomip instructions.

 option casemap:none

nl = 10

358 Chapter 6

 .const
ttlStr byte "Listing 6-6", 0
fcomiFmt byte "fcomi %f < %f is %d", nl, 0
fcomiFmt2 byte "fcomi(2) %f < %f is %d", nl, 0
fcomipFmt byte "fcomip %f < %f is %d", nl, 0
fcomipFmt2 byte "fcomip (2) %f < %f is %d", nl, 0

three real8 3.0
zero real8 0.0
minusTwo real8 -2.0

 .data
st0 real8 ?
st1 real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; printFP - Prints values of st0 and (possibly) st1.
; Caller must pass in ptr to fmtStr in RCX.

printFP proc
 sub rsp, 40

; For varargs (for example, printf call), double
; values must appear in RDX and R8 rather
; than XMM1, XMM2.
; Note: if only one double arg in format
; string, printf call will ignore 2nd
; value in R8.

 mov rdx, qword ptr st0
 mov r8, qword ptr st1
 movzx r9, al
 call printf
 add rsp, 40
 ret
printFP endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

Arithmetic 359

; Test to see if 0 < 3.
; Note: ST(0) contains 0, ST(1) contains 3.

 xor eax, eax
 fld three
 fld zero
 fcomi st(0), st(1)
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomiFmt
 call printFP

; Test to see if 3 < 0.
; Note: ST(0) contains 0, ST(1) contains 3.

 xor eax, eax
 fld zero
 fld three
 fcomi st(0), st(1)
 setb al
 fstp st0
 fstp st1
 lea rcx, fcomiFmt2
 call printFP

; Test to see if 3 < 0.
; Note: ST(0) contains 0, ST(1) contains 3.

 xor eax, eax
 fld zero
 fld three
 fst st0 ; Because this gets popped
 fcomip st(0), st(1)
 setb al
 fstp st1
 lea rcx, fcomipFmt
 call printFP

; Test to see if 0 < 3.
; Note: ST(0) contains 0, ST(1) contains 3.

 xor eax, eax
 fld three
 fld zero
 fst st0 ; Because this gets popped
 fcomip st(0), st(1)
 setb al
 fstp st1
 lea rcx, fcomipFmt2
 call printFP

 leave
 ret ; Returns to caller

360 Chapter 6

asmMain endp
 end

Listing 6-6: Sample program demonstrating floating-point comparisons

Here’s the build command and output for the program in Listing 6-6:

C:\>build listing6-6

C:\>echo off
 Assembling: listing6-6.asm
c.cpp

C:\>listing6-6
Calling Listing 6-6:
fcomi 0.000000 < 3.000000 is 1
fcomi(2) 3.000000 < 0.000000 is 0
fcomip 3.000000 < 0.000000 is 0
fcomip (2) 0.000000 < 3.000000 is 1
Listing 6-6 terminated

N O T E The x87 FPU also provides two instructions that do unordered comparisons:
fucomi and fucomip. These are functionally equivalent to fcomi and fcomip except
they raise an exception under different conditions. See the Intel documentation for
more details.

6.5.8.3 The ftst Instruction

The ftst instruction compares the value in ST(0) against 0.0. It behaves just
like the fcom instruction would if ST(1) contained 0.0. This instruction does
not differentiate –0.0 from +0.0. If the value in ST(0) is either of these val-
ues, ftst will set C3 to denote equality (or unordered). This instruction does
not pop ST(0) off the stack.

Here’s an example:

ftst
fstsw ax
sahf
sete al ; Set AL to 1 if TOS = 0.0

6.5.9 Constant Instructions
The FPU provides several instructions that let you load commonly used con-
stants onto the FPU’s register stack. These instructions set the stack fault,
invalid operation, and C1 flags if a stack overflow occurs; they do not other-
wise affect the FPU flags. The specific instructions in this category include
the following:

fldz ; Pushes +0.0
fld1 ; Pushes +1.0
fldpi ; Pushes pi (3.14159...)
fldl2t ; Pushes log2(10)

Arithmetic 361

fldl2e ; Pushes log2(e)
fldlg2 ; Pushes log10(2)
fldln2 ; Pushes ln(2)

6.5.10 Transcendental Instructions
The FPU provides eight transcendental (logarithmic and trigonometric)
instructions to compute sine, cosine, partial tangent, partial arctangent,
2x – 1, y × log2(x), and y × log2(x + 1). Using various algebraic identities, you
can easily compute most of the other common transcendental functions by
using these instructions.

6.5.10.1 The f2xm1 Instruction

f2xm1 computes 2ST(0) – 1. The value in ST(0) must be in the range –1.0 to
+1.0. If ST(0) is out of range, f2xm1 generates an undefined result but raises
no exceptions. The computed value replaces the value in ST(0).

Here’s an example computing 10i using the identity 10i = 2i × log2(10). This
is useful for only a small range of i that doesn’t put ST(0) outside the previ-
ously mentioned valid range:

fld i
fldl2t
fmul
f2xm1
fld1
fadd

Because f2xm1 computes 2x – 1, the preceding code adds 1.0 to the result
at the end of the computation.

6.5.10.2 The fsin, fcos, and fsincos Instructions

These instructions pop the value off the top of the register stack and com-
pute the sine, cosine, or both, and push the result(s) back onto the stack.
The fsincos instruction pushes the sine followed by the cosine of the origi-
nal operand; hence, it leaves cos(ST(0)) in ST(0) and sin(ST(0)) in ST(1).

These instructions assume ST(0) specifies an angle in radians, and this
angle must be in the range –263 < ST(0) < +263. If the original operand is out
of range, these instructions set the C2 flag and leave ST(0) unchanged. You
can use the fprem1 instruction, with a divisor of 2π, to reduce the operand to
a reasonable range.

These instructions set the stack fault (or rounding)/C1, precision,
underflow, denormalized, and invalid operation flags according to the
result of the computation.

6.5.10.3 The fptan Instruction

fptan computes the tangent of ST(0), replaces ST(0) with this value, and
then pushes 1.0 onto the stack. Like the fsin and fcos instructions, the value
of ST(0) must be in radians and in the range –263 < ST(0) < +263. If the

362 Chapter 6

value is outside this range, fptan sets C2 to indicate that the conversion did
not take place. As with the fsin, fcos, and fsincos instructions, you can use
the fprem1 instruction to reduce this operand to a reasonable range by using
a divisor of 2π.

If the argument is invalid (that is, 0 or π radians, which causes a divi-
sion by 0), the result is undefined and this instruction raises no exceptions.
fptan will set the stack fault/rounding, precision, underflow, denormal,
invalid operation, C2, and C1 bits as required by the operation.

6.5.10.4 The fpatan Instruction

fpatan expects two values on the top of stack. It pops them and computes
ST(0) = tan-1(ST(1) / ST(0)). The resulting value is the arctangent of the
ratio on the stack expressed in radians. If you want to compute the arctan-
gent of a particular value, use fld1 to create the appropriate ratio and then
execute the fpatan instruction.

This instruction affects the stack fault/C1, precision, underflow, denor-
mal, and invalid operation bits if a problem occurs during the computation.
It sets the C1 condition code bit if it has to round the result.

6.5.10.5 The fyl2x Instruction

The fyl2x instruction computes ST(0) = ST(1) × log2(ST(0)). The instruction
itself has no operands, but expects two operands on the FPU stack in ST(1)
and ST(0), thus using the following syntax:

fyl2x

To compute the log of any other base, you can use the arithmetic identity
logn(x) = log2(x) / log2(n). So if you first compute log2(n) and put its recipro-
cal on the stack, then push x onto the stack and execute fyl2x, you wind up
with logn(x).

The fyl2x instruction sets the C1 condition code bit if it has to round
up the value. It clears C1 if no rounding occurs or if a stack overflow occurs.
The remaining floating-point condition codes are undefined after the exe-
cution of this instruction. fyl2x can raise the following floating-point excep-
tions: invalid operation, denormal result, overflow, underflow, and inexact
result. Note that the fldl2t and fldl2e instructions turn out to be quite
handy when using the fyl2x instruction (for computing log10 and ln).

6.5.10.6 The fyl2xp1 Instruction

fyl2xp1 computes ST(0) = ST(1) × log2(ST(0) + 1.0) from two operands on
the FPU stack. The syntax for this instruction is as follows:

fyl2xp1

Otherwise, the instruction is identical to fyl2x.

Arithmetic 363

6.5.11 Miscellaneous Instructions
The FPU includes several additional instructions that control the FPU, syn-
chronize operations, and let you test or set various status bits: finit/fninit,
fldcw, fstcw, fclex/fnclex, and fstsw.

6.5.11.1 The finit and fninit Instructions

The finit and fninit instructions initialize the FPU for proper operation.
Your code should execute one of these instructions before executing any
other FPU instructions. They initialize the control register to 37Fh, the
status register to 0, and the tag word to 0FFFFh. The other registers are
unaffected.

Here are some examples:

finit
fninit

The difference between finit and fninit is that finit first checks for any
pending floating-point exceptions before initializing the FPU; fninit does not.

6.5.11.2 The fldcw and fstcw Instructions

The fldcw and fstcw instructions require a single 16-bit memory operand:

fldcw mem16
fstcw mem16

These two instructions load the control word from a memory location
(fldcw) or store the control word to a 16-bit memory location (fstcw).

When you use fldcw to turn on one of the exceptions, if the corresponding
exception flag is set when you enable that exception, the FPU will generate an
immediate interrupt before the CPU executes the next instruction. Therefore,
you should use fclex to clear any pending interrupts before changing the FPU
exception enable bits.

6.5.11.3 The fclex and fnclex Instructions

The fclex and fnclex instructions clear all exception bits, the stack fault bit,
and the busy flag in the FPU status register.

Here are examples:

fclex
fnclex

The difference between these instructions is the same as that between
finit and fninit: fclex first checks for pending floating-point exceptions.

364 Chapter 6

6.5.11.4 The fstsw and fnstsw Instructions

These instructions store the FPU status word into a 16-bit memory location
or the AX register:

fstsw ax
fnstsw ax
fstsw mem16
fnstsw mem16

These instructions are unusual in the sense that they can copy an FPU
value into one of the x86-64 general-purpose registers (specifically, AX).
The purpose is to allow the CPU to easily test the condition code register
with the sahf instruction. The difference between fstsw and fnstsw is the
same as that for fclex and fnclex.

 6.6 Converting Floating-Point Expressions to Assembly
Language
Because the FPU register organization is different from the x86-64 integer
register set, translating arithmetic expressions involving floating-point
operands is a little different from translating integer expressions. Therefore,
it makes sense to spend some time discussing how to manually translate
floating-point expressions into assembly language.

The FPU uses postfix notation (also called reverse Polish notation, or RPN)
for arithmetic operations. Once you get used to using postfix notation, it’s
actually a bit more convenient for translating expressions because you don’t
have to worry about allocating temporary variables—they always wind up on
the FPU stack. Postfix notation, as opposed to standard infix notation, places
the operands before the operator. Table 6-14 provides simple examples of
infix notation and the corresponding postfix notation.

Table 6-14: Infix-to-Postfix Translation

Infix notation Postfix notation

5 + 6 5 6 +

7 – 2 7 2 –

y × z y z ×

a / b a b /

A postfix expression like 5 6 + says, “Push 5 onto the stack, push 6 onto
the stack, and then pop the value off the top of stack (6) and add it to the new
top of stack.” Sound familiar? This is exactly what the fld and fadd instructions
do. In fact, you can calculate the result by using the following code:

fld five ; Declared somewhere as five real8 5.0 (or real4/real10)
fld six ; Declared somewhere as six real8 6.0 (or real4/real10)
fadd ; 11.0 is now on the top of the FPU stack

Arithmetic 365

As you can see, postfix is a convenient notation because it’s easy to
translate this code into FPU instructions.

Another advantage to postfix notation is that it doesn’t require any
parentheses. The examples in Table 6-15 demonstrate some slightly more
complex infix-to-postfix conversions.

Table 6-15: More-Complex Infix-to-
Postfix Translations

Infix notation Postfix notation

(y + z) * 2 y z + 2 *

y * 2 – (a + b) y 2 * a b + –

(a + b) * (c + d) a b + c d + *

The postfix expression y z + 2 * says, “Push y, then push z; next, add
those values on the stack (producing y + z on the stack). Next, push 2 and
then multiply the two values (2 and y + z) on the stack to produce two times
the quantity y + z.” Once again, we can translate these postfix expressions
directly into assembly language. The following code demonstrates the con-
version for each of the preceding expressions:

; y z + 2 *

 fld y
 fld z
 fadd
 fld const2 ; const2 real8 2.0 in .data section
 fmul

; y 2 * a b + -

 fld y
 fld const2 ; const2 real8 2.0 in .data section
 fmul
 fld a
 fld b
 fadd
 fsub

; a b + c d + *

 fld a
 fld b
 fadd
 fld c
 fld d
 fadd
 fmul

366 Chapter 6

6.6.1 Converting Arithmetic Expressions to Postfix Notation
For simple expressions, those involving two operands and a single expression,
the translation from infix to postfix notation is trivial: simply move the opera-
tor from the infix position to the postfix position (that is, move the operator
from between the operands to after the second operand). For example 5 + 6
becomes 5 6 +. Other than separating your operands so you don’t confuse
them (that is, is it 5 and 6 or 56?), converting simple infix expressions into
postfix notation is straightforward.

For complex expressions, the idea is to convert the simple subexpres-
sions into postfix notation and then treat each converted subexpression as
a single operand in the remaining expression. The following discussion sur-
rounds completed conversions with square brackets so it is easy to see which
text needs to be treated as a single operand in the conversion.

As for integer expression conversion, the best place to start is in the
innermost parenthetical subexpression and then work your way outward,
considering precedence, associativity, and other parenthetical subexpres-
sions. As a concrete working example, consider the following expression:

x = ((y – z) * a) – (a + b * c) / 3.14159

A possible first translation is to convert the subexpression (y - z) into
postfix notation:

x = ([y z -] * a) - (a + b * c) / 3.14159

Square brackets surround the converted postfix code just to separate it
from the infix code, for readability. Remember, for the purposes of conver-
sion, we will treat the text inside the square brackets as a single operand.
Therefore, you would treat [y z -] as though it were a single variable name
or constant.

The next step is to translate the subexpression ([y z -] * a) into postfix
form. This yields the following:

x = [y z - a *] - (a + b * c) / 3.14159

Next, we work on the parenthetical expression (a + b * c). Because mul-
tiplication has higher precedence than addition, we convert b * c first:

x = [y z - a *] - (a + [b c *]) / 3.14159

After converting b * c, we finish the parenthetical expression:

x = [y z - a *] - [a b c * +] / 3.14159

This leaves only two infix operators: subtraction and division. Because
division has the higher precedence, we’ll convert that first:

x = [y z - a *] - [a b c * + 3.14159 /]

Arithmetic 367

Finally, we convert the entire expression into postfix notation by deal-
ing with the last infix operation, subtraction:

x = [y z - a *] [a b c * + 3.14159 /] -

Removing the square brackets yields the following postfix expression:

x = y z - a * a b c * + 3.14159 / -

The following steps demonstrate another infix-to-postfix conversion for
this expression:

a = (x * y - z + t) / 2.0

1. Work inside the parentheses. Because multiplication has the highest
precedence, convert that first:

a = ([x y *] - z + t) / 2.0

2. Still working inside the parentheses, we note that addition and subtrac-
tion have the same precedence, so we rely on associativity to determine
what to do next. These operators are left-associative, so we must translate
the expressions from left to right. This means translate the subtraction
operator first:

a = ([x y * z -] + t) / 2.0

3. Now translate the addition operator inside the parentheses. Because
this finishes the parenthetical operators, we can drop the parentheses:

a = [x y * z - t +] / 2.0

4. Translate the final infix operator (division). This yields the following:

a = [x y * z - t + 2.0 /]

5. Drop the square brackets, and we’re done:

a = x y * z - t + 2.0 /

6.6.2 Converting Postfix Notation to Assembly Language
Once you’ve translated an arithmetic expression into postfix notation,
finishing the conversion to assembly language is easy. All you have to do is
issue an fld instruction whenever you encounter an operand and issue an

368 Chapter 6

appropriate arithmetic instruction when you encounter an operator. This
section uses the completed examples from the previous section to demon-
strate how little there is to this process.

x = y z - a * a b c * + 3.14159 / -

1. Convert y to fld y.

2. Convert z to fld z.

3. Convert - to fsub.

4. Convert a to fld a.

5. Convert * to fmul.

6. Continuing in a left-to-right fashion, generate the following code for
the expression:

fld y
fld z
fsub
fld a
fmul
fld a
fld b
fld c
fmul
fadd
fldpi ; Loads pi (3.14159)
fdiv
fsub

fstp x ; Store result away into x

Here’s the translation for the second example in the previous section:

a = x y * z - t + 2.0 /
 fld x
 fld y
 fmul
 fld z
 fsub
 fld t
 fadd
 fld const2 ; const2 real8 2.0 in .data section
 fdiv

 fstp a ; Store result away into a

As you can see, the translation is fairly simple once you’ve converted the
infix notation to postfix notation. Also note that, unlike integer expression
conversion, you don’t need any explicit temporaries. It turns out that the

Arithmetic 369

FPU stack provides the temporaries for you.9 For these reasons, converting
floating-point expressions into assembly language is actually easier than
converting integer expressions.

 6.7 SSE Floating-Point Arithmetic
Although the x87 FPU is relatively easy to use, the stack-based design of
the FPU created performance bottlenecks as CPUs became more powerful.
After introducing the Streaming SIMD Extensions (SSE) in its Pentium III
CPUs (way back in 1999), Intel decided to resolve the FPU performance
bottleneck and added scalar (non-vector) floating-point instructions to
the SSE instruction set that could use the XMM registers. Most modern
programs favor the use of the SSE (and later) registers and instructions for
floating-point operations over the x87 FPU, using only those x87 operations
available exclusively on the x87.

The SSE instruction set supports two floating-point data types: 32-bit
single-precision (Intel calls these scalar single operations) and 64-bit dou-
ble-precision values (Intel calls these scalar double operations).10 The SSE
does not support the 80-bit extended-precision floating-point data types
of the x87 FPU. If you need the extended-precision format, you’ll have to
use the x87 FPU.

6.7.1 SSE MXCSR Register
The SSE MXCSR register is a 32-bit status and control register that controls
SSE floating-point operations. Bits 16 to 32 are reserved and currently have
no meaning. Table 6-16 lists the functions of the LO 16 bits.

Table 6-16: SSE MXCSR Register

Bit Name Function

0 IE Invalid operation exception flag. Set if an invalid operation was
attempted.

1 DE Denormal exception flag. Set if operations produced a denormalized
value.

2 ZE Zero exception flag. Set if an attempt to divide by 0 was made.

3 OE Overflow exception flag. Set if there was an overflow.

4 UE Underflow exception flag. Set if there was an underflow.

5 PE Precision exception flag. Set if there was a precision exception.

9. This assumes, of course, that your calculations aren’t so complex that you exceed the eight-
element limitation of the FPU stack.

10. This book has typically used scalar to denote atomic (noncomposite) data types that were
not floating-point (chars, Booleans, integers, and so forth). In fact, floating-point values
(that are not part of a larger composite data type) are also scalars. Intel uses scalar as
opposed to vector (the SSE also supports vector operations).

(continued)

370 Chapter 6

Bit Name Function

6 DAZ Denormals are 0. If set, treat denormalized values as 0.

7 IM Invalid operation mask. If set, ignore invalid operation exceptions.

8 DM Denormal mask. If set, ignore denormal exceptions.

9 ZM Divide-by-zero mask. If set, ignore division-by-zero exceptions.

10 OM Overflow mask. If set, ignore overflow exceptions.

11 UM Underflow mask. If set, ignore underflow exceptions.

12 PM Precision mask. If set, ignore precision exceptions.

13
14

Rounding
Control

00: Round to nearest 01: Round toward –infinity
10: Round toward +infinity 11: Round toward 0 (truncate)

15 FTZ Flush to zero. When set, all underflow conditions set the register to 0.

Access to the SSE MXCSR register is via the following two instructions:

ldmxcsr mem32
stmxcsr mem32

The ldmxcsr instruction loads the MXCSR register from the specified
32-bit memory location. The stmxcsr instruction stores the current contents
of the MXCSR register to the specified memory location.

By far, the most common use of these two instructions is to set the round-
ing mode. In typical programs using the SSE floating-point instructions, it
is common to switch between the round-to-nearest and round-to-zero (trun-
cate) modes.

6.7.2 SSE Floating-Point Move Instructions
The SSE instruction set provides two instructions to move floating-point
values between XMM registers and memory: movss (move scalar single) and
movsd (move scalar double). Here is their syntax:

movss xmmn, mem32
movss mem32, xmmn
movsd xmmn, mem64
movsd mem64, xmmn

As for the standard general-purpose registers, the movss and movsd
instructions move data between an appropriate memory location (contain-
ing a 32- or 64-bit floating-point value) and one of the 16 XMM registers
(XMM0 to XMM15).

For maximum performance, movss memory operands should appear at a
double-word-aligned memory address, and movsd memory operands should
appear at a quad-word-aligned memory address. Though these instructions
will function properly if the memory operands are not properly aligned in
memory, there is a performance hit for misaligned accesses.

Table 6-16: SSE MXCSR Register (continued)

Arithmetic 371

In addition to the movss and movsd instructions that move floating-point
values between XMM registers or XMM registers and memory, you’ll find a
couple of other SSE move instructions useful that move data between XMM
and general-purpose registers, movd and movq:

movd reg32, xmmn
movd xmmn, reg32
movq reg64, xmmn
movq xmmn, reg64

These instructions also have a form that allows a source memory oper-
and. However, you should use movss and movsd to move floating-point variables
into XMM registers.

The movq and movd instructions are especially useful for copying XMM
registers into 64-bit general-purpose registers prior to a call to printf()
(when printing floating-point values). As you’ll see in a few sections, these
instructions are also useful for floating-point comparisons on the SSE.

6.7.3 SSE Floating-Point Arithmetic Instructions
The Intel SSE instruction set adds the following floating-point arithmetic
instructions:

addss xmmn, xmmn
addss xmmn, mem32
addsd xmmn, xmmn
addsd xmmn, mem64

subss xmmn, xmmn
subss xmmn, mem32
subsd xmmn, xmmn
subsd xmmn, mem64

mulss xmmn, xmmn
mulss xmmn, mem32
mulsd xmmn, xmmn
mulsd xmmn, mem64

divss xmmn, xmmn
divss xmmn, mem32
divsd xmmn, xmmn
divsd xmmn, mem64

minss xmmn, xmmn
minss xmmn, mem32
minsd xmmn, xmmn
minsd xmmn, mem64

maxss xmmn, xmmn
maxss xmmn, mem32
maxsd xmmn, xmmn
maxsd xmmn, mem64

372 Chapter 6

sqrtss xmmn, xmmn
sqrtss xmmn, mem32
sqrtsd xmmn, xmmn
sqrtsd xmmn, mem64

rcpss xmmn, xmmn
rcpss xmmn, mem32

rsqrtss xmmn, xmmn
rsqrtss xmmn, mem32

The addsx, subsx, mulsx, and divsx instructions perform the expected
floating-point arithmetic operations. The minsx instructions compute the
minimum value of the two operands, storing the minimum value into
the destination (first) operand. The maxsx instructions do the same thing,
but compute the maximum of the two operands. The sqrtsx instructions
compute the square root of the source (second) operand and store the
result into the destination (first) operand. The rcpsx instructions compute
the reciprocal of the source, storing the result into the destination.11 The
rsqrtsx instructions compute the reciprocal of the square root.12

The operand syntax is somewhat limited for the SSE instructions (com-
pared with the generic integer instructions): the destination operand must
always be an XMM register.

6.7.4 SSE Floating-Point Comparisons
The SSE floating-point comparisons work quite a bit differently from the inte-
ger and x87 FPU compare instructions. Rather than having a single generic
instruction that sets flags (to be tested by setcc or jcc instructions), the SSE
provides a set of condition-specific comparison instructions that store true
(all 1 bits) or false (all 0 bits) into the destination operand. You can then test
the result value for true or false. Here are the instructions:

cmpss xmmn, xmmm/mem32, imm8
cmpsd xmmn, xmmm/mem64, imm8

cmpeqss xmmn, xmmm/mem32
cmpltss xmmn, xmmm/mem32
cmpless xmmn, xmmm/mem32
cmpunordss xmmn, xmmm/mem32
cmpne qss xmmn, xmmm/mem32
cmpnltss xmmn, xmmm/mem32
cmpnless xmmn, xmmm/mem32
cmpordss xmmn, xmmm/mem32

11. Intel’s documentation claims that the reciprocal operation is just an approximation.
Then again, by definition, the square root operation is also an approximation because it
produces irrational results.

12. Also an approximation.

Arithmetic 373

cmpeqsd xmmn, xmmm/mem64
cmpltsd xmmn, xmmm/mem64
cmplesd xmmn, xmmm/mem64
cmpunordsd xmmn, xmmm/mem64
cmpneqsd xmmn, xmmm/mem64
cmpnltsd xmmn, xmmm/mem64
cmpnlesd xmmn, xmmm/mem64
cmpordsd xmmn, xmmm/mem64

The immediate constant is a value in the range 0 to 7 and represents
one of the comparisons in Table 6-17.

Table 6-17: SSE Compare Immediate Operand

imm8 Comparison

0 First operand == second operand

1 First operand < second operand

2 First operand <= second operand

3 First operand unordered second operand

4 First operand ≠ second operand

5 First operand not less than second operand (≥)

6 First operand not less than or equal to second operand (>)

7 First operand ordered second operand

The instructions without the third (immediate) operand are special
pseudo-ops MASM provides that automatically supply the appropriate third
operand. You can use the nlt form for ge and nle form for gt, assuming the
operands are ordered.

The unordered comparison returns true if either (or both) operands
are unordered (typically, NaN values). Likewise, the ordered comparison
returns true if both operands are ordered.

As noted, these instructions leave 0 or all 1 bits in the destination
register to represent false or true. If you want to branch based on these
conditions, you should move the destination XMM register into a general-
purpose register and test that register for zero/not zero. You can use the
movq or movd instructions to accomplish this:

 cmpeqsd xmm0, xmm1
 movd eax, xmm0 ; Move true/false to EAX
 test eax, eax ; Test for true/false
 jnz xmm0EQxmm1 ; Branch if xmm0 == xmm1

; Code to execute if xmm0 != xmm1.

6.7.5 SSE Floating-Point Conversions
The x86-64 provides several floating-point conversion instructions that
convert between floating-point and integer formats. Table 6-18 lists these
instructions and their syntax.

374 Chapter 6

Table 6-18: SSE Conversion Instructions

Instruction syntax Description

cvtsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to 32- or 64-bit integer. Uses the
current rounding mode in the MXCSR to determine how to deal with
fractional components. Result is stored in a general-purpose 32- or
64-bit register.

cvtsd2ss xmmn, xmmn/mem64 Converts scalar double-precision FP (in an XMM register or memory)
to scalar single-precision FP and leaves the result in the destination
XMM register. Uses the current rounding mode in the MXCSR to deter-
mine how to deal with inexact conversions.

cvtsi2sd xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to
a double-precision floating-point value, leaving the result in an XMM
register.

cvtsi2ss xmmn, reg32/64/mem32/64 Converts a 32- or 64-bit integer in an integer register or memory to
a single-precision floating-point value, leaving the result in an XMM
register.

cvtss2sd xmmn, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or
memory to a double-precision value, leaving the result in the destina-
tion XMM register.

cvtss2si reg32/64, xmmn/mem32 Converts a single-precision floating-point value in an XMM register or
memory to an integer and leaves the result in a general-purpose 32-
or 64-bit register. Uses the current rounding mode in the MXCSR to
determine how to deal with inexact conversions.

cvttsd2si reg32/64, xmmn/mem64 Converts scalar double-precision FP to a 32- or 64-bit integer.
Conversion is done using truncation (does not use the rounding control
setting in the MXCSR). Result is stored in a general-purpose 32- or
64-bit register.

cvttss2si reg32/64, xmmn/mem32 Converts scalar single-precision FP to a 32- or 64-bit integer.
Conversion is done using truncation (does not use the rounding control
setting in the MXCSR). Result is stored in a general-purpose 32- or
64-bit register.

 6.8 For More Information
The Intel and AMD processor manuals fully describe the operation of
each of the integer and floating-point arithmetic instructions, including a
detailed description of how these instructions affect the condition code
bits and other flags in the FLAGS and FPU status registers. To write the
best possible assembly language code, you need to be intimately familiar
with how the arithmetic instructions affect the execution environment, so
spending time with the Intel and AMD manuals is a good idea.

Chapter 8 discusses multiprecision integer arithmetic. See that chapter
for details on handling integer operands that are greater than 64 bits in size.

The x86-64 SSE instruction set found on later iterations of the CPU
provides support for floating-point arithmetic using the AVX register set.
Consult the Intel and AMD documentation for details concerning the
AVX floating-point instruction set.

Arithmetic 375

 6.9 Test Yourself
1. What are the implied operands for the single-operand imul and mul

instructions?

2. What is the result size for an 8-bit mul operation? A 16-bit mul operation?
A 32-bit mul operation? A 64-bit mul operation? Where does the CPU put
the products?

3. What result(s) does an x86 div instruction produce?

4. When performing a signed 16×16–bit division using idiv, what must you
do before executing the idiv instruction?

5. When performing an unsigned 32×32–bit division using div, what must
you do before executing the div instruction?

6. What are the two conditions that will cause a div instruction to produce
an exception?

7. How do the mul and imul instructions indicate overflow?

8. How do the mul and imul instructions affect the zero flag?

9. What is the difference between the extended-precision (single operand)
imul instruction and the more generic (multi-operand) imul instruction?

10. What instructions would you normally use to sign-extend the accumula-
tor prior to executing an idiv instruction?

11. How do the div and idiv instructions affect the carry, zero, overflow,
and sign flags?

12. How does the cmp instruction affect the zero flag?

13. How does the cmp instruction affect the carry flag (with respect to an
unsigned comparison)?

14. How does the cmp instruction affect the sign and overflow flags (with
respect to a signed comparison)?

15. What operands do the setcc instructions take?

16. What do the setcc instructions do to their operand?

17. What is the difference between the test instruction and the and
instruction?

18. What are the similarities between the test instruction and the and
instruction?

19. Explain how you would use the test instruction to see if an individual
bit is 1 or 0 in an operand.

20. Convert the following expressions to assembly language (assume all
variables are signed 32-bit integers):

x = x + y
x = y – z
x = y * z
x = y + z * t

376 Chapter 6

x = (y + z) * t
x = -((x * y) / z)
x = (y == z) && (t != 0)

21. Compute the following expressions without using an imul or mul instruc-
tion (assume all variables are signed 32-bit integers):

x = x * 2
x = y * 5
x = y * 8

22. Compute the following expressions without using a div or idiv instruc-
tion (assume all variables are unsigned 16-bit integers):

x = x / 2
x = y / 8
x = z / 10

23. Convert the following expressions to assembly language by using the
FPU (assume all variables are real8 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t
x = (y + z) * t
x = -((x * y) / z)

24. Convert the following expressions to assembly language by using SSE
instructions (assume all variables are real4 floating-point values):

x = x + y
x = y – z
x = y * z
x = y + z * t

25. Convert the following expressions to assembly language by using FPU
instructions; assume b is a one-byte Boolean variable and x, y, and z are
real8 floating-point variables:

b = x < y
b = x >= y && x < z

7
L O W - L E V E L C O N T R O L

S T R U C T U R E S

This chapter discusses how to convert
high-level–language control structures into

assembly language control statements. The
examples up to this point have created assem-

bly control structures in an ad hoc manner. Now it’s
time to formalize how to control the operation of your
assembly language programs. By the time you finish
this chapter, you should be able to convert HLL con-
trol structures into assembly language.

Control structures in assembly language consist of conditional branches
and indirect jumps. This chapter discusses those instructions and how to
emulate HLL control structures (such as if/else, switch, and loop statements).

378 Chapter 7

This chapter also discusses labels (the targets of conditional branches and
jump statements) as well as the scope of labels in an assembly language
source file.

 7.1 Statement Labels
Before discussing jump instructions and how to emulate control struc-
tures using them, an in-depth discussion of assembly language statement
labels is necessary. In an assembly language program, labels stand in as sym-
bolic names for addresses. It is far more convenient to refer to a position in
your code by using a name such as LoopEntry rather than a numeric address
such as 0AF1C002345B7901Eh. For this reason, assembly language low-level
control structures make extensive use of labels within source code (see “Brief
Detour: An Introduction to Control Transfer Instructions” in Chapter 2).

You can do three things with (code) labels: transfer control to a label
via a (conditional or unconditional) jump instruction, call a label via the
call instruction, and take the address of a label. Taking the address of a
label is useful when you want to indirectly transfer control to that address
at a later point in your program.

The following code sequence demonstrates two ways to take the address
of a label in your program (using the lea instruction and using the offset
operator):

stmtLbl:
 .
 .
 .
 mov rcx, offset stmtLbl2
 .
 .
 .
 lea rax, stmtLbl
 .
 .
 .
stmtLbl2:

Because addresses are 64-bit quantities, you’ll typically load an address
into a 64-bit general-purpose register by using the lea instruction. Because
that instruction uses a 32-bit relative displacement from the current instruc-
tion, the instruction encoding is significantly shorter than the mov instruction
(which encodes a full 8-byte constant in addition to the opcode bytes).

7.1.1 Using Local Symbols in Procedures
Statement labels you define within a proc/endp procedure are local to that
procedure, in the sense of lexical scope: the statement label is visible only
within that procedure; you cannot refer to that statement label outside

Low-Level Control Structures 379

the procedure. Listing 7-1 demonstrates that you cannot refer to a symbol
inside another procedure (note that this program will not assemble because
of this error).

; Listing 7-1

; Demonstration of local symbols.
; Note that this program will not
; compile; it fails with an
; undefined symbol error.

 option casemap:none

 .code

hasLocalLbl proc

localStmLbl:
 ret
hasLocalLbl endp

; Here is the "asmMain" function.

asmMain proc

asmLocal: jmp asmLocal ; This is okay
 jmp localStmtLbl ; Undefined in asmMain
asmMain endp
 end

Listing 7-1: Demonstration of lexically scoped symbols

The command to assemble this file (and the corresponding diagnostic
message) is as follows:

C:\>ml64 /c listing7-1.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing7-1.asm
listing7-1.asm(26) : error A2006:undefined symbol : localStmtLbl

If you really want to access a statement (or any other) label outside a
procedure, you can use the option directive to turn off local scope within a
section of your program, as noted in Chapter 5:

option noscoped
option scoped

The first form tells MASM to stop making symbols (inside proc/endp)
local to the procedure containing them. The second form restores the lexical
scoping of symbols in procedures. Therefore, using these two directives, you
can turn scoping on or off for various sections of your source file (including

380 Chapter 7

as little as a single statement, if you like). Listing 7-2 demonstrates how to use
the option directive to make a single symbol global outside the procedure con-
taining it (note that this program still has compile errors).

; Listing 7-2

; Demonstration of local symbols #2.
; Note that this program will not
; compile; it fails with two
; undefined symbol errors.

 option casemap:none

 .code

hasLocalLbl proc

localStmLbl:
 option noscoped
notLocal:
 option scoped
isLocal:
 ret
hasLocalLbl endp

; Here is the "asmMain" function.

asmMain proc

 lea rcx, localStmtLbl ; Generates an error
 lea rcx, notLocal ; Assembles fine
 lea rcx, isLocal ; Generates an error
asmMain endp
 end

Listing 7-2: The option scoped and option noscoped directives

Here’s the build command (and diagnostic output) for Listing 7-2:

C:\>ml64 /c listing7-2.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing7-2.asm
listing7-2.asm(29) : error A2006:undefined symbol : localStmtLbl
listing7-2.asm(31) : error A2006:undefined symbol : isLocal

As you can see from MASM’s output, the notLocal symbol (appearing
after the option noscoped directive) did not generate an undefined symbol
error. However, the localStmtLbl and isLocal symbols, which are local to
hasLocalLbl, are undefined outside that procedure.

Low-Level Control Structures 381

7.1.2 Initializing Arrays with Label Addresses
MASM also allows you to initialize quad-word variables with the addresses
of statement labels. However, labels that appear in the initialization por-
tions of variable declarations have some restrictions. The most important
restriction is that the symbol must be in the same lexical scope as the data
declaration attempting to use it. So, either the qword directive must appear
inside the same procedure as the statement label, or you must use the option
noscoped directive to make the symbol(s) global to the procedure. Listing 7-3
demonstrates these two ways to initialize a qword variable with statement
label addresses.

; Listing 7-3

; Initializing qword values with the
; addresses of statement labels.

 option casemap:none

 .data
lblsInProc qword globalLbl1, globalLbl2 ; From procWLabels

 .code

; procWLabels - Just a procedure containing private (lexically scoped)
; and global symbols. This really isn't an executable
; procedure.

procWLabels proc
privateLbl:
 nop ; "No operation" just to consume space
 option noscoped
globalLbl1: jmp globalLbl2
globalLbl2: nop
 option scoped
privateLbl2:
 ret
dataInCode qword privateLbl, globalLbl1
 qword globalLbl2, privateLbl2
procWLabels endp

 end

Listing 7-3: Initializing qword variables with the address of statement labels

If you compile Listing 7-3 with the following command, you’ll get no
assembly errors:

ml64 /c /Fl listing7-3.asm

382 Chapter 7

If you look at the listing7-3.lst output file that MASM produces, you can
see that MASM properly initializes the qword declarations with the (section-
relative/relocatable) offsets of the statement labels:

00000000 .data
00000000 lblsInProc qword globalLbl1, globalLbl2
 0000000000000001 R
 0000000000000003 R
 .
 .
 .
 00000005 dataInCode qword privateLbl, globalLbl1
 0000000000000000 R
 0000000000000001 R
 00000015 0000000000000003 R qword globalLbl2, privateLbl2
 0000000000000004 R

Transferring control to a statement label inside a procedure is generally
considered bad programming practice. Unless you have a good reason to
do so, you probably shouldn’t.

As addresses on the x86-64 are 64-bit quantities, you will typically use
the qword directive (as in the previous examples) to initialize a data object
with the address of a statement label. However, if your program is (always
going to be) smaller than 2GB, and you set the LARGEADDRESSAWARE:NO flag
(using sbuild.bat), you can get away with using dword data declarations to
hold the address of a label. Of course, as this book has pointed out many
times, using 32-bit addresses in your 64-bit programs can lead to problems
if you ever exceed 2GB of storage for your program.

 7.2 Unconditional Transfer of Control (jmp)
The jmp (jump) instruction unconditionally transfers control to another
point in the program. This instruction has three forms: a direct jump and
two indirect jumps. These take the following forms:

jmp label
jmp reg64
jmp mem64

The first instruction is a direct jump, which you’ve seen in various sample
programs up to this point. For direct jumps, you normally specify the target
address by using a statement label. The label appears either on the same
line as an executable machine instruction or by itself on a line preceding
an executable machine instruction. The direct jump is completely equiva-
lent to a goto statement in a high-level language.1

1. Unlike HLLs, for which your instructors usually forbid you to use goto statements, you will
find that the use of the jmp instruction in assembly language is essential.

Low-Level Control Structures 383

Here’s an example:

 Statements
 jmp laterInPgm
 .
 .
 .
laterInPgm:
 Statements

7.2.1 Register-Indirect Jumps
The second form of the jmp instruction given earlier—jmp reg64—is a register-
indirect jump instruction that transfers control to the instruction whose
address appears in the specified 64-bit general-purpose register. To use this
form of the jmp instruction, you must load a 64-bit register with the address
of a machine instruction prior to the execution of the jmp. When several
paths, each loading the register with a different address, converge on the
same jmp instruction, control transfers to an appropriate location deter-
mined by the path up to that point.

Listing 7-4 reads a string of characters from the user that contain an
integer value. It uses the C Standard Library function strtol() to convert
that string to a binary integer value. The strtol() function doesn’t do the
greatest job of reporting an error, so this program tests the return results to
verify a correct input and uses register-indirect jumps to transfer control to
different code paths based on the result.

The first part of Listing 7-4 contains constants, variables, external dec-
larations, and the (usual) getTitle() function.

; Listing 7-4

; Demonstration of register-indirect jumps.

 option casemap:none

nl = 10
maxLen = 256
EINVAL = 22 ; "Magic" C stdlib constant, invalid argument
ERANGE = 34 ; Value out of range

 .const
ttlStr byte "Listing 7-4", 0
fmtStr1 byte "Enter an integer value between "
 byte "1 and 10 (0 to quit): ", 0

badInpStr byte "There was an error in readLine "
 byte "(ctrl-Z pressed?)", nl, 0

invalidStr byte "The input string was not a proper number"
 byte nl, 0

384 Chapter 7

rangeStr byte "The input value was outside the "
 byte "range 1-10", nl, 0

unknownStr byte "There was a problem with strToInt "
 byte "(unknown error)", nl, 0

goodStr byte "The input value was %d", nl, 0

fmtStr byte "result:%d, errno:%d", nl, 0

 .data
 externdef _errno:dword ; Error return by C code
endStr qword ?
inputValue dword ?
buffer byte maxLen dup (?)

 .code
 externdef readLine:proc
 externdef strtol:proc
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

The next section of Listing 7-4 is the strToInt() function, a wrapper
around the C Standard Library strtol() function that does a more thor-
ough job of handling erroneous inputs from the user. See the comments
for the function’s return values.

; strToInt - Converts a string to an integer, checking for errors.

; Argument:
; RCX - Pointer to string containing (only) decimal
; digits to convert to an integer.

; Returns:
; RAX - Integer value if conversion was successful.
; RCX - Conversion state. One of the following:
; 0 - Conversion successful.
; 1 - Illegal characters at the beginning of the
; string (or empty string).
; 2 - Illegal characters at the end of the string.
; 3 - Value too large for 32-bit signed integer.

strToInt proc
strToConv equ [rbp+16] ; Flush RCX here
endPtr equ [rbp-8] ; Save ptr to end of str
 push rbp

Low-Level Control Structures 385

 mov rbp, rsp
 sub rsp, 32h ; Shadow + 16-byte alignment

 mov strToConv, rcx ; Save, so we can test later

 ; RCX already contains string parameter for strtol:

 lea rdx, endPtr ; Ptr to end of string goes here
 mov r8d, 10 ; Decimal conversion
 call strtol

; On return:

; RAX - Contains converted value, if successful.
; endPtr - Pointer to 1 position beyond last char in string.

; If strtol returns with endPtr == strToConv, then there were no
; legal digits at the beginning of the string.

 mov ecx, 1 ; Assume bad conversion
 mov rdx, endPtr
 cmp rdx, strToConv
 je returnValue

; If endPtr is not pointing at a zero byte, then we've got
; junk at the end of the string.

 mov ecx, 2 ; Assume junk at end
 mov rdx, endPtr
 cmp byte ptr [rdx], 0
 jne returnValue

; If the return result is 7FFF_FFFFh or 8000_0000h (max long and
; min long, respectively), and the C global _errno variable
; contains ERANGE, then we've got a range error.

 mov ecx, 0 ; Assume good input
 cmp _errno, ERANGE
 jne returnValue
 mov ecx, 3 ; Assume out of range
 cmp eax, 7fffffffh
 je returnValue
 cmp eax, 80000000h
 je returnValue

; If we get to this point, it's a good number.

 mov ecx, 0

returnValue:
 leave
 ret
strToInt endp

386 Chapter 7

The final section of Listing 7-4 is the main program. This is the part of
code most interesting to us. It loads the RBX register with the address of
code to execute based on the strToInt() return results. The strToInt() func-
tion returns one of the following states (see the comments in the previous
code for an explanation):

•	 Valid input

•	 Illegal characters at the beginning of the string

•	 Illegal characters at the end of the string

•	 Range error

The program then transfers control to different sections of asmMain() based
on the value held in RBX (which specifies the type of result strToInt()
returns).

; Here is the "asmMain" function.

 public asmMain
asmMain proc
saveRBX equ qword ptr [rbp-8] ; Must preserve RBX
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

 mov saveRBX, rbx ; Must preserve RBX

 ; Prompt the user to enter a value
 ; between 1 and 10:

repeatPgm: lea rcx, fmtStr1
 call printf

 ; Get user input:

 lea rcx, buffer
 mov edx, maxLen ; Zero-extends!
 call readLine
 lea rbx, badInput ; Initialize state machine
 test rax, rax ; RAX is -1 on bad input
 js hadError ; (only neg value readLine returns)

 ; Call strToInt to convert string to an integer and
 ; check for errors:

 lea rcx, buffer ; Ptr to string to convert
 call strToInt
 lea rbx, invalid
 cmp ecx, 1
 je hadError
 cmp ecx, 2
 je hadError

Low-Level Control Structures 387

 lea rbx, range
 cmp ecx, 3
 je hadError

 lea rbx, unknown
 cmp ecx, 0
 jne hadError

; At this point, input is valid and is sitting in EAX.

; First, check to see if the user entered 0 (to quit
; the program).

 test eax, eax ; Test for zero
 je allDone

; However, we need to verify that the number is in the
; range 1-10.

 lea rbx, range
 cmp eax, 1
 jl hadError
 cmp eax, 10
 jg hadError

; Pretend a bunch of work happens here dealing with the
; input number.

 lea rbx, goodInput
 mov inputValue, eax

; The different code streams all merge together here to
; execute some common code (we'll pretend that happens;
; for brevity, no such code exists here).

hadError:

; At the end of the common code (which doesn't mess with
; RBX), separate into five different code streams based
; on the pointer value in RBX:

 jmp rbx

; Transfer here if readLine returned an error:

badInput: lea rcx, badInpStr
 call printf
 jmp repeatPgm

; Transfer here if there was a non-digit character
; in the string:

invalid: lea rcx, invalidStr

388 Chapter 7

 call printf
 jmp repeatPgm

; Transfer here if the input value was out of range:

range: lea rcx, rangeStr
 call printf
 jmp repeatPgm

; Shouldn't ever get here. Happens if strToInt returns
; a value outside the range 0-3.

unknown: lea rcx, unknownStr
 call printf
 jmp repeatPgm

; Transfer down here on a good user input.

goodInput: lea rcx, goodStr
 mov edx, inputValue ; Zero-extends!
 call printf
 jmp repeatPgm

; Branch here when the user selects "quit program" by
; entering the value zero:

allDone: mov rbx, saveRBX ; Must restore before returning
 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 7-4: Using register-indirect jmp instructions

Here’s the build command and a sample run of the program in
Listing 7-4:

C:\>build listing7-4

C:\>echo off
 Assembling: listing7-4.asm
c.cpp

C:\>listing7-4
Calling Listing 7-4:
Enter an integer value between 1 and 10 (0 to quit): ^Z
There was an error in readLine (ctrl-Z pressed?)
Enter an integer value between 1 and 10 (0 to quit): a123
The input string was not a proper number

Low-Level Control Structures 389

Enter an integer value between 1 and 10 (0 to quit): 123a
The input string was not a proper number
Enter an integer value between 1 and 10 (0 to quit): 1234567890123
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): -1
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): 11
The input value was outside the range 1-10
Enter an integer value between 1 and 10 (0 to quit): 5
The input value was 5
Enter an integer value between 1 and 10 (0 to quit): 0
Listing 7-4 terminated

7.2.2 Memory-Indirect Jumps
The third form of the jmp instruction is a memory-indirect jump, which
fetches the quad-word value from the memory location and jumps to that
address. This is similar to the register-indirect jmp except the address
appears in a memory location rather than in a register.

Listing 7-5 demonstrates a rather trivial use of this form of the jmp
instruction.

; Listing 7-5

; Demonstration of memory-indirect jumps.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 7-5", 0
fmtStr1 byte "Before indirect jump", nl, 0
fmtStr2 byte "After indirect jump", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp

390 Chapter 7

 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

 lea rcx, fmtStr1
 call printf
 jmp memPtr

memPtr qword ExitPoint

ExitPoint: lea rcx, fmtStr2
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 7-5: Using memory-indirect jmp instructions

Here’s the build command and output for Listing 7-5:

C:\>build listing7-5

C:\>echo off
 Assembling: listing7-5.asm
c.cpp

C:\>listing7-5
Calling Listing 7-5:
Before indirect jump
After indirect jump
Listing 7-5 terminated

Note that you can easily crash your system if you execute an indirect
jump with an invalid pointer value.

 7.3 Conditional Jump Instructions
Although Chapter 2 provided an overview of the conditional jump instruc-
tions, repeating that discussion and expanding upon it here is worthwhile
as conditional jumps are the principal tool for creating control structures in
assembly language.

Unlike the unconditional jmp instruction, the conditional jump instruc-
tions do not provide an indirect form. They only allow a branch to a statement
label in your program.

Intel’s documentation defines various synonyms or instruction aliases
for many conditional jump instructions. Tables 7-1, 7-2, and 7-3 list all the
aliases for a particular instruction, as well as the opposite branches. You’ll
soon see the purpose of the opposite branches.

Low-Level Control Structures 391

Table 7-1: jcc Instructions That Test Flags

Instruction Description Condition Aliases Opposite

jc Jump if carry Carry = 1 jb, jnae jnc

jnc Jump if no carry Carry = 0 jnb, jae jc

jz Jump if zero Zero = 1 je jnz

jnz Jump if not zero Zero = 0 jne jz

js Jump if sign Sign = 1 jns

jns Jump if no sign Sign = 0 js

jo Jump if overflow Overflow = 1 jno

jno Jump if no overflow Overflow = 0 jo

jp Jump if parity Parity = 1 jpe jnp

jpe Jump if parity even Parity = 1 jp jpo

jnp Jump if no parity Parity = 0 jpo jp

jpo Jump if parity odd Parity = 0 jnp jpe

Table 7-2: jcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases Opposite

ja Jump if above (>) Carry = 0,
Zero = 0

jnbe jna

jnbe Jump if not below or equal (not ≤) Carry = 0,
Zero = 0

ja jbe

jae Jump if above or equal (≥) Carry = 0 jnc, jnb jnae

jnb Jump if not below (not <) Carry = 0 jnc, jae jb

jb Jump if below (<) Carry = 1 jc, jnae jnb

jnae Jump if not above or equal (not ≥) Carry = 1 jc, jb jae

jbe Jump if below or equal (≤) Carry = 1
or Zero = 1

jna jnbe

jna Jump if not above (not >) Carry = 1
or Zero = 1

jbe ja

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (≠) Zero = 0 jnz je

Table 7-3: jcc Instructions for Signed Comparisons

Instruction Description Condition Aliases Opposite

jg Jump if greater (>) Sign = Overflow
or Zero = 0

jnle jng

jnle Jump if not less than or
equal (not ≤)

Sign = Overflow
or Zero = 0

jg jle

(continued)

392 Chapter 7

Instruction Description Condition Aliases Opposite

jge Jump if greater than or
equal (≥)

Sign = Overflow jnl jnge

jnl Jump if not less than
(not <)

Sign = Overflow jge jl

jl Jump if less than (<) Sign ≠ Overflow jnge jnl

jnge Jump if not greater or
equal (not ≥)

Sign ≠ Overflow jl jge

jle Jump if less than or
equal (≤)

Sign ≠ Oveflow
or Zero = 1

jng jnle

jng Jump if not greater than
(not >)

Sign ≠ Overflow
or Zero = 1

jle jg

je Jump if equal (=) Zero = 1 jz jne

jne Jump if not equal (≠) Zero = 0 jnz je

In many instances, you will need to generate the opposite of a specific
branch instruction (examples appear later in this section). With only two
exceptions, the opposite branch (N/No N) rule describes how to generate an
opposite branch:

•	 If the second letter of the jcc instruction is not an n, insert an n after
the j. For example, je becomes jne, and jl becomes jnl.

•	 If the second letter of the jcc instruction is an n, remove that n from the
instruction. For example, jng becomes jg, and jne becomes je.

The two exceptions to this rule are jpe (jump if parity is even) and jpo
(jump if parity is odd).2 However, you can use the aliases jp and jnp as syn-
onyms for jpe and jpo, and the N/No N rule applies to jp and jnp.

N O T E Though you know that jge is the opposite of jl, get in the habit of using jnl rather
than jge as the opposite jump instruction for jl. It’s too easy in an important situa-
tion to start thinking, “Greater is the opposite of less,” and substitute jg instead. You
can avoid this confusion by always using the N/No N rule.

The x86-64 conditional jump instructions give you the ability to split
program flow into one of two paths depending on a certain condition.
Suppose you want to increment the AX register if BX is equal to CX. You
can accomplish this with the following code:

 cmp bx, cx
 jne SkipStmts;
 inc ax
SkipStmts:

2. Technically, this opposite branch rule doesn’t apply to the jcxz, jecxz, and jrcxz instruc-
tions either, in addition to the jpe and jpo instructions. So, arguably, the rule has five
exceptions. However, this section doesn’t mention the jcxz, jecxz, and jrcxz instructions,
so it mentions only the two exceptions.

Table 7-3: jcc Instructions for Signed Comparisons (continued)

Low-Level Control Structures 393

Instead of checking for equality directly and branching to code to handle
that condition, the common approach is to use the opposite branch to skip
over the instructions you want to execute if the condition is true. That is, if
BX is not equal to CX, jump over the increment instruction. Always use the
opposite branch (N/No N) rule given earlier to select the opposite branch.

You can also use the conditional jump instructions to synthesize loops.
For example, the following code sequence reads a sequence of characters
from the user and stores each character in successive elements of an array
until the user presses ENTER (newline):

 mov edi, 0
RdLnLoop:
 call getchar ; Some function that reads a character
 ; into the AL register
 mov Input[rdi], al ; Store away the character
 inc rdi ; Move on to the next character
 cmp al, nl ; See if the user pressed ENTER
 jne RdLnLoop

The conditional jump instructions only test the x86-64 flags; they do
not affect any of them.

From an efficiency point of view, it’s important to note that each condi-
tional jump has two machine code encodings: a 2-byte form and a 6-byte form.

The 2-byte form consists of the jcc opcode followed by a 1-byte PC-
relative displacement. The 1-byte displacement allows the instruction to
transfer control to a target instruction within about ±127 bytes around the
current instruction. Given that the average x86-64 instruction is probably
4 to 5 bytes long, the 2-byte form of jcc is capable of branching to a target
instruction within about 20 to 25 instructions.

Because a range of 20 to 25 instructions is insufficient for all condi-
tional jumps, the x86-64 provides a second (6-byte) form with a 2-byte
opcode and a 4-byte displacement. The 6-byte form gives you the ability to
jump to an instruction within approximately ±2GB of the current instruc-
tion, which is probably sufficient for any reasonable program out there.

If you have the opportunity to branch to a nearby label rather than one
that is far away (and still achieve the same result), branching to the nearby
label will make your code shorter and possibly faster.

 7.4 Trampolines
In the rare case you need to branch to a location beyond the range of the
6-byte jcc instructions, you can use an instruction sequence such as the
following:

 jncc skipJmp ; Opposite jump of the one you want to use
 jmp destPtr ; JMP PC-relative is also limited to ±2GB
destPtr qword destLbl ; so code must use indirect jump
skipJmp:

394 Chapter 7

The opposite conditional branch transfers control to the normal fall-
though point in the code (the code you’d normally fall through to if the
condition is false). If the condition is true, control transfers to a memory-
indirect jump that jumps to the original target location via a 64-bit pointer.

This sequence is known as a trampoline, because a program jumps to
this point to jump even further in the program (much like how jumping
on a trampoline lets you jump higher and higher). Trampolines are use-
ful for call and unconditional jump instructions that use the PC-relative
addressing mode (and, thus, are limited to a ±2GB range around the cur-
rent instruction).

You’ll rarely use trampolines to transfer to another location within
your program. However, trampolines are useful when transferring control
to a dynamically linked library or OS subroutine that could be far away in
memory.

 7.5 Conditional Move Instructions
Sometimes all you need to do after a comparison or other conditional test
is to load a value into a register (and, conversely, not load that value if the
test or comparison fails). Because branches can be somewhat expensive to
execute, the x86-64 CPUs support a set of conditional move instructions,
cmovcc. These instructions appear in Tables 7-4, 7-5, and 7-6; the generic
syntax for these instructions is as follows:

cmovcc reg16, reg16
cmovcc reg16, mem16
cmovcc reg32, reg32
cmovcc reg32, mem32
cmovcc reg64, reg64
cmovcc reg64, mem64

The destination is always a general-purpose register (16, 32, or 64 bits).
You can use these instructions only to load a register from memory or copy
data from one register to another; you cannot use them to conditionally
store data to memory.

Table 7-4: cmovcc Instructions That Test Flags

Instruction Description Condition Aliases

cmovc Move if carry Carry = 1 cmovb, cmovnae

cmovnc Move if no carry Carry = 0 cmovnb, cmovae

cmovz Move if zero Zero = 1 cmove

cmovnz Move if not zero Zero = 0 cmovne

cmovs Move if sign Sign = 1

cmovns Move if no sign Sign = 0

cmovo Move if overflow Overflow = 1

Low-Level Control Structures 395

Instruction Description Condition Aliases

cmovno Move if no overflow Overflow = 0

cmovp Move if parity Parity = 1 cmovpe

cmovpe Move if parity even Parity = 1 cmovp

cmovnp Move if no parity Parity = 0 cmovpo

cmovpo Move if parity odd Parity = 0 cmovnp

Table 7-5: cmovcc Instructions for Unsigned Comparisons

Instruction Description Condition Aliases

cmova Move if above (>) Carry = 0,
Zero = 0

cmovnbe

cmovnbe Move if not below or equal (not ≤) Carry = 0,
Zero = 0

cmova

cmovae Move if above or equal (≥) Carry = 0 cmovnc, cmovnb

cmovnb Move if not below (not <) Carry = 0 cmovnc, cmovae

cmovb Move if below (<) Carry = 1 cmovc, cmovnae

cmovnae Move if not above or equal (not ≥) Carry = 1 cmovc, cmovb

cmovbe Move if below or equal (≤) Carry = 1
or Zero = 1

cmovna

cmovna Move if not above (not >) Carry = 1
or Zero = 1

cmovbe

cmove Move if equal (=) Zero = 1 cmovz

cmovne Move if not equal (≠) Zero = 0 cmovnz

Table 7-6: cmovcc Instructions for Signed Comparisons

Instruction Description Condition Aliases

cmovg Move if greater (>) Sign = Overflow
or Zero = 0

cmovnle

cmovnle Move if not less than or equal (not ≤) Sign = Overflow
or Zero = 0

cmovg

cmovge Move if greater than or equal (≥) Sign = Overflow cmovnl

cmovnl Move if not less than (not <) Sign = Overflow cmovge

cmovl Move if less than (<) Sign != Overflow cmovnge

cmovnge Move if not greater or equal (not ≥) Sign != Overflow cmovl

cmovle Move if less than or equal (≤) Sign != Overflow
or Zero = 1

cmovng

cmovng Move if not greater than (not >) Sign != Overflow
or Zero = 1

cmovle

cmove Move if equal (=) Zero = 1 cmovz

cmovne Move if not equal (≠) Zero = 0 cmovnz

396 Chapter 7

In addition, a set of conditional floating-point move instructions
(fcmovcc) will move data between ST0 and one of the other FPU registers
on the FPU stack. Sadly, these instructions aren’t all that useful in modern
programs. See the Intel documentation for more details if you’re interested
in using them.

 7.6 Implementing Common Control Structures in
Assembly Language
This section shows you how to implement decisions, loops, and other con-
trol constructs using pure assembly language.

7.6.1 Decisions
In its most basic form, a decision is a branch within the code that switches
between two possible execution paths based on a certain condition. Normally
(though not always), conditional instruction sequences are implemented with
the conditional jump instructions. Conditional instructions correspond to
the if/then/endif statement in an HLL:

if(expression) then
 Statements
endif;

To convert this to assembly language, you must write statements that
evaluate the expression and then branch around the statements if the result
is false. For example, if you had the C statements

if(a == b)
{
 printf("a is equal to b \ n");
}

you could translate this to assembly as follows:

 mov eax, a ; Assume a and b are 32-bit integers
 cmp eax, b
 jne aNEb
 lea rcx, aIsEqlBstr ; "a is equal to b \ n"
 call printf
aNEb:

In general, conditional statements may be broken into three basic
categories: if statements, switch/case statements, and indirect jumps. The
following sections describe these program structures, how to use them,
and how to write them in assembly language.

Low-Level Control Structures 397

7.6.2 if/then/else Sequences
The most common conditional statements are the if/then/endif and if/
then/else/endif statements. These two statements take the form shown in
Figure 7-1.

IF...THEN...ELSE...ENDIF IF...THEN...ENDIF

Test for a condition

False True False True

Test for a condition

Execute this block
of statements if the
condition is true

Execute this block
of statements if the
condition is false

Execute this block
of statements if the
condition is true

Continue execution
down here after the
completion of the
THEN or if skipping

the THEN block

Continue execution
down here after the
completion of the
THEN or ELSE blocks

Figure 7-1: if/then/else/endif and if/then/endif statement flow

The if/then/endif statement is just a special case of the if/then/else/
endif statement (with an empty else block). The basic implementation of
an if/then/else/endif statement in x86-64 assembly language looks some-
thing like

 Sequence of statements to test a condition
 jcc ElseCode;

 Sequence of statements corresponding to the THEN block
 jmp EndOfIf

ElseCode:
 Sequence of statements corresponding to the ELSE block

EndOfIf:

where jcc represents a conditional jump instruction.

398 Chapter 7

For example, to convert the C/C++ statement

if(a == b)
 c = d;
else
 b = b + 1;

to assembly language, you could use the following x86-64 code:

 mov eax, a
 cmp eax, b
 jne ElseBlk
 mov eax, d
 mov c, eax
 jmp EndOfIf;

ElseBlk:
 inc b

EndOfIf:

For simple expressions like (a == b), generating the proper code for an
if/then/else/endif statement is almost trivial. Should the expression become
more complex, the code complexity increases as well. Consider the follow-
ing C/C++ if statement presented earlier:

if(((x > y) && (z < t)) || (a != b))
 c = d;

To convert complex if statements such as this one, break it into a
sequence of three if statements as follows:

if(a != b) c = d;
else if(x > y)
 if(z < t)
 c = d;

This conversion comes from the following C/C++ equivalences:

if(expr1 && expr2) Stmt;

is equivalent to

if(expr1) if(expr2) Stmt;

and

if(expr1 || expr2) Stmt;

is equivalent to

if(expr1) Stmt;
else if(expr2) Stmt;

Low-Level Control Structures 399

In assembly language, the former if statement becomes

; if(((x > y) && (z < t)) || (a != b))c = d;

 mov eax, a
 cmp eax, b
 jne DoIf;
 mov eax, x
 cmp eax, y
 jng EndOfIf;
 mov eax, z
 cmp eax, t
 jnl EndOfIf;
DoIf:
 mov eax, d
 mov c, eax
EndOfIf:

Probably the biggest problem with complex conditional statements in
assembly language is trying to figure out what you’ve done after you’ve writ-
ten the code. High-level language expressions are much easier to read and
comprehend. Well-written comments are essential for clear assembly language
implementations of if/then/else/endif statements. An elegant implementation
of the preceding example follows:

; if ((x > y) && (z < t)) or (a != b) c = d;
; Implemented as:
; if (a != b) then goto DoIf:

 mov eax, a
 cmp eax, b
 jne DoIf

; if not (x > y) then goto EndOfIf:

 mov eax, x
 cmp eax, y
 jng EndOfIf

; if not (z < t) then goto EndOfIf:

 mov eax, z
 cmp eax, t
 jnl EndOfIf

; THEN block:

DoIf:
 mov eax, d
 mov c, eax

; End of IF statement.

EndOfIf:

400 Chapter 7

Admittedly, this goes overboard for such a simple example. The follow-
ing would probably suffice:

; if (((x > y) && (z < t)) || (a != b)) c = d;
; Test the Boolean expression:

 mov eax, a
 cmp eax, b
 jne DoIf
 mov eax, x
 cmp eax, y
 jng EndOfIf
 mov eax, z
 cmp eax, t
 jnl EndOfIf

; THEN block:

DoIf:
 mov eax, d
 mov c, eax

; End of IF statement.

EndOfIf:

However, as your if statements become complex, the density (and qual-
ity) of your comments becomes more and more important.

7.6.3 Complex if Statements Using Complete Boolean Evaluation
Many Boolean expressions involve conjunction (and) or disjunction (or)
operations. This section describes how to convert such Boolean expres-
sions into assembly language. We can do this in two ways: using complete
Boolean evaluation or using short-circuit Boolean evaluation. This section
discusses complete Boolean evaluation. The next section discusses short-
circuit Boolean evaluation.

Conversion via complete Boolean evaluation is almost identical to convert-
ing arithmetic expressions into assembly language, as covered in Chapter 6.
However, for Boolean evaluation, you do not need to store the result in a vari-
able; once the evaluation of the expression is complete, you check whether
you have a false (0) or true (1, or nonzero) result to take whatever action the
Boolean expression dictates. Usually, the last logical instruction (and/or) sets
the zero flag if the result is false and clears the zero flag if the result is true,
so you don’t have to explicitly test for the result. Consider the following if
statement and its conversion to assembly language using complete Boolean
evaluation:

; if(((x < y) && (z > t)) || (a != b))
; Stmt1

 mov eax, x

Low-Level Control Structures 401

 cmp eax, y
 setl bl ; Store x < y in BL
 mov eax, z
 cmp eax, t
 setg bh ; Store z > t in BH
 and bl, bh ; Put (x < y) && (z > t) into BL
 mov eax, a
 cmp eax, b
 setne bh ; Store a != b into BH
 or bl, bh ; Put (x < y) && (z > t) || (a != b) into BL
 je SkipStmt1 ; Branch if result is false

 Code for Stmt1 goes here

SkipStmt1:

This code computes a Boolean result in the BL register and then, at the
end of the computation, tests this value to see whether it contains true or
false. If the result is false, this sequence skips over the code associated with
Stmt1. The important thing to note in this example is that the program will
execute every instruction that computes this Boolean result (up to the je
instruction).

7.6.4 Short-Circuit Boolean Evaluation
If you are willing to expend a little more effort, you can usually convert a
Boolean expression to a much shorter and faster sequence of assembly lan-
guage instructions by using short-circuit Boolean evaluation. This approach
attempts to determine whether an expression is true or false by executing
only some of the instructions that would compute the complete expression.

Consider the expression a && b. Once we determine that a is false, there
is no need to evaluate b because there is no way the expression can be true.
If b represents a complex subexpression rather than a single Boolean vari-
able, it should be clear that evaluating only a is more efficient.

As a concrete example, consider the subexpression ((x < y) && (z > t))
from the previous section. Once you determine that x is not less than y, there
is no need to check whether z is greater than t because the expression will
be false regardless of z’s and t’s values. The following code fragment shows
how you can implement short-circuit Boolean evaluation for this expression:

; if((x < y) && (z > t)) then ...

 mov eax, x
 cmp eax, y
 jnl TestFails
 mov eax, z
 cmp eax, t
 jng TestFails

 Code for THEN clause of IF statement

TestFails:

402 Chapter 7

The code skips any further testing once it determines that x is not less
than y. Of course, if x is less than y, the program has to test z to see if it is
greater than t; if not, the program skips over the then clause. Only if the
program satisfies both conditions does the code fall through to the then
clause.

For the logical or operation, the technique is similar. If the first sub-
expression evaluates to true, there is no need to test the second operand.
Whatever the second operand’s value is at that point, the full expression still
evaluates to true. The following example demonstrates the use of short-circuit
evaluation with disjunction (or):

; if(ch < 'A' || ch > 'Z')
; then printf("Not an uppercase char");
; endif;

 cmp ch, 'A'
 jb ItsNotUC
 cmp ch, 'Z'
 jna ItWasUC

ItsNotUC:
 Code to process ch if it's not an uppercase character

ItWasUC:

Because the conjunction and disjunction operators are commutative,
you can evaluate the left or right operand first if it is more convenient to do
so.3 As one last example in this section, consider the full Boolean expres-
sion from the previous section:

; if(((x < y) && (z > t)) || (a != b)) Stmt1 ;

 mov eax, a
 cmp eax, b
 jne DoStmt1
 mov eax, x
 cmp eax, y
 jnl SkipStmt1
 mov eax, z
 cmp eax, t
 jng SkipStmt1

DoStmt1:
 Code for Stmt1 goes here

SkipStmt1:

3. However, be aware that some expressions depend on the leftmost subexpression evaluating
one way in order for the rightmost subexpression to be valid; for example, a common test
in C/C++ is if(x != NULL && x -> y)

Low-Level Control Structures 403

The code in this example evaluates a != b first, because it is shorter and
faster,4 and the remaining subexpression last. This is a common technique
assembly language programmers use to write better code.5

7.6.5 Short-Circuit vs. Complete Boolean Evaluation
When using complete Boolean evaluation, every statement in the sequence
for that expression will execute; short-circuit Boolean evaluation, on the
other hand, may not require the execution of every statement associated
with the Boolean expression. As you’ve seen in the previous two sections,
code based on short-circuit evaluation is usually shorter and faster.

However, short-circuit Boolean evaluation may not produce the cor-
rect result in some cases. Given an expression with side effects, short-circuit
Boolean evaluation will produce a different result than complete Boolean
evaluation. Consider the following C/C++ example:

if((x == y) && (++z != 0)) Stmt ;

Using complete Boolean evaluation, you might generate the following
code:

 mov eax, x ; See if x == y
 cmp eax, y
 sete bl
 inc z ; ++z
 cmp z, 0 ; See if incremented z is 0
 setne bh
 and bl, bh ; Test x == y && ++z != 0
 jz SkipStmt

 Code for Stmt goes here

SkipStmt:

Using short-circuit Boolean evaluation, you might generate this:

 mov eax, x ; See if x == y
 cmp eax, y
 jne SkipStmt
 inc z ; ++z - sets ZF if z becomes zero
 je SkipStmt ; See if incremented z is 0

 Code for Stmt goes here

SkipStmt:

4. Of course, if you can predict that the subexpression a != b will be false the vast majority of
the time, it would be best to test that condition last.

5. This assumes, of course, that all comparisons are equally likely to be true or false.

404 Chapter 7

Notice a subtle but important difference between these two conver-
sions: if x is equal to y, the first version still increments z and compares it to 0
before it executes the code associated with Stmt; the short-circuit version,
on the other hand, skips the code that increments z if it turns out that x is
equal to y. Therefore, the behavior of these two code fragments is different
if x is equal to y.

Neither implementation is particularly wrong; depending on the cir-
cumstances, you may or may not want the code to increment z if x is equal
to y. However, it is important to realize that these two schemes produce
different results, so you can choose an appropriate implementation if the
effect of this code on z matters to your program.

Many programs take advantage of short-circuit Boolean evaluation and
rely on the program not evaluating certain components of the expression.
The following C/C++ code fragment demonstrates perhaps the most com-
mon example that requires short-circuit Boolean evaluation:

if(pntr != NULL && *pntr == 'a') Stmt ;

If it turns out that pntr is NULL, the expression is false, and there is no
need to evaluate the remainder of the expression. This statement relies
on short-circuit Boolean evaluation for correct operation. Were C/C++ to
use complete Boolean evaluation, the second half of the expression would
attempt to dereference a NULL pointer, when pntr is NULL.

Consider the translation of this statement using complete Boolean
evaluation:

; Complete Boolean evaluation:

 mov rax, pntr
 test rax, rax ; Check to see if RAX is 0 (NULL is 0)
 setne bl
 mov al, [rax] ; Get *pntr into AL
 cmp al, 'a'
 sete bh
 and bl, bh
 jz SkipStmt

 Code for Stmt goes here

SkipStmt:

If pntr contains NULL (0), this program will attempt to access the data at
location 0 in memory via the mov al, [rax] instruction. Under most operat-
ing systems, this will cause a memory access fault (general protection fault).

Now consider the short-circuit Boolean conversion:

; Short-circuit Boolean evaluation:

 mov rax, pntr ; See if pntr contains NULL (0) and
 test rax, rax ; immediately skip past Stmt if this
 jz SkipStmt ; is the case

Low-Level Control Structures 405

 mov al, [rax] ; If we get to this point, pntr contains
 cmp al, 'a' ; a non-NULL value, so see if it points
 jne SkipStmt ; at the character "a"

 Code for Stmt goes here

SkipStmt:

In this example, the problem with dereferencing the NULL pointer
doesn’t exist. If pntr contains NULL, this code skips over the statements that
attempt to access the memory address pntr contains.

7.6.6 Efficient Implementation of if Statements in Assembly Language
Encoding if statements efficiently in assembly language takes a bit more
thought than simply choosing short-circuit evaluation over complete
Boolean evaluation. To write code that executes as quickly as possible in
assembly language, you must carefully analyze the situation and generate
the code appropriately. The following paragraphs provide suggestions you
can apply to your programs to improve their performance.

7.6.6.1 Know Your Data!

Programmers often mistakenly assume that data is random. In reality, data
is rarely random, and if you know the types of values that your program
commonly uses, you can write better code. To see how, consider the follow-
ing C/C++ statement:

if((a == b) && (c < d)) ++i;

Because C/C++ uses short-circuit evaluation, this code will test whether
a is equal to b. If so, it will test whether c is less than d. If you expect a to be
equal to b most of the time but don’t expect c to be less than d most of the
time, this statement will execute slower than it should. Consider the follow-
ing MASM implementation of this code:

 mov eax, a
 cmp eax, b
 jne DontIncI

 mov eax, c
 cmp eax, d
 jnl DontIncI

 inc i

DontIncI:

As you can see, if a is equal to b most of the time and c is not less than
d most of the time, you will have to execute all six instructions nearly every
time in order to determine that the expression is false. Now consider the

406 Chapter 7

following implementation that takes advantage of this knowledge and the
fact that the && operator is commutative:

 mov eax, c
 cmp eax, d
 jnl DontIncI

 mov eax, a
 cmp eax, b
 jne DontIncI

 inc i

DontIncI:

The code first checks whether c is less than d. If most of the time c is
less than d, this code determines that it has to skip to the label DontIncI after
executing only three instructions in the typical case (compared with six
instructions in the previous example).

This fact is much more obvious in assembly language than in a high-
level language, one of the main reasons assembly programs are often faster
than their HLL counterparts: optimizations are more obvious in assembly
language than in a high-level language. Of course, the key here is to under-
stand the behavior of your data so you can make intelligent decisions such
as the preceding one.

7.6.6.2 Rearranging Expressions

Even if your data is random (or you can’t determine how the input val-
ues will affect your decisions), rearranging the terms in your expressions
may still be beneficial. Some calculations take far longer to compute than
others. For example, the div instruction is much slower than a simple cmp
instruction. Therefore, if you have a statement like the following, you may
want to rearrange the expression so that the cmp comes first:

if((x % 10 = 0) && (x != y) ++x;

Converted to assembly code, this if statement becomes the following:

 mov eax, x ; Compute X % 10
 cdq ; Must sign-extend EAX -> EDX:EAX
 idiv ten ; "ten dword 10" in .const section
 test edx, edx ; Remainder is in EDX, test for 0
 jnz SkipIf

 mov eax, x
 cmp eax, y
 je SkipIf

 inc x

SkipIf:

Low-Level Control Structures 407

The idiv instruction is expensive (often 50 to 100 times slower than
most of the other instructions in this example). Unless it is 50 to 100 times
more likely that the remainder is 0 rather than x is equal to y, it would be
better to do the comparison first and the remainder calculation afterward:

 mov eax, x
 cmp eax, y
 je SkipIf

 mov eax, x ; Compute X % 10
 cdq ; Must sign-extend EAX -> EDX:EAX
 idiv ten ; "ten dword 10" in .const section
 test edx, edx ; See if remainder (EDX) is 0
 jnz SkipIf

 inc x

SkipIf:

Because the && and || operators are not commutative when short-circuit
evaluation occurs, do consider such transformations carefully when making
them. This example works fine because there are no side effects or possible
exceptions being shielded by the reordered evaluation of the && operator.

7.6.6.3 Destructuring Your Code

Structured code is sometimes less efficient than unstructured code because
it introduces code duplication or extra branches that might not be present
in unstructured code.6 Most of the time, this is tolerable because unstruc-
tured code is difficult to read and maintain; sacrificing some performance
in exchange for maintainable code is often acceptable. In certain instances,
however, you may need all the performance you can get and might choose
to compromise the readability of your code.

Taking previously written structured code and rewriting it in an unstruc-
tured fashion to improve performance is known as destructuring code. The
difference between unstructured code and destructured code is that unstruc-
tured code was written that way in the first place; destructured code started
out as structured code and was purposefully written in an unstructured
fashion to make it more efficient. Pure unstructured code is usually hard to
read and maintain. Destructured code isn’t quite as bad because you limit the
damage (unstructuring the code) to only those sections where it is absolutely
necessary.

One classic way to destructure code is to use code movement (physically
moving sections of code elsewhere in the program) to move code that your
program rarely uses out of the way of code that executes most of the time.
Code movement can improve the efficiency of a program in two ways.

6. In HLLs, you can often get away with this because the compiler will optimize the code, pro-
ducing unstructured machine code. Unfortunately, when writing in assembly language, you
get machine code that is exactly equivalent to the assembly code you write.

408 Chapter 7

First, a branch that is taken is more expensive (time-consuming) than a
branch that is not taken.7 If you move the rarely used code to another spot
in the program and branch to it on the rare occasion the branch is taken,
most of the time you will fall straight through to the code that executes
most frequently.

Second, sequential machine instructions consume cache storage. If you
move rarely executed statements out of the normal code stream to another
section of the program (that is rarely loaded into cache), this will improve
the cache performance of the system.

For example, consider the following pseudo C/C++ statement:

if(see_if_an_error_has_occurred)
{
 Statements to execute if no error
}
else
{
 Error-handling statements
}

In normal code, we don’t expect errors to be frequent. Therefore, you
would normally expect the then section of the preceding if to execute far
more often than the else clause. The preceding code could translate into
the following assembly code:

 cmp see_if_an_error_has_occurred, true
 je HandleTheError

 Statements to execute if no error

 jmp EndOfIf;

HandleTheError:
 Error-handling statements
EndOfIf:

If the expression is false, this code falls through to the normal state-
ments and then jumps over the error-handling statements. Instructions that
transfer control from one point in your program to another (for example,
jmp instructions) tend to be slow. It is much faster to execute a sequential
set of instructions rather than jump all over the place in your program.
Unfortunately, the preceding code doesn’t allow this.

One way to rectify this problem is to move the else clause of the code
somewhere else in your program. You could rewrite the code as follows:

 cmp see_if_an_error_has_occurred, true
 je HandleTheError

7. Most of the time, this is true. On some architectures, special branch-prediction hardware
reduces the cost of branches.

Low-Level Control Structures 409

 Statements to execute if no error

EndOfIf:

At some other point in your program (typically after a jmp instruction),
you would insert the following code:

HandleTheError:
 Error-handling statements
 jmp EndOfIf;

The program isn’t any shorter. The jmp you removed from the original
sequence winds up at the end of the else clause. However, because the else
clause rarely executes, moving the jmp instruction from the then clause
(which executes frequently) to the else clause is a big performance win
because the then clause executes using only straight-line code. This tech-
nique is surprisingly effective in many time-critical code segments.

7.6.6.4 Calculation Rather Than Branching

On many processors in the x86-64 family, branches (jumps) are expensive
compared to many other instructions. For this reason, it is sometimes bet-
ter to execute more instructions in a sequence than fewer instructions that
involve branching.

For example, consider the simple assignment eax = abs(eax). Unfortunately,
no x86-64 instruction computes the absolute value of an integer. The obvious
way to handle this is with an instruction sequence that uses a conditional jump
to skip over the neg instruction (which creates a positive value in EAX if EAX
was negative):

 test eax, eax
 jns ItsPositive;

 neg eax

ItsPositive:

Now consider the following sequence that will also do the job:

; Set EDX to 0FFFF_FFFFh if EAX is negative, 0000_0000 if EAX is
; 0 or positive:

 cdq

; If EAX was negative, the following code inverts all the bits in
; EAX; otherwise, it has no effect on EAX.

 xor eax, edx

; If EAX was negative, the following code adds 1 to EAX;
; otherwise, it doesn't modify EAX's value.

410 Chapter 7

 and edx, 1 ; EDX = 0 or 1 (1 if EAX was negative)
 add eax, edx

This code will invert all the bits in EAX and then add 1 to EAX if EAX
was negative prior to the sequence; that is, it negates the value in EAX. If
EAX was zero or positive, this code does not change the value in EAX.

Though this sequence takes four instructions rather than the three that
the previous example requires, there are no transfer-of-control instructions,
so it may execute faster on many CPUs in the x86-64 family. Of course, if
you use the cmovns instruction presented earlier, this can be done with the
following three instructions (with no transfer of control):

mov edx, eax
neg edx
cmovns eax, edx

This demonstrates why it’s good to know the instruction set!

7.6.7 switch/case Statements
The C/C++ switch statement takes the following form:

 switch(expression)
 {
 case const1:
 Stmts1: Code to execute if
 expression equals const1

 case const2:
 Stmts2: Code to execute if
 expression equals const2
 .
 .
 .
 case constn:
 Stmtsn: Code to execute if
 expression equals constn

 default: ; Note that the default section is optional
 Stmts_default: Code to execute if expression
 does not equal
 any of the case values
 }

When this statement executes, it checks the value of the expression
against the constants const1 to constn. If it finds a match, the corresponding
statements execute.

C/C++ places a few restrictions on the switch statement. First, the switch
statement allows only an integer expression (or something whose underly-
ing type can be an integer). Second, all the constants in the case clauses
must be unique. The reason for these restrictions will become clear in a
moment.

Low-Level Control Structures 411

7.6.7.1 switch Statement Semantics

Most introductory programming texts introduce the switch/case statement
by explaining it as a sequence of if/then/elseif/else/endif statements. They
might claim that the following two pieces of C/C++ code are equivalent:

switch(expression)
{
 case 0: printf("i=0"); break;
 case 1: printf("i=1"); break;
 case 2: printf("i=2"); break;
}

if(eax == 0)
 printf("i=0");
else if(eax == 1)
 printf("i=1");
else if(eax == 2)
 printf("i=2");

While semantically these two code segments may be the same, their
implementation is usually different. Whereas the if/then/elseif/else/endif
chain does a comparison for each conditional statement in the sequence,
the switch statement normally uses an indirect jump to transfer control to
any one of several statements with a single computation.

7.6.7.2 if/else Implementation of switch

The switch (and if/else/elseif) statements could be written in assembly lan-
guage with the following code:

; if/then/else/endif form:

 mov eax, i
 test eax, eax ; Check for 0
 jnz Not0

 Code to print "i = 0"
 jmp EndCase

Not0:
 cmp eax, 1
 jne Not1

 Code to print "i = 1"
 jmp EndCase

Not1:
 cmp eax, 2
 jne EndCase;

 Code to print "i = 2"
EndCase:

412 Chapter 7

Probably the only thing worth noting about this code is that it takes
longer to determine the last case than it does to determine whether the first
case executes. This is because the if/else/elseif version implements a linear
search through the case values, checking them one at a time from first to last
until it finds a match.

7.6.7.3 Indirect Jump switch Implementation

A faster implementation of the switch statement is possible using an indirect
jump table. This implementation uses the switch expression as an index into
a table of addresses; each address points at the target case’s code to execute.
Consider the following example:

; Indirect Jump Version.

 mov eax, i
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt0, Stmt1, Stmt2

Stmt0:
 Code to print "i = 0"
 jmp EndCase;

Stmt1:
 Code to print "i = 1"
 jmp EndCase;

Stmt2:
 Code to print "i = 2"

EndCase:

To begin with, a switch statement requires that you create an array of
pointers with each element containing the address of a statement label in
your code (those labels must be attached to the sequence of instructions to
execute for each case in the switch statement). In the preceding example,
the JmpTbl array, initialized with the address of the statement labels Stmt0,
Stmt1, and Stmt2, serves this purpose. I’ve placed this array in the procedure
itself because the labels are local to the procedure. Note, however, that you
must place the array in a location that will never be executed as code (such
as immediately after a jmp instruction, as in this example).

The program loads the RAX register with i’s value (assuming i is a
32-bit integer, the mov instruction zero-extends EAX into RAX), then uses
this value as an index into the JmpTbl array (RCX holds the base address of
the JmpTbl array) and transfers control to the 8-byte address found at the
specified location. For example, if RAX contains 0, the jmp [rcx][rax * 8]
instruction will fetch the quad word at address JmpTbl+0 (RAX × 8 = 0).
Because the first quad word in the table contains the address of Stmt0, the
jmp instruction transfers control to the first instruction following the Stmt0

Low-Level Control Structures 413

label. Likewise, if i (and therefore, RAX) contains 1, then the indirect jmp
instruction fetches the quad word at offset 8 from the table and trans-
fers control to the first instruction following the Stmt1 label (because the
address of Stmt1 appears at offset 8 in the table). Finally, if i / RAX contains
2, then this code fragment transfers control to the statements following the
Stmt2 label because it appears at offset 16 in the JmpTbl table.

As you add more (consecutive) cases, the jump table implementation
becomes more efficient (in terms of both space and speed) than the if/elseif
form. Except for simple cases, the switch statement is almost always faster,
and usually by a large margin. As long as the case values are consecutive, the
switch statement version is usually smaller as well.

7.6.7.4 Noncontiguous Jump Table Entries and Range Limiting

What happens if you need to include nonconsecutive case labels or can-
not be sure that the switch value doesn’t go out of range? With the C/C++
switch statement, such an occurrence will transfer control to the first state-
ment after the switch statement (or to a default case, if one is present in the
switch).

However, this doesn’t happen in the preceding example. If variable i
does not contain 0, 1, or 2, executing the previous code produces undefined
results. For example, if i contains 5 when you execute the code, the indirect
jmp instruction will fetch the qword at offset 40 (5 × 8) in JmpTbl and transfer
control to that address. Unfortunately, JmpTbl doesn’t have six entries, so the
program will fetch the value of the sixth quad word following JmpTbl and
use that as the target address, which will often crash your program or trans-
fer control to an unexpected location.

The solution is to place a few instructions before the indirect jmp to
verify that the switch selection value is within a reasonable range. In the
previous example, we’d probably want to verify that i’s value is in the range
0 to 2 before executing the jmp instruction. If i’s value is outside this range,
the program should simply jump to the endcase label (this corresponds to
dropping down to the first statement after the entire switch statement). The
following code provides this modification:

 mov eax, i
 cmp eax, 2
 ja EndCase
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt0, Stmt1, Stmt2

Stmt0:
 Code to print "i = 0"
 jmp EndCase;

Stmt1:
 Code to print "i = 1"
 jmp EndCase;

414 Chapter 7

Stmt2:
 Code to print "i = 2"

EndCase:

Although the preceding example handles the problem of selection
values being outside the range 0 to 2, it still suffers from a couple of severe
restrictions:

•	 The cases must start with the value 0. That is, the minimum case con-
stant has to be 0 in this example.

•	 The case values must be contiguous.

Solving the first problem is easy, and you deal with it in two steps. First,
you compare the case selection value against a lower and upper bound
before determining if the case value is legal. For example:

; SWITCH statement specifying cases 5, 6, and 7:
; WARNING: This code does *NOT* work.
; Keep reading to find out why.

 mov eax, i
 cmp eax, 5
 jb EndCase
 cmp eax, 7 ; Verify that i is in the range
 ja EndCase ; 5 to 7 before the indirect jmp
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 Code to print "i = 5"
 jmp EndCase;

Stmt6:
 Code to print "i = 6"
 jmp EndCase;

Stmt7:
 Code to print "i = 7"

EndCase:

This code adds a pair of extra instructions, cmp and jb, to test the selec-
tion value to ensure it is in the range 5 to 7. If not, control drops down to
the EndCase label; otherwise, control transfers via the indirect jmp instruc-
tion. Unfortunately, as the comments point out, this code is broken.

Consider what happens if variable i contains the value 5: the code will
verify that 5 is in the range 5 to 7 and then will fetch the dword at offset 40
(5 × 8) and jump to that address. As before, however, this loads 8 bytes outside
the bounds of the table and does not transfer control to a defined location.

Low-Level Control Structures 415

One solution is to subtract the smallest case selection value from EAX before
executing the jmp instruction, as shown in the following example:

; SWITCH statement specifying cases 5, 6, and 7.
; WARNING: There is a better way to do this; keep reading.

 mov eax, i
 cmp eax, 5
 jb EndCase
 cmp eax, 7 ; Verify that i is in the range
 ja EndCase ; 5 to 7 before the indirect jmp
 sub eax, 5 ; 5 to 7 -> 0 to 2
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8]

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 Code to print "i = 5"
 jmp EndCase;

Stmt6:
 Code to print "i = 6"
 jmp EndCase;

Stmt7:
 Code to print "i = 7"

EndCase:

By subtracting 5 from the value in EAX, we force EAX to take on the
value 0, 1, or 2 prior to the jmp instruction. Therefore, case-selection value 5
jumps to Stmt5, case-selection value 6 transfers control to Stmt6, and case-
selection value 7 jumps to Stmt7.

To improve this code, you can eliminate the sub instruction by merging
it into the jmp instruction’s address expression. The following code does this:

; SWITCH statement specifying cases 5, 6, and 7:

 mov eax, i
 cmp eax, 5
 jb EndCase
 cmp eax, 7 ; Verify that i is in the range
 ja EndCase ; 5 to 7 before the indirect jmp
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8 – 5 * 8] ; 5 * 8 compensates for zero index

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 Code to print "i = 5"
 jmp EndCase;

Stmt6:
 Code to print "i = 6"

416 Chapter 7

 jmp EndCase;

Stmt7:
 Code to print "i = 7"

EndCase:

The C/C++ switch statement provides a default clause that executes if
the case-selection value doesn’t match any of the case values. For example:

switch(expression)
{

 case 5: printf("ebx = 5"); break;
 case 6: printf("ebx = 6"); break;
 case 7: printf("ebx = 7"); break;
 default
 printf("ebx does not equal 5, 6, or 7");
}

Implementing the equivalent of the default clause in pure assembly lan-
guage is easy. Just use a different target label in the jb and ja instructions
at the beginning of the code. The following example implements a MASM
switch statement similar to the preceding one:

; SWITCH statement specifying cases 5, 6, and 7
; with a DEFAULT clause:

 mov eax, i
 cmp eax, 5
 jb DefaultCase
 cmp eax, 7 ; Verify that i is in the range
 ja DefaultCase ; 5 to 7 before the indirect jmp
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8 – 5 * 8] ; 5 * 8 compensates for zero index

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 Code to print "i = 5"
 jmp EndCase

Stmt6:
 Code to print "i = 6"
 jmp EndCase

Stmt7:
 Code to print "i = 7"
 jmp EndCase

DefaultCase:
 Code to print "EBX does not equal 5, 6, or 7"

EndCase:

Low-Level Control Structures 417

The second restriction noted earlier, (that is, the case values need to be
contiguous) is easy to handle by inserting extra entries into the jump table.
Consider the following C/C++ switch statement:

switch(i)
{
 case 1 printf("i = 1"); break;
 case 2 printf("i = 2"); break;
 case 4 printf("i = 4"); break;
 case 8 printf("i = 8"); break;
 default:
 printf("i is not 1, 2, 4, or 8");
}

The minimum switch value is 1, and the maximum value is 8. Therefore,
the code before the indirect jmp instruction needs to compare the value in i
against 1 and 8. If the value is between 1 and 8, it’s still possible that i might
not contain a legal case-selection value. However, because the jmp instruction
indexes into a table of quad words using the case-selection table, the table
must have eight quad-word entries.

To handle the values between 1 and 8 that are not case-selection values,
simply put the statement label of the default clause (or the label specifying
the first instruction after the endswitch if there is no default clause) in each
of the jump table entries that don’t have a corresponding case clause. The
following code demonstrates this technique:

; SWITCH statement specifying cases 1, 2, 4, and 8
; with a DEFAULT clause:

 mov eax, i
 cmp eax, 1
 jb DefaultCase
 cmp eax, 8 ; Verify that i is in the range
 ja DefaultCase ; 1 to 8 before the indirect jmp
 lea rcx, JmpTbl
 jmp qword ptr [rcx][rax * 8 – 1 * 8] ; 1 * 8 compensates for zero index

JmpTbl qword Stmt1, Stmt2, DefaultCase, Stmt4
 qword DefaultCase, DefaultCase, DefaultCase, Stmt8

Stmt1:
 Code to print "i = 1"
 jmp EndCase

Stmt2:
 Code to print "i = 2"
 jmp EndCase

Stmt4:
 Code to print "i = 4"
 jmp EndCase

418 Chapter 7

Stmt8:
 Code to print "i = 8"
 jmp EndCase

DefaultCase:
 Code to print "i does not equal 1, 2, 4, or 8"

EndCase:

7.6.7.5 Sparse Jump Tables

The current implementation of the switch statement has a problem. If the
case values contain nonconsecutive entries that are widely spaced, the jump
table could become exceedingly large. The following switch statement
would generate an extremely large code file:

switch(i)
{
 case 1: Stmt1 ;
 case 100: Stmt2 ;
 case 1000: Stmt3 ;
 case 10000: Stmt4 ;
 default: Stmt5 ;

}

In this situation, your program will be much smaller if you implement
the switch statement with a sequence of if statements rather than using an
indirect jump statement. However, keep one thing in mind: the size of the
jump table does not normally affect the execution speed of the program. If
the jump table contains two entries or two thousand, the switch statement
will execute the multiway branch in a constant amount of time. The if
statement implementation requires a linearly increasing amount of time
for each case label appearing in the case statement.

Probably the biggest advantage to using assembly language over an
HLL like Pascal or C/C++ is that you get to choose the actual implementa-
tion of statements like switch. In some instances, you can implement a switch
statement as a sequence of if/then/elseif statements, or you can implement
it as a jump table, or you can use a hybrid of the two:

switch(i)
{
 case 0: Stmt0 ;
 case 1: Stmt1 ;
 case 2: Stmt2 ;
 case 100: Stmt3 ;
 default: Stmt4 ;

}

Low-Level Control Structures 419

That could become the following:

mov eax, i
cmp eax, 100
je DoStmt3;
cmp eax, 2
ja TheDefaultCase
lea rcx, JmpTbl
jmp qword ptr [rcx][rax * 8]
 .
 .
 .

If you are willing to live with programs that cannot exceed 2GB in size
(and use the LARGEADDRESSAWARE:NO command line option), you can improve
the implementation of the switch statement and save one instruction:

; SWITCH statement specifying cases 5, 6, and 7
; with a DEFAULT clause:

 mov eax, i
 cmp eax, 5
 jb DefaultCase
 cmp eax, 7 ; Verify that i is in the range
 ja DefaultCase ; 5 to 7 before the indirect jmp
 jmp JmpTbl[rax * 8 – 5 * 8] ; 5 * 8 compensates for zero index

JmpTbl qword Stmt5, Stmt6, Stmt7

Stmt5:
 Code to print "i = 5"
 jmp EndCase

Stmt6:
 Code to print "i = 6"
 jmp EndCase

Stmt7:
 Code to print "i = 7"
 jmp EndCase

DefaultCase:
 Code to print "EBX does not equal 5, 6, or 7"

EndCase:

This code removed the lea rcx, JmpTbl instruction and replaced
jmp [rcx][rax * 8 – 5 * 8] with jmp JmpTbl[rax * 8 – 5 * 8]. This is a small
improvement, but an improvement nonetheless (this sequence not only is
one instruction shorter but also uses one less register). Of course, constantly
be aware of the danger of writing 64-bit programs that are not large-address
aware.

420 Chapter 7

Some switch statements have sparse cases but with groups of contiguous
cases within the overall set of cases. Consider the following C/C++ switch
statement:

switch(expression)
{
 case 0:
 Code for case 0
 break;

 case 1:
 Code for case 1
 break;

 case 2:
 Code for case 2
 break;

 case 10:
 Code for case 10
 break;

 case 11:
 Code for case 11
 break;

 case 100:
 Code for case 100
 break;

 case 101:
 Code for case 101
 break;

 case 103:
 Code for case 101
 break;

 case 1000:
 Code for case 1000
 break;

 case 1001:
 Code for case 1001
 break;

 case 1003:
 Code for case 1001
 break;

 default:
 Code for default case
 break;
} // end switch

Low-Level Control Structures 421

You can convert a switch statement that consists of widely separated
groups of (nearly) contiguous cases to assembly language code using
one jump table implementation for each contiguous group, and you can
then use compare instructions to determine which jump table instruction
sequence to execute. Here’s one possible implementation of the previous
C/C++ code:

; Assume expression has been computed and is sitting in EAX/RAX
; at this point...

 cmp eax, 100
 jb try0_11
 cmp eax, 103
 ja try1000_1003
 cmp eax, 100
 jb default
 lea rcx, jt100
 jmp qword ptr [rcx][rax * 8 – 100 * 8]
jt100 qword case100, case101, default, case103

try0_11: cmp ecx, 11 ; Handle cases 0-11 here
 ja defaultCase
 lea rcx, jt0_11
 jmp qword ptr [rcx][rax * 8]
jt0_11 qword case0, case1, case2, defaultCase
 qword defaultCase, defaultCase, defaultCase
 qword defaultCase, defaultCase, defaultCase
 qword case10, case11

try1000_1003:
 cmp eax, 1000
 jb defaultCase
 cmp eax, 1003
 ja defaultCase
 lea rcx, jt1000
 jmp qword ptr [rcx][rax * 8 – 1000 * 8]
jt1000 qword case1000, case1001, defaultCase, case1003
 .
 .
 .
 Code for the actual cases here

This code sequence combines groups 0 to 2 and 10 to 11 into a single
group (requiring seven additional jump table entries) in order to save hav-
ing to write an additional jump table sequence.

Of course, for a set of cases this simple, it’s probably easier to just use
compare-and-branch sequences. This example was simplified a bit just to
make a point.

7.6.7.6 Other switch Statement Alternatives

What happens if the cases are too sparse to do anything but compare the
expression’s value case by case? Is the code doomed to being translated

422 Chapter 7

into the equivalent of an if/elseif/else/endif sequence? Not necessarily.
However, before we consider other alternatives, it’s important to mention
that not all if/elseif/else/endif sequences are created equal. Look back at
the previous example. A straightforward implementation might have been
something like this:

if(unsignedExpression <= 11)
{
 Switch for 0 to 11
}
else if(unsignedExpression >= 100 && unsignedExpression <= 101)
{
 Switch for 100 to 101
}
else if(unsignedExpression >= 1000 && unsignedExpression <= 1001)
{
 Switch for 1000 to 1001
}
else
{
 Code for default case
}

Instead, the former implementation first tests against the value 100
and branches based on the comparison being less than (cases 0 to 11) or
greater than (cases 1000 to 1001), effectively creating a small binary search
that reduces the number of comparisons. It’s hard to see the savings in the
HLL code, but in assembly code you can count the number of instructions
that would be executed in the best and worst cases and see an improvement
over the standard linear search approach of simply comparing the values in
the cases in the order they appear in the switch statement.8

If your cases are too sparse (no meaningful groups at all), such as the
1, 10, 100, 1000, 10,000 example given earlier in this chapter, you’re not
going to be able to (reasonably) implement the switch statement by using
a jump table. Rather than devolving into a straight linear search (which
can be slow), a better solution is to sort your cases and test them using a
binary search.

With a binary search, you first compare the expression value against the
middle case value. If it’s less than the middle value, you repeat the search
on the first half of the list of values; if it’s greater than the middle value, you
repeat the test on the second half of the values; if it’s equal, obviously you
drop into the code to handle that test. Here’s the binary search version of
the 1, 10, 100, . . . example:

; Assume expression has been calculated into EAX.

 cmp eax, 100
 jb try1_10

8. Of course, if you have a large number of groups in a sparse switch statement, a binary
search will be much faster, on average, than a linear search.

Low-Level Control Structures 423

 ja try1000_10000

 Code to handle case 100 goes here
 jmp AllDone

try1_10:
 cmp eax,1
 je case1
 cmp eax, 10
 jne defaultCase

 Code to handle case 10 goes here
 jmp AllDone
case1:
 Code to handle case 1 goes here
 jmp AllDone

try1000_10000:
 cmp eax, 1000
 je case1000
 cmp eax, 10000
 jne defaultCase

 Code to handle case 10000 goes here
 jmp AllDone

case1000:
 Code to handle case 1000 goes here
 jmp AllDone

defaultCase:
 Code to handle defaultCase goes here

AllDone:

The techniques presented in this section have many possible alterna-
tives. For example, one common solution is to create a table containing a
set of records (structures), with each record entry a two-tuple containing a
case value and a jump address. Rather than having a long sequence of com-
pare instructions, a short loop can sequence through all the table elements,
searching for the case value and transferring control to the corresponding
jump address if there is a match. This scheme is slower than the other
techniques in this section but can be much shorter than the traditional
if/elseif/else/endif implementation.9

Note, by the way, that the defaultCase label often appears in several jcc
instructions in a (non-jump-table) switch implementation. Since the condi-
tional jump instructions have two encodings, a 2-byte form and a 6-byte form,
you should try to place the defaultCase near these conditional jumps so you
can use the short form of the instruction as much as possible. Although the
examples in this section have typically put the jump tables (which consume a

9. With a bit of effort, you could use a binary search if the table is sorted.

424 Chapter 7

large number of bytes) immediately after their corresponding indirect jump,
you could move these tables elsewhere in the procedure to help keep the
conditional jump instructions short. Here’s the earlier 1, 10, 100, . . . example
coded with this in mind:

; Assume expression has been computed and is sitting in EAX/RAX
; at this point...

 cmp eax, 100
 jb try0_13
 cmp eax, 103
 ja try1000_1003
 lea rcx, jt100
 jmp qword ptr [rcx][rax * 8 – 100 * 8]

try0_13: cmp ecx, 13 ; Handle cases 0 to 13 here
 ja defaultCase
 lea rcx, jt0_13
 jmp qword ptr [rcx][rax * 8]

try1000_1003:
 cmp eax, 1000 ; Handle cases 1000 to 1003 here
 jb defaultCase
 cmp eax, 1003
 ja defaultCase
 lea rcx, jt1000
 jmp qword ptr [rcx][rax * 8 – 1000 * 8]

defaultCase:
 Put defaultCase here to keep it near all the
 conditional jumps to defaultCase

 jmp AllDone

jt0_13 qword case0, case1, case2, case3
 qword defaultCase, defaultCase, defaultCase
 qword defaultCase, defaultCase, defaultCase
 qword case10, case11, case12, case13
jt100 qword case100, case101, case102, case103
jt1000 qword case1000, case1001, case1002, case1003
 .
 .
 .
 Code for the actual cases here

 7.7 State Machines and Indirect Jumps
Another control structure commonly found in assembly language programs
is the state machine. A state machine uses a state variable to control program
flow. The FORTRAN programming language provides this capability with
the assigned goto statement. Certain variants of C (for example, GNU’s GCC

Low-Level Control Structures 425

from the Free Software Foundation) provide similar features. In assembly
language, the indirect jump can implement state machines.

So what is a state machine? In basic terms, it is a piece of code that keeps
track of its execution history by entering and leaving certain states. For the
purposes of this chapter, we’ll just assume that a state machine is a piece of
code that (somehow) remembers the history of its execution (its state) and
executes sections of code based on that history.

In a real sense, all programs are state machines. The CPU registers and
values in memory constitute the state of that machine. However, we’ll use a
much more constrained view. Indeed, for most purposes, only a single vari-
able (or the value in the RIP register) will denote the current state.

Now let’s consider a concrete example. Suppose you have a procedure
and want to perform one operation the first time you call it, a different oper-
ation the second time you call it, yet something else the third time you call
it, and then something new again on the fourth call. After the fourth call, it
repeats these four operations in order.

For example, suppose you want the procedure to add EAX and EBX the
first time, subtract them on the second call, multiply them on the third, and
divide them on the fourth. You could implement this procedure as shown
in Listing 7-6.

; Listing 7-6

; A simple state machine example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 7-6", 0
fmtStr0 byte "Calling StateMachine, "
 byte "state=%d, EAX=5, ECX=6", nl, 0

fmtStr0b byte "Calling StateMachine, "
 byte "state=%d, EAX=1, ECX=2", nl, 0

fmtStrx byte "Back from StateMachine, "
 byte "state=%d, EAX=%d", nl, 0

fmtStr1 byte "Calling StateMachine, "
 byte "state=%d, EAX=50, ECX=60", nl, 0

fmtStr2 byte "Calling StateMachine, "
 byte "state=%d, EAX=10, ECX=20", nl, 0

fmtStr3 byte "Calling StateMachine, "
 byte "state=%d, EAX=50, ECX=5", nl, 0

 .data
state byte 0

426 Chapter 7

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

StateMachine proc
 cmp state, 0
 jne TryState1

; State 0: Add ECX to EAX and switch to state 1:

 add eax, ecx
 inc state ; State 0 becomes state 1
 jmp exit

TryState1:
 cmp state, 1
 jne TryState2

; State 1: Subtract ECX from EAX and switch to state 2:

 sub eax, ecx
 inc state ; State 1 becomes state 2
 jmp exit

TryState2: cmp state, 2
 jne MustBeState3

; If this is state 2, multiply ECX by EAX and switch to state 3:

 imul eax, ecx
 inc state ; State 2 becomes state 3
 jmp exit

; If it isn't one of the preceding states, we must be in state 3,
; so divide EAX by ECX and switch back to state 0.

MustBeState3:
 push rdx ; Preserve this 'cause it
 ; gets whacked by div
 xor edx, edx ; Zero-extend EAX into EDX
 div ecx
 pop rdx ; Restore EDX's value preserved above
 mov state, 0 ; Reset the state back to 0

exit: ret

StateMachine endp

Low-Level Control Structures 427

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

 mov state, 0 ; Just to be safe

; Demonstrate state 0:

 lea rcx, fmtStr0
 movzx rdx, state
 call printf

 mov eax, 5
 mov ecx, 6
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

; Demonstrate state 1:

 lea rcx, fmtStr1
 movzx rdx, state
 call printf

 mov eax, 50
 mov ecx, 60
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

; Demonstrate state 2:

 lea rcx, fmtStr2
 movzx rdx, state
 call printf

 mov eax, 10
 mov ecx, 20
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

428 Chapter 7

; Demonstrate state 3:

 lea rcx, fmtStr3
 movzx rdx, state
 call printf

 mov eax, 50
 mov ecx, 5
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

; Demonstrate back in state 0:

 lea rcx, fmtStr0b
 movzx rdx, state
 call printf

 mov eax, 1
 mov ecx, 2
 call StateMachine

 lea rcx, fmtStrx
 mov r8, rax
 movzx edx, state
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 7-6: A state machine example

Here’s the build command and program output:

C:\>build listing7-6

C:\>echo off
 Assembling: listing7-6.asm
c.cpp

C:\>listing7-6
Calling Listing 7-6:
Calling StateMachine, state=0, EAX=5, ECX=6
Back from StateMachine, state=1, EAX=11
Calling StateMachine, state=1, EAX=50, ECX=60
Back from StateMachine, state=2, EAX=-10
Calling StateMachine, state=2, EAX=10, ECX=20
Back from StateMachine, state=3, EAX=200
Calling StateMachine, state=3, EAX=50, ECX=5

Low-Level Control Structures 429

Back from StateMachine, state=0, EAX=10
Calling StateMachine, state=0, EAX=1, ECX=2
Back from StateMachine, state=1, EAX=3
Listing 7-6 terminated

Technically, this procedure is not the state machine. Instead, the variable
state and the cmp/jne instructions constitute the state machine. The proce-
dure is little more than a switch statement implemented via the if/then/elseif
construct. The only unique thing is that it remembers how many times it has
been called10 and behaves differently depending upon the number of calls.

While this is a correct implementation of the desired state machine, it
is not particularly efficient. The astute reader, of course, would recognize
that this code could be made a little faster using an actual switch statement
rather than the if/then/elseif/endif implementation. However, an even bet-
ter solution exists.

It’s common to use an indirect jump to implement a state machine
in assembly language. Rather than having a state variable that contains a
value like 0, 1, 2, or 3, we could load the state variable with the address of
the code to execute upon entry into the procedure. By simply jumping to
that address, the state machine could save the tests needed to select the
proper code fragment. Consider the implementation in Listing 7-7 using
the indirect jump.

; Listing 7-7

; An indirect jump state machine example.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 7-7", 0
fmtStr0 byte "Calling StateMachine, "
 byte "state=0, EAX=5, ECX=6", nl, 0

fmtStr0b byte "Calling StateMachine, "
 byte "state=0, EAX=1, ECX=2", nl, 0

fmtStrx byte "Back from StateMachine, "
 byte "EAX=%d", nl, 0

fmtStr1 byte "Calling StateMachine, "
 byte "state=1, EAX=50, ECX=60", nl, 0

fmtStr2 byte "Calling StateMachine, "
 byte "state=2, EAX=10, ECX=20", nl, 0

10. Actually, it remembers how many times, modulo 4, that it has been called.

430 Chapter 7

fmtStr3 byte "Calling StateMachine, "
 byte "state=3, EAX=50, ECX=5", nl, 0

 .data
state qword state0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; StateMachine version 2.0 - using an indirect jump.

 option noscoped ; statex labels must be global
StateMachine proc

 jmp state

; State 0: Add ECX to EAX and switch to state 1:

state0: add eax, ecx
 lea rcx, state1
 mov state, rcx
 ret

; State 1: Subtract ECX from EAX and switch to state 2:

state1: sub eax, ecx
 lea rcx, state2
 mov state, rcx
 ret

; If this is state 2, multiply ECX by EAX and switch to state 3:

state2: imul eax, ecx
 lea rcx, state3
 mov state, rcx
 ret

state3: push rdx ; Preserve this 'cause it
 ; gets whacked by div
 xor edx, edx ; Zero-extend EAX into EDX
 div ecx
 pop rdx ; Restore EDX's value preserved above
 lea rcx, state0
 mov state, rcx
 ret

Low-Level Control Structures 431

StateMachine endp
 option scoped

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 48 ; Shadow storage

 lea rcx, state0
 mov state, rcx ; Just to be safe

; Demonstrate state 0:

 lea rcx, fmtStr0
 call printf

 mov eax, 5
 mov ecx, 6
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate state 1:

 lea rcx, fmtStr1
 call printf

 mov eax, 50
 mov ecx, 60
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate state 2:

 lea rcx, fmtStr2
 call printf

 mov eax, 10
 mov ecx, 20
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

432 Chapter 7

; Demonstrate state 3:

 lea rcx, fmtStr3
 call printf

 mov eax, 50
 mov ecx, 5
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

; Demonstrate back in state 0:

 lea rcx, fmtStr0b
 call printf

 mov eax, 1
 mov ecx, 2
 call StateMachine

 lea rcx, fmtStrx
 mov rdx, rax
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 7-7: A state machine using an indirect jump

Here’s the build command and program output:

C:\>build listing7-7

C:\>echo off
 Assembling: listing7-7.asm
c.cpp

C:\>listing7-7
Calling Listing 7-7:
Calling StateMachine, state=0, EAX=5, ECX=6
Back from StateMachine, EAX=11
Calling StateMachine, state=1, EAX=50, ECX=60
Back from StateMachine, EAX=-10
Calling StateMachine, state=2, EAX=10, ECX=20
Back from StateMachine, EAX=200
Calling StateMachine, state=3, EAX=50, ECX=5
Back from StateMachine, EAX=10
Calling StateMachine, state=0, EAX=1, ECX=2
Back from StateMachine, EAX=3
Listing 7-7 terminated

Low-Level Control Structures 433

The jmp instruction at the beginning of the StateMachine procedure trans-
fers control to the location pointed at by the state variable. The first time you
call StateMachine, it points at the State0 label. Thereafter, each subsection of
code sets the state variable to point at the appropriate successor code.

 7.8 Loops
Loops represent the final basic control structure (sequences, decisions, and
loops) that make up a typical program. As with so many other structures in
assembly language, you’ll find yourself using loops in places you’ve never
dreamed of using loops.

Most HLLs have implied loop structures hidden away. For example, con-
sider the BASIC statement if A$ = B$ then 100. This if statement compares
two strings and jumps to statement 100 if they are equal. In assembly lan-
guage, you would need to write a loop to compare each character in A$ to the
corresponding character in B$ and then jump to statement 100 if and only if
all the characters matched.11

Program loops consist of three components: an optional initialization
component, an optional loop-termination test, and the body of the loop. The order
in which you assemble these components can dramatically affect the loop’s
operation. Three permutations of these components appear frequently in
programs: while loops, repeat/until loops (do/while in C/C++), and infinite
loops (for example, for(;;) in C/C++).

7.8.1 while Loops
The most general loop is the while loop. In C/C++, it takes the following form:

while(expression) statement(s);

In the while loop, the termination test appears at the beginning of the
loop. As a direct consequence of the position of the termination test, the
body of the loop may never execute if the Boolean expression is always false.

Consider the following C/C++ while loop:

i = 0;
while(i < 100)
{
 ++i;
}

The i = 0; statement is the initialization code for this loop. i is a loop-
control variable, because it controls the execution of the body of the loop.
i < 100 is the loop-termination condition: the loop will not terminate as
long as i is less than 100. The single statement ++i; (increment i) is the loop
body that executes on each loop iteration.

11. Of course, the C Standard Library provides the strcmp routine that compares the strings
for you, effectively hiding the loop. However, if you were to write this function yourself,
the looping nature of the operation would be obvious.

434 Chapter 7

A C/C++ while loop can be easily synthesized using if and goto statements.
For example, you may replace the previous C while loop with the following
C code:

i = 0;
WhileLp:
if(i < 100)
{

 ++i;
 goto WhileLp;

}

More generally, you can construct any while loop as follows:

Optional initialization code

UniqueLabel:
if(not_termination_condition)
{
 Loop body
 goto UniqueLabel;

}

Therefore, you can use the techniques from earlier in this chapter to
convert if statements to assembly language and add a single jmp instruction
to produce a while loop. The example in this section translates to the follow-
ing pure x86-64 assembly code:12

 mov i, 0
WhileLp:
 cmp i, 100
 jnl WhileDone
 inc i
 jmp WhileLp;

WhileDone:

7.8.2 repeat/until Loops
The repeat/until (do/while) loop tests for the termination condition at the
end of the loop rather than at the beginning. In Pascal, the repeat/until
loop takes the following form:

Optional initialization code
repeat

12. MASM will actually convert most while statements to different x86-64 code than this
section presents. The reason for the difference appears in “Moving the Termination
Condition to the End of a Loop” on page 443, when we explore how to write more
efficient loop code.

Low-Level Control Structures 435

 Loop body

until(termination_condition);

This is comparable to the following C/C++ do/while loop:

Optional initialization code
do
{
 Loop body

}while(not_termination_condition);

This sequence executes the initialization code, then executes the loop
body, and finally tests a condition to see whether the loop should repeat.
If the Boolean expression evaluates to false, the loop repeats; otherwise,
the loop terminates. The two things you should note about the repeat/until
loop are that the termination test appears at the end of the loop and, as a
direct consequence, the loop body always executes at least once.

Like the while loop, the repeat/until loop can be synthesized with an if
statement and a jmp. You could use the following:

Initialization code
SomeUniqueLabel:

 Loop body

if(not_termination_condition) goto SomeUniqueLabel;

Based on the material presented in the previous sections, you can eas-
ily synthesize repeat/until loops in assembly language. The following is a
simple example:

 repeat (Pascal code)

 write('Enter a number greater than 100:');
 readln(i);

 until(i > 100);

// This translates to the following if/jmp code:

 RepeatLabel:

 write('Enter a number greater than 100:');
 readln(i);

 if(i <= 100) then goto RepeatLabel;

// It also translates into the following assembly code:

RepeatLabel:

436 Chapter 7

 call print
 byte "Enter a number greater than 100: ", 0
 call readInt ; Function to read integer from user

 cmp eax, 100 ; Assume readInt returns integer in EAX
 jng RepeatLabel

7.8.3 forever/endfor Loops
If while loops test for termination at the beginning of the loop and repeat/
until/do/while loops check for termination at the end of the loop, the only
place left to test for termination is in the middle of the loop. The C/C++
high-level for(;;) loop, combined with the break statement, provides this
capability. The C/C++ infinite loop takes the following form:

for(;;)
{
 Loop body

}

There is no explicit termination condition. Unless otherwise provided,
the for(;;) construct forms an infinite loop. A break statement usually
handles loop termination. Consider the following C++ code that employs a
for(;;) construct:

for(;;)
{
 cin >> character;
 if(character == '.') break;
 cout << character;

}

Converting a for(ever) loop to pure assembly language is easy. All you
need is a label and a jmp instruction. The break statement in this example is also
nothing more than a jmp instruction (or conditional jump). The pure assembly
language version of the preceding code looks something like the following:

foreverLabel:

 call getchar ; Assume it returns char in AL
 cmp al, '.'
 je ForIsDone

 mov cl, al ; Pass char read from getchar to putchar
 call putcchar ; Assume this prints the char in CL
 jmp foreverLabel

ForIsDone:

Low-Level Control Structures 437

7.8.4 for Loops
The standard for loop is a special form of the while loop that repeats the
loop body a specific number of times (this is known as a definite loop). In
C/C++, the for loop takes the form

for(initialization_Stmt; termination_expression; inc_Stmt)
{
 Statements

}

which is equivalent to the following:

initialization_Stmt;
while(termination_expression)
{
 Statements

 inc_Stmt;

}

Traditionally, programs use the for loop to process arrays and other
objects accessed in sequential order. We normally initialize a loop-control
variable with the initialization statement and then use the loop-control vari-
able as an index into the array (or other data type). For example:

for(i = 0; i < 7; ++i)
{
 printf("Array Element = %d \ n", SomeArray[i]);

}

To convert this to pure assembly language, begin by translating the for
loop into an equivalent while loop:

i = 0;
while(i < 7)
{
 printf("Array Element = %d \ n", SomeArray[i]);
 ++i;
}

Now, using the techniques from “while Loops” on page 433, translate
the code into pure assembly language:

 xor rbx, rbx ; Use RBX to hold loop index
WhileLp: cmp ebx, 7
 jnl EndWhileLp

 lea rcx, fmtStr ; fmtStr = "Array Element = %d", nl, 0
 lea rdx, SomeArray

438 Chapter 7

 mov rdx, [rdx][rbx * 4] ; Assume SomeArray is 4-byte ints
 call printf

 inc rbx
 jmp WhileLp;

EndWhileLp:

7.8.5 The break and continue Statements
The C/C++ break and continue statements both translate into a single jmp
instruction. The break instruction exits the loop that immediately contains
the break statement; the continue statement restarts the loop that contains the
continue statement.

To convert a break statement to pure assembly language, just emit a
goto/jmp instruction that transfers control to the first statement following
the end of the loop to exit. You can do this by placing a label after the loop
body and jumping to that label. The following code fragments demonstrate
this technique for the various loops.

// Breaking out of a FOR(;;) loop:

for(;;)
{
 Stmts
 // break;
 goto BreakFromForever;
 Stmts
}
BreakFromForever:

// Breaking out of a FOR loop:

for(initStmt; expr; incStmt)
{
 Stmts
 // break;
 goto BrkFromFor;
 Stmts
}
BrkFromFor:

// Breaking out of a WHILE loop:

while(expr)
{
 Stmts
 // break;
 goto BrkFromWhile;
 Stmts
}

Low-Level Control Structures 439

BrkFromWhile:

// Breaking out of a REPEAT/UNTIL loop (DO/WHILE is similar):

repeat
 Stmts
 // break;
 goto BrkFromRpt;
 Stmts
until(expr);
BrkFromRpt:

In pure assembly language, convert the appropriate control structures
to assembly and replace the goto with a jmp instruction.

The continue statement is slightly more complex than the break state-
ment. The implementation is still a single jmp instruction; however, the target
label doesn’t wind up going in the same spot for each of the different loops.
Figures 7-2, 7-3, 7-4, and 7-5 show where the continue statement transfers con-
trol for each of the loops.

for(;;)
{
 Stmts
 continue;
 Stmts

}

Figure 7-2: continue destination for the
for(;;) loop

while(expr)
{
 Stmts
 continue;
 Stmts

}

Figure 7-3: continue destination and the while loop

for(initStmt; expr; incStmt)
{
 Stmts
 continue;
 Stmts

}

Note: CONTINUE forces the execution of the
incStmt clause and then transfers control
to the test for loop termination.

Figure 7-4: continue destination and the for loop

440 Chapter 7

repeat

 Stmts
 continue;
 Stmts

until(expr);

Figure 7-5: continue destination and the repeat/until loop

The following code fragments demonstrate how to convert the continue
statement into an appropriate jmp instruction for each of these loop types:

for(;;)/continue/endfor

; Conversion of FOREVER loop with continue
; to pure assembly:
 for(;;)
 {
 Stmts
 continue;
 Stmts
 }

; Converted code:

foreverLbl:
 Stmts
 ; continue;
 jmp foreverLbl
 Stmts
 jmp foreverLbl

while/continue/endwhile

; Conversion of WHILE loop with continue
; into pure assembly:

 while(expr)
 {
 Stmts
 continue;
 Stmts
 }

; Converted code:

whlLabel:
 Code to evaluate expr
 jcc EndOfWhile ; Skip loop on expr failure
 Stmts
 ; continue;
 jmp whlLabel ; Jump to start of loop on continue

Low-Level Control Structures 441

 Stmts
 jmp whlLabel ; Repeat the code
EndOfWhile:

for/continue/endfor

; Conversion for a FOR loop with continue
; into pure assembly:

 for(initStmt; expr; incStmt)
 {
 Stmts
 continue;
 Stmts
 }

; Converted code:

 initStmt
ForLpLbl:
 Code to evaluate expr
 jcc EndOfFor ; Branch if expression fails
 Stmts

 ; continue;
 jmp ContFor ; Branch to incStmt on continue

 Stmts

ContFor:
 incStmt
 jmp ForLpLbl

EndOfFor:

repeat/continue/until

 repeat
 Stmts
 continue;
 Stmts
 until(expr);

 do
 {
 Stmts
 continue;
 Stmts

 }while(!expr);

; Converted code:

442 Chapter 7

RptLpLbl:
 Stmts
 ; continue;
 jmp ContRpt ; Continue branches to termination test
 Stmts
ContRpt:
 Code to test expr
 jcc RptLpLbl ; Jumps if expression evaluates false

7.8.6 Register Usage and Loops
Given that the x86-64 accesses registers more efficiently than memory loca-
tions, registers are the ideal spot to place loop-control variables (especially
for small loops). However, registers are a limited resource; there are only 16
general-purpose registers (and some, such as RSP and RBP, are reserved for
special purposes). Compared with memory, you cannot place much data in
the registers, despite them being more efficient to use than memory.

Loops present a special challenge for registers. Registers are perfect for
loop-control variables because they’re efficient to manipulate and can serve as
indexes into arrays and other data structures (a common use for loop-control
variables). However, the limited availability of registers often creates problems
when using registers in this fashion. Consider the following code that will not
work properly because it attempts to reuse a register (CX) that is already in
use (leading to the corruption of the outer loop’s loop-control variable):

 mov cx, 8
loop1:
 mov cx, 4
loop2:
 Stmts
 dec cx
 jnz loop2

 dec cx
 jnz loop1

The intent here, of course, was to create a set of nested loops; that is,
one loop inside another. The inner loop (loop2) should repeat four times
for each of the eight executions of the outer loop (loop1). Unfortunately,
both loops use the same register as a loop-control variable. Therefore,
this will form an infinite loop. Because CX is always 0 upon encountering
the second dec instruction, control will always transfer to the loop1 label
(because decrementing 0 produces a nonzero result). The solution here is
to save and restore the CX register or to use a different register in place of
CX for the outer loop:

 mov cx, 8
loop1:
 push rcx
 mov cx, 4

Low-Level Control Structures 443

loop2:
 Stmts
 dec cx
 jnz loop2;

 pop rcx
 dec cx
 jnz loop1
or
 mov dx,8
loop1:
 mov cx, 4
loop2:
 Stmts
 dec cx
 jnz loop2

 dec dx
 jnz loop1

Register corruption is one of the primary sources of bugs in loops in
assembly language programs, so always keep an eye out for this problem.

 7.9 Loop Performance Improvements
Because loops are the primary source of performance problems within
a program, they are the place to look when attempting to speed up your
software. While a treatise on how to write efficient programs is beyond the
scope of this chapter, you should be aware of the following concepts when
designing loops in your programs. They’re all aimed at removing unneces-
sary instructions from your loops in order to reduce the time it takes to
execute a single iteration of the loop.

7.9.1 Moving the Termination Condition to the End of a Loop
Consider the following flow graphs for the three types of loops presented
earlier:

REPEAT/UNTIL loop:
 Initialization code
 Loop body
 Test for termination
 Code following the loop

WHILE loop:
 Initialization code
 Loop-termination test
 Loop body
 Jump back to test
 Code following the loop

444 Chapter 7

FOREVER/ENDFOR loop:
 Initialization code
 Loop body part one
 Loop-termination test
 Loop body part two
 Jump back to Loop body part one
 Code following the loop

As you can see, the repeat/until loop is the simplest of the bunch. This is
reflected in the assembly language implementation of these loops. Consider
the following repeat/until and while loops that are semantically identical:

; Example involving a WHILE loop:

 mov esi, edi
 sub esi, 20

; while(ESI <= EDI)

whileLp: cmp esi, edi
 jnle endwhile

 Stmts

 inc esi
 jmp whileLp
endwhile:

; Example involving a REPEAT/UNTIL loop:

 mov esi, edi
 sub esi, 20
repeatLp:

 Stmts

 inc esi
 cmp esi, edi
 jng repeatLp

Testing for the termination condition at the end of the loop allows us to
remove a jmp instruction from the loop, which can be significant if the loop
is nested inside other loops. Given the definition of the loop, you can easily
see that the loop will execute exactly 20 times, which suggests that the con-
version to a repeat/until loop is trivial and always possible.

Unfortunately, it’s not always quite this easy. Consider the following C code:

while(esi <= edi)
{
 Stmts
 ++esi;
}

Low-Level Control Structures 445

In this particular example, we haven’t the slightest idea what ESI con-
tains upon entry into the loop. Therefore, we cannot assume that the loop
body will execute at least once. So, we must test for loop termination before
executing the body of the loop. The test can be placed at the end of the
loop with the inclusion of a single jmp instruction:

 jmp WhlTest
TopOfLoop:
 Stmts
 inc esi
WhlTest: cmp esi, edi
 jle TopOfLoop

Although the code is as long as the original while loop, the jmp instruc-
tion executes only once rather than on each repetition of the loop. However,
the slight gain in efficiency is obtained via a slight loss in readability (so be
sure to comment it). The second code sequence is closer to spaghetti code
than the original implementation. Such is often the price of a small perfor-
mance gain. Therefore, you should carefully analyze your code to ensure
that the performance boost is worth the loss of clarity.

7.9.2 Executing the Loop Backward
Because of the nature of the flags on the x86-64, loops that repeat from
some number down to (or up to) 0 are more efficient than loops that exe-
cute from 0 to another value. Compare the following C/C++ for loop and
the comparable assembly language code:

for(j = 1; j <= 8; ++j)
{
 Stmts
}

; Conversion to pure assembly (as well as using a
; REPEAT/UNTIL form):

mov j, 1
ForLp:
 Stmts
 inc j
 cmp j, 8
 jle ForLp

Now consider another loop that also has eight iterations but runs its
loop-control variable from 8 down to 1 rather than 1 up to 8, thereby saving
a comparison on each repetition of the loop:

 mov j, 8
LoopLbl:
 Stmts
 dec j
 jnz LoopLbl

446 Chapter 7

Saving the execution time of the cmp instruction on each iteration of the
loop may result in faster code. Unfortunately, you cannot force all loops to
run backward. However, with a little effort and some coercion, you should
be able to write many for loops so that they operate backward.

The preceding example worked out well because the loop ran from 8
down to 1. The loop terminated when the loop-control variable became 0.
What happens if you need to execute the loop when the loop-control variable
goes to 0? For example, suppose that the preceding loop needed to range
from 7 down to 0. As long as the lower bound is non-negative, you can substi-
tute the jns instruction in place of the jnz instruction in the earlier code:

 mov j, 7
LoopLbl:
 Stmts
 dec j
 jns LoopLbl

This loop will repeat eight times, with j taking on the values 7 to 0.
When it decrements 0 to –1, it sets the sign flag and the loop terminates.

Keep in mind that some values may look positive but are actually nega-
tive. If the loop-control variable is a byte, values in the range 128 to 255 are
negative in the two’s complement system. Therefore, initializing the loop-
control variable with any 8-bit value in the range 129 to 255 (or, of course,
0) terminates the loop after a single execution. This can get you into trou-
ble if you’re not careful.

7.9.3 Using Loop-Invariant Computations
A loop-invariant computation is a calculation that appears within a loop that
always yields the same result. You needn’t do such computations inside the
loop. You can compute them outside the loop and reference the value of
the computations inside the loop. The following C code demonstrates an
invariant computation:

for(i = 0; i < n; ++i)
{
 k = (j - 2) + i
}

Because j never changes throughout the execution of this loop, the
subexpression j - 2 can be computed outside the loop:

jm2 = j - 2;
for(i = 0; i < n; ++i)
{
 k = jm2 + i;
}

Low-Level Control Structures 447

Although we’ve eliminated a single instruction by computing the sub-
expression j - 2 outside the loop, there is still an invariant component to
this calculation: adding j - 2 to i n times. Because this invariant compo-
nent executes n times in the loop, we can translate the previous code to
the following:

k = (j - 2) * n;
for(i = 0; i < n; ++i)
{
 k = k + i;
}

This translates to the following assembly code:

 mov eax, j
 sub eax, 2
 imul eax, n
 mov ecx, 0
lp: cmp ecx, n
 jnl loopDone
 add eax, ecx ; Single instruction implements loop body!
 inc ecx
 jmp lp
loopDone:
 mov k, eax

For this particular loop, you can actually compute the result without
using a loop at all (a formula corresponds to the preceding iterative calcula-
tion). Still, this simple example demonstrates how to eliminate loop-invariant
calculations from a loop.

7.9.4 Unraveling Loops
For small loops—those whose body is only a few statements—the overhead
required to process a loop may constitute a significant percentage of the
total processing time. For example, look at the following Pascal code and its
associated x86-64 assembly language code:

 for i := 3 downto 0 do A[i] := 0;

 mov i, 3
 lea rcx, A
LoopLbl:
 mov ebx, i
 mov [rcx][rbx * 4], 0
 dec i
 jns LoopLbl

Four instructions execute on each repetition of the loop. Only one
instruction is doing the desired operation (moving a 0 into an element of

448 Chapter 7

A). The remaining three instructions control the loop. Therefore, it takes
16 instructions to do the operation logically required by 4.

While we could make many improvements to this loop based on the
information presented thus far, consider carefully exactly what this loop is
doing—it’s storing four 0s into A[0] through A[3]. A more efficient approach
is to use four mov instructions to accomplish the same task. For example, if
A is an array of double words, the following code initializes A much faster
than the preceding code:

mov A[0], 0
mov A[4], 0
mov A[8], 0
mov A[12], 0

Although this is a simple example, it shows the benefit of loop unraveling
(also known as loop unrolling). If this simple loop appeared buried inside a
set of nested loops, the 4:1 instruction reduction could possibly double the
performance of that section of your program.

Of course, you cannot unravel all loops. Loops that execute a variable
number of times are difficult to unravel because there is rarely a way to deter-
mine at assembly time the number of loop iterations. Therefore, unraveling a
loop is a process best applied to loops that execute a known number of times,
with the number of times known at assembly time.

Even if you repeat a loop a fixed number of iterations, it may not be a
good candidate for loop unraveling. Loop unraveling produces impressive
performance improvements when the number of instructions controlling
the loop (and handling other overhead operations) represents a significant
percentage of the total number of instructions in the loop. Had the previous
loop contained 36 instructions in the body (exclusive of the four overhead
instructions), the performance improvement would be, at best, only 10 per-
cent (compared with the 300 to 400 percent it now enjoys).

Therefore, the costs of unraveling a loop—all the extra code that must
be inserted into your program—quickly reach a point of diminishing returns
as the body of the loop grows larger or as the number of iterations increases.
Furthermore, entering that code into your program can become quite a
chore. Therefore, loop unraveling is a technique best applied to small loops.

Note that the superscalar 80x86 chips (Pentium and later) have branch-
prediction hardware and use other techniques to improve performance. Loop
unrolling on such systems may actually slow the code because these processors
are optimized to execute short loops. Whenever applying “improvements” to
speed up your code, you should always measure the performance before and
after to ensure there was sufficient gain to justify the change.

7.9.5 Using Induction Variables
Consider the following Pascal loop:

for i := 0 to 255 do csetVar[i] := [];

Low-Level Control Structures 449

Here the program is initializing each element of an array of charac-
ter sets to the empty set. The straightforward code to achieve this is the
following:

 mov i, 0
 lea rcx, csetVar
FLp:

 ; Compute the index into the array (assume that each
 ; element of a csetVar array contains 16 bytes).

 mov ebx, i ; Zero-extends into RBX!
 shl ebx, 4

 ; Set this element to the empty set (all 0 bits).

 xor rax, rax
 mov qword ptr [rcx][rbx], rax
 mov qword ptr [rcx][rbx + 8], rax

 inc i
 cmp i, 256
 jb FLp;

Although unraveling this code will still improve performance, it will
take 1024 instructions to accomplish this task, too many for all but the most
time-critical applications. However, you can reduce the execution time of
the body of the loop by using induction variables. An induction variable is
one whose value depends entirely on the value of another variable.

In the preceding example, the index into the array csetVar tracks the
loop-control variable (it’s always equal to the value of the loop-control vari-
able times 16). Because i doesn’t appear anywhere else in the loop, there is
no sense in performing the computations on i. Why not operate directly on
the array index value? The following code demonstrates this technique:

 xor rbx, rbx ; i * 16 in RBX
 xor rax, rax ; Loop invariant
 lea rcx, csetVar ; Base address of csetVar array
FLp:
 mov qword ptr [rcx][rbx], rax
 mov qword ptr [rcx][rbx + 8], rax

 add ebx, 16
 cmp ebx, 256 * 16
 jb FLp
; mov ebx, 256 ; If you care to maintain same semantics as C code

The induction that takes place in this example occurs when the code
increments the loop-control variable (moved into EBX for efficiency) by 16
on each iteration of the loop rather than by 1. Multiplying the loop-control
variable by 16 (and the final loop-termination constant value) allows the

450 Chapter 7

code to eliminate multiplying the loop-control variable by 16 on each itera-
tion of the loop (that is, this allows us to remove the shl instruction from the
previous code). Further, because this code no longer refers to the original
loop-control variable (i), the code can maintain the loop-control variable
strictly in the EBX register.

 7.10 For More Information
Write Great Code, Volume 2, by this author (Second Edition, No Starch Press,
2020) provides a good discussion of the implementation of various HLL
control structures in low-level assembly language. It also discusses optimiza-
tions such as induction, unrolling, strength reduction, and so on, that apply
to optimizing loops.

 7.11 Test Yourself
1. What are the two typical mechanisms for obtaining the address of a

label appearing in a program?

2. What statement can you use to make all symbols global that appear
within a procedure?

3. What statement can you use to make all symbols local that appear
within a procedure?

4. What are the two forms of the indirect jmp instruction?

5. What is a state machine?

6. What is the general rule for converting a branch to its opposite branch?

7. What are the two exceptions to the rule for converting a branch to its
opposite branch?

8. What is a trampoline?

9. What is the general syntax of the conditional move instruction?

10. What is the advantage of a conditional move instruction over a condi-
tional jump?

11. What are some disadvantages of conditional moves?

12. Explain the difference between short-circuit and complete Boolean
evaluation.

13. Convert the following if statements to assembly language sequences by
using complete Boolean evaluation (assume all variables are unsigned
32-bit integer values):

if(x == y || z > t)
{
 Do something
}

Low-Level Control Structures 451

if(x != y && z < t)
{
 THEN statements
}
else
{
 ELSE statements
}

14. Convert the preceding statements to assembly language by using short-
circuit Boolean evaluation (assume all variables are signed 16-bit inte-
ger values).

15. Convert the following switch statements to assembly language (assume
all variables are unsigned 32-bit integers):

switch(s)
{
 case 0: case 0 code break;
 case 1: case 1 code break;
 case 2: case 2 code break;
 case 3: case 3 code break;
}

switch(t)
{
 case 2: case 0 code break;
 case 4: case 4 code break;
 case 5: case 5 code break;
 case 6: case 6 code break;
 default: Default code
}

switch(u)
{
 case 10: case 10 code break;
 case 11: case 11 code break;
 case 12: case 12 code break;
 case 25: case 25 code break;
 case 26: case 26 code break;
 case 27: case 27 code break;
 default: Default code
}

16. Convert the following while loops to assembly code (assume all variables
are signed 32-bit integers):

while(i < j)
{
 Code for loop body
}

452 Chapter 7

while(i < j && k != 0)
{
 Code for loop body, part a
 if(m == 5) continue;
 Code for loop body, part b
 if(n < 6) break;
 Code for loop body, part c
}

do
{
 Code for loop body
} while(i != j);

do
{
 Code for loop body, part a
 if(m != 5) continue;
 Code for loop body, part b
 if(n == 6) break;
 Code for loop body, part c
} while(i < j && k > j);

for(int i = 0; i < 10; ++i)
{
 Code for loop body
}

8
A D V A N C E D A R I T H M E T I C

This chapter covers extended-precision
arithmetic, arithmetic on operands whose

sizes are different, and decimal arithme-
tic. By the conclusion of this chapter, you will

know how to apply arithmetic and logical operations
to integer operands of any size, including those larger
than 64 bits, and how to convert operands of differ-
ent sizes into a compatible format. Finally, you’ll learn
to perform decimal arithmetic by using the x86-64
BCD instructions on the x87 FPU, which lets you use
decimal arithmetic in those few applications that abso-
lutely require base-10 operations.

454 Chapter 8

 8.1 Extended-Precision Operations
One big advantage of assembly language over high-level languages is that
assembly language does not limit the size of integer operations. For example,
the standard C programming language defines three integer sizes: short int,
int, and long int.1 On the PC, these are often 16- and 32-bit integers.

Although the x86-64 machine instructions limit you to processing 8-, 16-,
32-, or 64-bit integers with a single instruction, you can use multiple instruc-
tions to process integers of any size. If you want to add 256-bit integer values
together, it’s no problem. This section describes how to extend various arith-
metic and logical operations from 16, 32, or 64 bits to as many bits as you
please.

8.1.1 Extended-Precision Addition
The x86-64 add instruction adds two 8-, 16-, 32-, or 64-bit numbers. After
the execution of add, the x86-64 carry flag is set if you have an overflow out
of the HO bit of the sum. You can use this information to do extended-
precision addition operations.2 Consider the way you manually perform a
multiple-digit addition operation (as shown in Figure 8-1).

Step 1: Add the least significant digits together

 289
+ 456 produces

 289
+ 456

5 with carry 1

5

Step 2: Add the next significant digits plus carry

 1 (carry)
 289
+ 456 produces

(carry)

(carry)

 1
 289
+ 456

45 with carry 1

45

Step 3: Add the most significant digits together

 1 (carry)
 289
+ 456 produces

 1
 289
+ 456

745

Figure 8-1: Multi-digit addition

The x86-64 handles extended-precision arithmetic the same way, except
instead of adding the numbers a digit at a time, it adds them together a byte,
word, double word, or quad word at a time. Consider the three-quad-word
(192-bit) addition operation in Figure 8-2.

1. Newer C standards also provide for a long long int, which is usually a 64-bit integer.

2. This book uses multi-digit and multi-byte as synonyms for extended precision.

Advanced Arithmetic 455

Step 1: Add the least significant qwords together

Step 2: Add the middle qwords together

(plus carry, if any)

(plus carry, if any)

C

CStep 3: Add the most significant qwords together

Figure 8-2: Adding two 192-bit objects together

As you can see, the idea is to break a larger operation into a sequence of
smaller ones. Since the x86 processor family is capable of adding together
at most 64 bits at a time (using general-purpose registers), the operation
must proceed in blocks of 64 bits or fewer. Here are the steps:

1. Add the two LO quad words together just as you would add the two LO
digits of a decimal number together in the manual algorithm, using the
add instruction. If there is a carry out of the LO addition, add sets the
carry flag to 1; otherwise, it clears the carry flag.

2. Add together the second pair of quad words in the two 192-bit values,
plus the carry out of the previous addition (if any), using the adc (add
with carry) instruction. The adc instruction uses the same syntax as add
and performs almost the same operation:

adc dest, source ; dest := dest + source + C

The only difference is that adc adds in the value of the carry flag along
with the source and destination operands. It sets the flags the same
way add does (including setting the carry flag if there is an unsigned
overflow). This is exactly what we need to add together the middle two
double words of our 192-bit sum.

3. Add the HO double words of the 192-bit value with the carry out of the
sum of the middle two quad words, once again using adc.

456 Chapter 8

To summarize, the add instruction adds the LO quad words together,
and adc adds all other quad word pairs together. At the end of the extended-
precision addition sequence, the carry flag indicates unsigned overflow (if
set), a set overflow flag indicates signed overflow, and the sign flag indicates
the sign of the result. The zero flag doesn’t have any real meaning at the
end of the extended-precision addition (it simply means that the sum of the
two HO quad words is 0 and does not indicate that the whole result is 0).

For example, suppose that you have two 128-bit values you wish to add
together, defined as follows:

 .data
X oword ?
Y oword ?

Suppose also that you want to store the sum in a third variable, Z, which
is also an oword. The following x86-64 code will accomplish this task:

mov rax, qword ptr X ; Add together the LO 64 bits
add rax, qword ptr Y ; of the numbers and store the
mov qword ptr Z, rax ; result into the LO qword of Z

mov rax, qword ptr X[8] ; Add together (with carry) the
adc rax, qword ptr Y[8] ; HO 64 bits and store the result
mov qword ptr Z[8], rax ; into the HO qword of Z

The first three instructions add the LO quad words of X and Y together
and store the result into the LO quad word of Z. The last three instructions
add the HO quad words of X and Y together, along with the carry from the
LO word, and store the result in the HO quad word of Z.

Remember, X, Y, and Z are oword objects (128 bits), and an instruction
of the form mov rax, X would attempt to load a 128-bit value into a 64-bit
register. To load a 64-bit value, specifically the LO 64 bits, the qword ptr
operator coerces symbols X, Y, and Z to 64 bits. To load the HO qwords, you
use address expressions of the form X[8], along with the qword ptr operator,
because the x86 memory space addresses bytes, and it takes 8 consecutive
bytes to form a quad word.

You can extend this algorithm to any number of bits by using adc to
add in the higher-order values. For example, to add together two 256-bit
values declared as arrays of four quad words, you could use code like the
following:

 .data
BigVal1 qword 4 dup (?)
BigVal2 qword 4 dup (?)
BigVal3 qword 4 dup (?) ; Holds the sum
 .
 .
 .

Advanced Arithmetic 457

; Note that there is no need for "qword ptr"
; because the base type of BitValx is qword.

 mov rax, BigVal1[0]
 add rax, BigVal2[0]
 mov BigVal3[0], rax

 mov rax, BigVal1[8]
 adc rax, BigVal2[8]
 mov BigVal3[8], rax

 mov rax, BigVal1[16]
 adc rax, BigVal2[16]
 mov BigVal3[16], rax

 mov rax, BigVal1[24]
 adc rax, BigVal2[24]
 mov BigVal3[24], rax

8.1.2 Extended-Precision Subtraction
Just as it does addition, the x86-64 performs multi-byte subtraction the same
way you would manually, except it subtracts whole bytes, words, double
words, or quad words at a time rather than decimal digits. You use the sub
instruction on the LO byte, word, double word, or quad word and the sbb
(subtract with borrow) instruction on the high-order values.

The following example demonstrates a 128-bit subtraction using the
64-bit registers on the x86-64:

 .data
Left oword ?
Right oword ?
Diff oword ?
 .
 .
 .
 mov rax, qword ptr Left
 sub rax, qword ptr Right
 mov qword ptr Diff, rax

 mov rax, qword ptr Left[8]
 sbb rax, qword ptr Right[8]
 mov qword ptr Diff[8], rax

The following example demonstrates a 256-bit subtraction:

 .data
BigVal1 qword 4 dup (?)
BigVal2 qword 4 dup (?)
BigVal3 qword 4 dup (?)

458 Chapter 8

 .
 .
 .

; Compute BigVal3 := BigVal1 - BigVal2.

; Note: don't need to coerce types of
; BigVa1, BigVal2, or BigVal3 because
; their base types are already qword.

 mov rax, BigVal1[0]
 sub rax, BigVal2[0]
 mov BigVal3[0], rax

 mov rax, BigVal1[8]
 sbb rax, BigVal2[8]
 mov BigVal3[8], rax

 mov rax, BigVal1[16]
 sbb rax, BigVal2[16]
 mov BigVal3[16], rax

 mov rax, BigVal1[24]
 sbb rax, BigVal2[24]
 mov BigVal3[24], rax

8.1.3 Extended-Precision Comparisons
Unfortunately, there isn’t a “compare with borrow” instruction that you
can use to perform extended-precision comparisons. Fortunately, you can
compare extended-precision values by using just a cmp instruction, as you’ll
soon see.

Consider the two unsigned values 2157h and 1293h. The LO bytes of
these two values do not affect the outcome of the comparison. Simply com-
paring the HO bytes, 21h with 12h, tells us that the first value is greater
than the second.

You need to look at both bytes of a pair of values only if the HO bytes
are equal. In all other cases, comparing the HO bytes tells you everything
you need to know about the values. This is true for any number of bytes, not
just two. The following code compares two signed 128-bit integers by com-
paring their HO quad words first and comparing their LO quad words only
if the HO quad words are equal:

; This sequence transfers control to location "IsGreater" if
; QwordValue > QwordValue2. It transfers control to "IsLess" if
; QwordValue < QwordValue2. It falls through to the instruction
; following this sequence if QwordValue = QwordValue2.
; To test for inequality, change the "IsGreater" and "IsLess"
; operands to "NotEqual" in this code.

Advanced Arithmetic 459

 mov rax, qword ptr QWordValue[8] ; Get HO qword
 cmp rax, qword ptr QWordValue2[8]
 jg IsGreater
 jl IsLess;

 mov rax, qword ptr QWordValue[0] ; If HO qwords equal,
 cmp rax, qword ptr QWordValue2[0] ; then we must compare
 jg IsGreater; ; the LO dwords
 jl IsLess;

; Fall through to this point if the two values were equal.

To compare unsigned values, use the ja and jb instructions in place of
jg and jl.

You can synthesize any comparison from the preceding sequence, as
shown in the following examples that demonstrate signed comparisons;
just substitute ja, jae, jb, and jbe for jg, jge, jl, and jle (respectively) if you
want unsigned comparisons. Each of the following examples assumes these
declarations:

 .data
OW1 oword ?
OW2 oword ?

OW1q textequ <qword ptr OW1>
OW2q textequ <qword ptr OW2>

The following code implements a 128-bit test to see if OW1 < OW2 (signed).
Control transfers to the IsLess label if OW1 < OW2. Control falls through to the
next statement if this is not true:

 mov rax, OW1q[8] ; Get HO dword
 cmp rax, OW2q[8]
 jg NotLess
 jl IsLess

 mov rax, OW1q[0] ; Fall through to here if the HO
 cmp rax, OW2q[0] ; qwords are equal
 jl IsLess
NotLess:

Here is a 128-bit test to see if OW1 <= OW2 (signed). This code jumps to
IsLessEq if the condition is true:

 mov rax, OW1q[8] ; Get HO dword
 cmp rax, OW2q[8]
 jg NotLessEQ
 jl IsLessEQ

460 Chapter 8

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal
 jle IsLessEQ
NotLessEQ:

This is a 128-bit test to see if OW1 > OW2 (signed). It jumps to IsGtr if this
condition is true:

 mov rax, QW1q[8] ; Get HO dword
 cmp rax, QW2q[8]
 jg IsGtr
 jl NotGtr

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal
 jg IsGtr
NotGtr:

The following is a 128-bit test to see if OW1 >= OW2 (signed). This code
jumps to label IsGtrEQ if this is the case:

 mov rax, QW1q[8] ; Get HO dword
 cmp rax, QW2q[8]
 jg IsGtrEQ
 jl NotGtrEQ

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal
 jge IsGtrEQ
NotGtrEQ:

Here is a 128-bit test to see if OW1 == OW2 (signed or unsigned). This
code branches to the label IsEqual if OW1 == OW2. It falls through to the next
instruction if they are not equal:

 mov rax, QW1q[8] ; Get HO dword
 cmp rax, QW2q[8]
 jne NotEqual

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal
 je IsEqual
NotEqual:

The following is a 128-bit test to see if OW1 != OW2 (signed or unsigned).
This code branches to the label IsNotEqual if OW1 != OW2. It falls through to
the next instruction if they are equal:

 mov rax, QW1q[8] ; Get HO dword
 cmp rax, QW2q[8]
 jne IsNotEqual

Advanced Arithmetic 461

 mov rax, QW1q[0] ; Fall through to here if the HO
 cmp rax, QW2q[0] ; qwords are equal
 jne IsNotEqual

; Fall through to this point if they are equal.

To generalize the preceding code for objects larger than 128 bits, start
the comparison with the objects’ HO quad words and work your way down
to their LO quad words, as long as the corresponding double words are
equal. The following example compares two 256-bit values to see if the first
is less than or equal (unsigned) to the second:

 .data
Big1 qword 4 dup (?)
Big2 qword 4 dup (?)
 .
 .
 .
 mov rax, Big1[24]
 cmp rax, Big2[24]
 jb isLE
 ja notLE

 mov rax, Big1[16]
 cmp rax, Big2[16]
 jb isLE
 ja notLE

 mov rax, Big1[8]
 cmp rax, Big2[8]
 jb isLE
 ja notLE

 mov rax, Big1[0]
 cmp rax, Big2[0]
 jnbe notLE
isLE:
 Code to execute if Big1 <= Big2
 .
 .
 .
notLE:
 Code to execute if Big1 > Big2

8.1.4 Extended-Precision Multiplication
Although an 8×8-, 16×16-, 32×32-, or 64×64-bit multiplication is usually
sufficient, sometimes you may want to multiply larger values. You use the
x86-64 single-operand mul and imul instructions for extended-precision

462 Chapter 8

multiplication operations, using the same techniques that you employ when
manually multiplying two values. Consider the way you perform multi-digit
multiplication by hand (Figure 8-3).

15 (5×3)

(40×20)
(40×3)

(40×100)

5535

Step 1: Multiply 5×3

 123
× 45

15
100

Step 2: Multiply 5×2

 123
× 45

15
100
500

Step 3: Multiply 5×1

 123
× 45

(5×20)
(5×100)

15
100
500
120

Step 4: Multiply 4×3

 123
× 45

15
100
500
120
800

Step 5: Multiply 4×2

 123
× 45

15
100
500
120
800

4000

Step 6: Multiply 4×1

 123
× 45

15
100
500
120
800

+ 4000

Step 7: Add partial products together

 123
× 45

Figure 8-3: Multi-digit multiplication

The x86-64 does extended-precision multiplication in the same manner
except that it works with bytes, words, double words, and quad words rather
than digits, as shown in Figure 8-4.

Probably the most important thing to remember when performing
an extended-precision multiplication is that you must also perform an
extended-precision addition at the same time. Adding up all the partial
products requires several additions.

Advanced Arithmetic 463

Step 1: Multiply the LO words Step 2: Multiply D x A

Step 3: Multiply C x B

Step 5: Compute sum of partial products

Step 4: Multiply C x A

A B

C

D x B

D

A B

C

D x B

D x A

C x B

D x A

C x B

C x A

D x A

C x B

C x A

AB x CB

D

A B

C

D x B

D

A B

C

D x B

D

A B

C

D x B

D x A

D

Figure 8-4: Extended-precision multiplication

Listing 8-1 demonstrates how to multiply two 64-bit values (producing a
128-bit result) by using 32-bit instructions. Technically, you can do a 64-bit
multiplication with a single instruction, but this example demonstrates a
method you can easily extend to 128 bits by using the x86-64 64-bit regis-
ters rather than the 32-bit registers.

; Listing 8-1

; 128-bit multiplication.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 8-1", 0
fmtStr1 byte "%d * %d = %I64d (verify:%I64d)", nl, 0

464 Chapter 8

 .data
op1 qword 123456789
op2 qword 234567890
product oword ?
product2 oword ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; mul64 - Multiplies two 64-bit values passed in RDX and RAX by
; doing a 64x64-bit multiplication, producing a 128-bit result.
; Algorithm is easily extended to 128x128 bits by switching the
; 32-bit registers for 64-bit registers.

; Stores result to location pointed at by R8.

mul64 proc
mp equ <dword ptr [rbp - 8]> ; Multiplier
mc equ <dword ptr [rbp - 16]> ; Multiplicand
prd equ <dword ptr [r8]> ; Result

 push rbp
 mov rbp, rsp
 sub rsp, 24

 push rbx ; Preserve these register values
 push rcx

; Save parameters passed in registers:

 mov qword ptr mp, rax
 mov qword ptr mc, rdx

; Multiply the LO dword of multiplier times multiplicand.

 mov eax, mp
 mul mc ; Multiply LO dwords
 mov prd, eax ; Save LO dword of product
 mov ecx, edx ; Save HO dword of partial product result

 mov eax, mp
 mul mc[4] ; Multiply mp(LO) * mc(HO)
 add eax, ecx ; Add to the partial product
 adc edx, 0 ; Don't forget the carry!

Advanced Arithmetic 465

 mov ebx, eax ; Save partial product for now
 mov ecx, edx

; Multiply the HO word of multiplier with multiplicand.

 mov eax, mp[4] ; Get HO dword of multiplier
 mul mc ; Multiply by LO word of multiplicand
 add eax, ebx ; Add to the partial product
 mov prd[4], eax ; Save the partial product
 adc ecx, edx ; Add in the carry!

 mov eax, mp[4] ; Multiply the two HO dwords together
 mul mc[4]
 add eax, ecx ; Add in partial product
 adc edx, 0 ; Don't forget the carry!

 mov prd[8], eax ; Save HO qword of result
 mov prd[12], edx

; EDX:EAX contains 64-bit result at this point.

 pop rcx ; Restore these registers
 pop rbx
 leave
 ret
mul64 endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test the mul64 function:

 mov rax, op1
 mov rdx, op2
 lea r8, product
 call mul64

; Use a 64-bit multiply to test the result:

 mov rax, op1
 mov rdx, op2
 imul rax, rdx
 mov qword ptr product2, rax

; Print the results:

 lea rcx, fmtStr1
 mov rdx, op1

466 Chapter 8

 mov r8, op2
 mov r9, qword ptr product
 mov rax, qword ptr product2
 mov [rsp + 32], rax
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 8-1: Extended-precision multiplication

The code works only for unsigned operands. To multiply two signed val-
ues, you must note the signs of the operands before the multiplication, take
the absolute value of the two operands, do an unsigned multiplication, and
then adjust the sign of the resulting product based on the signs of the origi-
nal operands. Multiplication of signed operands is left as an exercise for you.

The example in Listing 8-1 was fairly straightforward because it was
possible to keep the partial products in various registers. If you need to
multiply larger values together, you will need to maintain the partial prod-
ucts in temporary (memory) variables. Other than that, the algorithm that
Listing 8-1 uses generalizes to any number of double words.

8.1.5 Extended-Precision Division
You cannot synthesize a general n -bit / m -bit division operation by using
the div and idiv instructions—though a less general operation, dividing
an n -bit quantity by a 64-bit quantity can be done using the div instruc-
tion. A generic extended-precision division requires a sequence of shift and
subtract instructions (which takes quite a few instructions and runs much
slower). This section presents both methods (using div and shift and sub-
tract) for extended-precision division.

8.1.5.1 Special Case Form Using div Instruction

Dividing a 128-bit quantity by a 64-bit quantity is handled directly by the
div and idiv instructions, as long as the resulting quotient fits into 64 bits.
However, if the quotient does not fit into 64 bits, then you have to perform
extended-precision division.

For example, suppose you want to divide 0004_0000_0000_1234h by 2.
The naive approach would look something like the following (assuming the
value is held in a pair of qword variables named dividend, and divisor is a
quad word containing 2):

; This code does *NOT* work!

mov rax, qword ptr dividend[0] ; Get dividend into EDX:EAX
mov rdx, qword ptr dividend[8]
div divisor ; Divide RDX:RAX by divisor

Advanced Arithmetic 467

Although this code is syntactically correct and will compile, it will raise
a divide error exception when run. The quotient must fit into the RAX reg-
ister when using div, and 2_0000_091Ah will not fit, being a 66-bit quantity
(try dividing by 8 if you want to see it produce a result that will fit).

Instead, the trick is to divide the (zero- or sign-extended) HO double
word of the dividend by the divisor and then repeat the process with the
remainder and the LO dword of the dividend, as follows:

 .data
dividend qword 1234h, 4
divisor qword 2 ; dividend/divisor = 2_0000_091Ah
quotient qword 2 dup (?)
remainder qword ?
 .
 .
 .
 mov rax, dividend[8]
 xor edx, edx ; Zero-extend for unsigned division
 div divisor
 mov quotient[8], rax ; Save HO qword of the quotient
 mov rax, dividend[0] ; This code doesn't zero-extend
 div divisor ; RAX into RDX before div instr
 mov quotient[0], rax ; Save LO qword of the quotient (91Ah)
 mov remainder, rdx ; Save the remainder

The quotient variable is 128 bits because it’s possible for the result
to require as many bits as the dividend (for example, if you divide by 1).
Regardless of the size of the dividend and divisor operands, the remain-
der is never larger than 64 bits (in this case). Hence, the remainder vari-
able in this example is just a quad word.

To correctly compute the 128 / 64 quotient, begin by computing the
64 / 64 quotient of dividend[8] / divisor. The quotient from this first divi-
sion becomes the HO double word of the final quotient. The remainder
from this division becomes the extension in RDX for the second half of the
division operation. The second half of the code divides rdx:dividend[0] by
divisor to produce the LO quad word of the quotient and the remainder
from the division. The code does not zero-extend RAX into RDX prior to
the second div instruction, because RDX already contains valid bits that
must not be disturbed.

The preceding 128 / 64 division operation is a special case of the gen-
eral division algorithm to divide an arbitrary-size value by a 64-bit divisor.
The general algorithm is as follows:

1. Move the HO quad word of the dividend into RAX and zero-extend it
into RDX.

2. Divide by the divisor.

3. Store the value in RAX into the corresponding qword position of the
quotient result variable (position of the dividend qword loaded into
RAX prior to the division).

468 Chapter 8

4. Load RAX with the next-lower quad word in the dividend, without
modifying RDX.

5. Repeat steps 2 to 4 until you’ve processed all the quad words in the
dividend.

At the end, the RDX register will contain the remainder, and the quo-
tient will appear in the destination variable, where step 3 was storing the
results. Listing 8-2 demonstrates how to divide a 256-bit quantity by a 64-bit
divisor, producing a 256-bit quotient and a 64-bit remainder.

; Listing 8-2

; 256-bit by 64-bit division.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 8-2", 0
fmtStr1 byte "quotient = "
 byte "%08x_%08x_%08x_%08x_%08x_%08x_%08x_%08x"
 byte nl, 0

fmtStr2 byte "remainder = %I64x", nl, 0

 .data

; op1 is a 256-bit value. Initial values were chosen
; to make it easy to verify the result.

op1 oword 2222eeeeccccaaaa8888666644440000h
 oword 2222eeeeccccaaaa8888666644440000h

op2 qword 2
result oword 2 dup (0) ; Also 256 bits
remain qword 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; div256 - Divides a 256-bit number by a 64-bit number.

Advanced Arithmetic 469

; Dividend - passed by reference in RCX.
; Divisor - passed in RDX.

; Quotient - passed by reference in R8.
; Remainder - passed by reference in R9.

div256 proc
divisor equ <qword ptr [rbp - 8]>
dividend equ <qword ptr [rcx]>
quotient equ <qword ptr [r8]>
remainder equ <qword ptr [r9]>

 push rbp
 mov rbp, rsp
 sub rsp, 8

 mov divisor, rdx

 mov rax, dividend[24] ; Begin div with HO qword
 xor rdx, rdx ; Zero-extend into RDS
 div divisor ; Divide HO word
 mov quotient[24], rax ; Save HO result

 mov rax, dividend[16] ; Get dividend qword #2
 div divisor ; Continue with division
 mov quotient[16], rax ; Store away qword #2

 mov rax, dividend[8] ; Get dividend qword #1
 div divisor ; Continue with division
 mov quotient[8], rax ; Store away qword #1

 mov rax, dividend[0] ; Get LO dividend qword
 div divisor ; Continue with division
 mov quotient[0], rax ; Store away LO qword

 mov remainder, rdx ; Save remainder

 leave
 ret
div256 endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 80 ; Shadow storage

; Test the div256 function:

 lea rcx, op1
 mov rdx, op2

470 Chapter 8

 lea r8, result
 lea r9, remain
 call div256

; Print the results:

 lea rcx, fmtStr1
 mov edx, dword ptr result[28]
 mov r8d, dword ptr result[24]
 mov r9d, dword ptr result[20]
 mov eax, dword ptr result[16]
 mov [rsp + 32], rax
 mov eax, dword ptr result[12]
 mov [rsp + 40], rax
 mov eax, dword ptr result[8]
 mov [rsp + 48], rax
 mov eax, dword ptr result[4]
 mov [rsp + 56], rax
 mov eax, dword ptr result[0]
 mov [rsp + 64], rax
 call printf

 lea rcx, fmtStr2
 mov rdx, remain
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 8-2: Unsigned 128 / 32-bit extended-precision division

Here’s the build command and program output (note that you can ver-
ify that the division was correct by simply looking at the result, noting that
each digit is one-half the original value):

C:\>build listing8-2

C:\>echo off
 Assembling: listing8-2.asm
c.cpp

C:\>listing8-2
Calling Listing 8-2:
quotient = 11117777_66665555_44443333_22220000_11117777_66665555_44443333_22
220000
remainder = 0
Listing 8-2 terminated

Advanced Arithmetic 471

You can extend this code to any number of bits by adding additional
mov-div-mov instructions to the sequence. Like the extended-precision multi-
plication in the previous section, this extended-precision division algorithm
works only for unsigned operands. To divide two signed quantities, you
must note their signs, take their absolute values, do the unsigned division,
and then set the sign of the result based on the signs of the operands.

8.1.5.2 Generic N-bit by M-bit Division

To use a divisor larger than 64 bits, you have to implement the division by
using a shift-and-subtract strategy, which works but is very slow. As with mul-
tiplication, the best way to understand how the computer performs division
is to study how you were taught to do long division by hand. Consider the
operation 3456 / 12 and the steps you would take to manually perform this
operation, as shown in Figure 8-5.

12 Step 1: 12 goes into 34
two times

3456
24

12 Step 2: Subtract 24 from 35
to get 10 and drop down the 5

3456
22

24
105

12 Step 3: 12 goes into 105
eight times

3456
28

24
105
 96

105
 96

96

12 Step 4: Subtract 96 from 105
to get 9 and drop down the 6

3456
28

24

12 Step 5: 12 goes into 96
exactly eight times

3456
28

24
105
 96

96
96

105
 96

96
96

0

12 Step 6: Therefore, 12 goes
into 3456 exactly 288 times

3456
288

24

Figure 8-5: Manual digit-by-digit division operation

This algorithm is actually easier in binary because at each step you do
not have to guess how many times 12 goes into the remainder, nor do you
have to multiply 12 by your guess to obtain the amount to subtract. At each
step in the binary algorithm, the divisor goes into the remainder exactly 0
or 1 time. As an example, consider the division of 27 (11011) by 3 (11) that
is shown in Figure 8-6.

472 Chapter 8

11 Step 1: 11 goes into 11
one time

11011
11

11 Step 2: Subtract the 11,
producing 0, and bring
down the 0

11011
11

11
00

11 Step 3: 11 goes into 00
zero times

11011
10

11
00
00

00
00

01

11 Step 4: Subtract out the 0
and bring down the 1

11011
10

11

11 Step 5: 11 goes into 01
zero times

11011
100

11
00
00

01
00

00
00

01
00

11

11 Step 6: Subtract out the zero
and bring down the 1

11011
100

11

11 Step 7: 11 goes into 11
exactly one time

11011
1001

11
00
00

01
00

11

00
00

01
00

11
11
00

11 Step 8: This produces the
final result of 1001

11011
1001

11

Figure 8-6: Longhand division in binary

The following algorithm implements this binary division operation in a
way that computes the quotient and the remainder at the same time:

Quotient := Dividend;
Remainder := 0;
for i := 1 to NumberBits do

 Remainder:Quotient := Remainder:Quotient SHL 1;
 if Remainder >= Divisor then

 Remainder := Remainder - Divisor;
 Quotient := Quotient + 1;

 endif
endfor

Advanced Arithmetic 473

NumberBits is the number of bits in the Remainder, Quotient, Divisor, and
Dividend variables. SHL is the left-shift operator. The Quotient := Quotient + 1;
statement sets the LO bit of Quotient to 1 because this algorithm previously
shifts Quotient 1 bit to the left. Listing 8-3 implements this algorithm.

; Listing 8-3

; 128-bit by 128-bit division.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 8-3", 0
fmtStr1 byte "quotient = "
 byte "%08x_%08x_%08x_%08x"
 byte nl, 0

fmtStr2 byte "remainder = "
 byte "%08x_%08x_%08x_%08x"
 byte nl, 0

fmtStr3 byte "quotient (2) = "
 byte "%08x_%08x_%08x_%08x"
 byte nl, 0

 .data

; op1 is a 128-bit value. Initial values were chosen
; to make it easy to verify the result.

op1 oword 2222eeeeccccaaaa8888666644440000h
op2 oword 2
op3 oword 11117777666655554444333322220000h
result oword ?
remain oword ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; div128 - This procedure does a general 128 / 128 division operation
; using the following algorithm (all variables are assumed
; to be 128-bit objects).

474 Chapter 8

; Quotient := Dividend;
; Remainder := 0;
; for i := 1 to NumberBits do

; Remainder:Quotient := Remainder:Quotient SHL 1;
; if Remainder >= Divisor then

; Remainder := Remainder - Divisor;
; Quotient := Quotient + 1;

; endif
; endfor

; Data passed:

; 128-bit dividend, by reference in RCX.
; 128-bit divisor, by reference in RDX.

; Data returned:

; Pointer to 128-bit quotient in R8.
; Pointer to 128-bit remainder in R9.

div128 proc
remainder equ <[rbp - 16]>
dividend equ <[rbp - 32]>
quotient equ <[rbp - 32]> ; Aliased to dividend
divisor equ <[rbp - 48]>

 push rbp
 mov rbp, rsp
 sub rsp, 48

 push rax
 push rcx

 xor rax, rax ; Initialize remainder to 0
 mov remainder, rax
 mov remainder[8], rax

; Copy the dividend to local storage:

 mov rax, [rcx]
 mov dividend, rax
 mov rax, [rcx+8]
 mov dividend[8], rax

; Copy the divisor to local storage:

 mov rax, [rdx]
 mov divisor, rax
 mov rax, [rdx + 8]
 mov divisor[8], rax

 mov cl, 128 ; Count off bits in CL

Advanced Arithmetic 475

; Compute Remainder:Quotient := Remainder:Quotient SHL 1:

repeatLp: shl qword ptr dividend[0], 1 ; 256-bit extended-
 rcl qword ptr dividend[8], 1 ; precision shift
 rcl qword ptr remainder[0], 1 ; through remainder
 rcl qword ptr remainder[8], 1

; Do a 128-bit comparison to see if the remainder
; is greater than or equal to the divisor.

 mov rax, remainder[8]
 cmp rax, divisor[8]
 ja isGE
 jb notGE

 mov rax, remainder
 cmp rax, divisor
 ja isGE
 jb notGE

; Remainder := Remainder - Divisor;

isGE: mov rax, divisor
 sub remainder, rax
 mov rax, divisor[8]
 sbb remainder[8], rax

; Quotient := Quotient + 1;

 add qword ptr quotient, 1
 adc qword ptr quotient[8], 0

notGE: dec cl
 jnz repeatLp

; Okay, copy the quotient (left in the dividend variable)
; and the remainder to their return locations.

 mov rax, quotient[0]
 mov [r8], rax
 mov rax, quotient[8]
 mov [r8][8], rax

 mov rax, remainder[0]
 mov [r9], rax
 mov rax, remainder[8]
 mov [r9][8], rax

 pop rcx
 pop rax
 leave
 ret

div128 endp

476 Chapter 8

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test the div128 function:

 lea rcx, op1
 lea rdx, op2
 lea r8, result
 lea r9, remain
 call div128

; Print the results:

 lea rcx, fmtStr1
 mov edx, dword ptr result[12]
 mov r8d, dword ptr result[8]
 mov r9d, dword ptr result[4]
 mov eax, dword ptr result[0]
 mov [rsp + 32], rax
 call printf

 lea rcx, fmtStr2
 mov edx, dword ptr remain[12]
 mov r8d, dword ptr remain[8]
 mov r9d, dword ptr remain[4]
 mov eax, dword ptr remain[0]
 mov [rsp + 32], rax
 call printf

; Test the div128 function:

 lea rcx, op1
 lea rdx, op3
 lea r8, result
 lea r9, remain
 call div128

; Print the results:

 lea rcx, fmtStr3
 mov edx, dword ptr result[12]
 mov r8d, dword ptr result[8]
 mov r9d, dword ptr result[4]
 mov eax, dword ptr result[0]
 mov [rsp + 32], rax
 call printf

 lea rcx, fmtStr2
 mov edx, dword ptr remain[12]

Advanced Arithmetic 477

 mov r8d, dword ptr remain[8]
 mov r9d, dword ptr remain[4]
 mov eax, dword ptr remain[0]
 mov [rsp + 32], rax
 call printf

 leave
 ret ; Returns to caller

asmMain endp
 end

Listing 8-3: Extended-precision division

Here’s the build command and program output:

C:\>build listing8-3

C:\>echo off
 Assembling: listing8-3.asm
c.cpp

C:\>listing8-3
Calling Listing 8-3:
quotient = 11117777_66665555_44443333_22220000
remainder = 00000000_00000000_00000000_00000000
quotient (2) = 00000000_00000000_00000000_00000002
remainder = 00000000_00000000_00000000_00000000
Listing 8-3 terminated

This code does not check for division by 0 (it will produce the value
0FFFF_FFFF_FFFF_FFFFh if you attempt to divide by 0); it handles only
unsigned values and is very slow (an order of magnitude or two worse than
the div and idiv instructions). To handle division by 0, check the divisor
against 0 prior to running this code and return an appropriate error code
if the divisor is 0. Dealing with signed values is the same as the earlier divi-
sion algorithm: note the signs, take the operands’ absolute values, do the
unsigned division, and then fix the sign afterward.

You can use the following technique to boost the performance of this
division by a fair amount. Check to see if the divisor variable uses only 32 bits.
Often, even though the divisor is a 128-bit variable, the value itself fits into
32 bits (that is, the HO double words of Divisor are 0) and you can use the
div instruction, which is much faster. The improved algorithm is a bit
more complex because you have to first compare the HO quad words for 0,
but on average, it runs much faster while remaining capable of dividing any
two pairs of values.

8.1.6 Extended-Precision Negation Operations
The neg instruction doesn’t provide a generic extended-precision form.
However, a negation is equivalent to subtracting a value from 0, so we
can easily simulate an extended-precision negation by using the sub and sbb

478 Chapter 8

instructions. The following code provides a simple way to negate a (320-bit)
value by subtracting that value from 0, using an extended-precision
subtraction:

 .data
Value qword 5 dup (?) ; 320-bit value
 .
 .
 .
 xor rax, rax ; RAX = 0
 sub rax, Value
 mov Value, rax

 mov eax, 0 ; Cannot use XOR here:
 sbb rax , Value[8] ; must preserve carry!
 mov Value[8], rax

 mov eax, 0 ; Zero-extends!
 sbb rax, Value[16]
 mov Value[16], rax

 mov eax, 0
 sbb rax, Value[24]
 mov Value[24], rax

 mov rax, 0
 sbb rax, Value[32]
 mov Value[32], rax

A slightly more efficient way to negate smaller values (128 bits) uses a
combination of neg and sbb instructions. This technique uses the fact that
neg subtracts its operand from 0. In particular, it sets the flags the same way
the sub instruction would if you subtracted the destination value from 0.
This code takes the following form (assuming you want to negate the
128-bit value in RDX:RAX):

neg rdx
neg rax
sbb rdx, 0

The first two instructions negate the HO and LO qwords of the 128-bit
result. However, if there is a borrow out of the LO negation (think of neg
rax as subtracting 0 from RAX, possibly producing a carry/borrow), that
borrow is not subtracted from the HO qword. The sbb instruction at the
end of this sequence subtracts nothing from RDX if no borrow occurs when
negating RAX; it subtracts 1 from RDX if a borrow was needed when sub-
tracting 0 from RAX.

With a lot of work, it is possible to extend this scheme to more than
128 bits. However, around 256 bits (and certainly, once you get beyond
256 bits), it actually takes fewer instructions to use the general subtract-
from-zero scheme.

Advanced Arithmetic 479

8.1.7 Extended-Precision AND Operations
Performing an n-byte AND operation is easy: simply AND the corresponding
bytes between the two operands, saving the result. For example, to perform
the AND operation with all operands 128 bits long, you could use the follow-
ing code:

mov rax, qword ptr source1
and rax, qword ptr source2
mov qword ptr dest, rax

mov rax, qword ptr source1[8]
and rax, qword ptr source2[8]
mov qword ptr dest[8], rax

To extend this technique to any number of qwords, logically AND the
corresponding bytes, words, double words, or quad words together in the
operands.

This sequence sets the flags according to the value of the last and opera-
tion. If you AND the HO quad words last, this sets all but the zero flag
correctly. If you need to test the zero flag after this sequence, logically OR
the two resulting double words together (or otherwise compare them both
against 0).

N O T E You can also use the XMM and YMM registers to perform extended-precision logical
operations (up to 256 bits at a time). See Chapter 11 for more details.

8.1.8 Extended-Precision OR Operations
Multi-byte logical OR operations are performed in the same way as multi-
byte AND operations. You OR the corresponding bytes in the two operands
together. For example, to logically OR two 192-bit values, use the following
code:

mov rax, qword ptr source1
or rax, qword ptr source2
mov qword ptr dest, rax

mov rax, qword ptr source1[8]
or rax, qword ptr source2[8]
mov qword ptr dest[8], rax

mov rax, qword ptr source1[16]
or rax, qword ptr source2[16]
mov qword ptr dest[16], rax

As in the previous example, this does not set the zero flag properly for the
entire operation. If you need to test the zero flag after an extended-precision
OR, you must logically OR all the resulting double words together.

480 Chapter 8

8.1.9 Extended-Precision XOR Operations
As with other logical operations, extended-precision XOR operations
exclusive-ORs the corresponding bytes in the two operands to obtain the
extended-precision result. The following code sequence operates on two
64-bit operands, computes their exclusive-or, and stores the result into a
64-bit variable:

mov rax, qword ptr source1
xor rax, qword ptr source2
mov qword ptr dest, rax

mov rax, qword ptr source1[8]
xor rax, qword ptr source2[8]
mov qword ptr dest[8], rax

The comment about the zero flag in the previous two sections, as well
as the comment about the XMM and YMM registers, apply here.

8.1.10 Extended-Precision NOT Operations
The not instruction inverts all the bits in the specified operand. An
extended-precision NOT is performed by executing the not instruction on
all the affected operands. For example, to perform a 128-bit NOT operation
on the value in RDX:RAX, execute the following instructions:

not rax
not rdx

Keep in mind that if you execute the NOT instruction twice, you wind
up with the original value. Also, exclusive-ORing a value with all 1s (0FFh,
0FFFFh, 0FFFF_FFFFh, or 0FFFF_FFFF_FFFF_FFFFh) performs the same
operation as the not instruction.

8.1.11 Extended-Precision Shift Operations
Extended-precision shift operations require a shift and a rotate instruction.
This section describes how to construct these operations.

8.1.11.1 Extended-Precision Shift Left

A 128-bit shl (shift left) takes the form shown in Figure 8-7.

0

0

1234

6465666768

C

127

63

...

...

Figure 8-7: 128-bit shift-left operation

Advanced Arithmetic 481

To accomplish this with machine instructions, we must first shift the
LO qword to the left (for example, using the shl instruction) and capture
the output from bit 63 (conveniently, the carry flag does this for us). We
must then shift this bit into the LO bit of the HO qword while simultane-
ously shifting all the other bits to the left (and capturing the output by
using the carry flag).

You can use the shl and rcl instructions to implement this 128-bit shift.
For example, to shift the 128-bit quantity in RDX:RAX one position to the
left, you’d use the following instructions:

shl rax, 1
rcl rdx, 1

The shl instruction shifts a 0 into bit 0 of the 128-bit operand and
shifts bit 63 into the carry flag. The rcl instruction then shifts the carry
flag into bit 64 and shifts bit 127 into the carry flag. The result is exactly
what we want.

Using this technique, you can shift an extended-precision value only
1 bit at a time. You cannot shift an extended-precision operand several bits
by using the CL register, nor can you specify a constant value greater than
1 when using this technique.

To perform a shift left on an operand larger than 128 bits, use addi-
tional rcl instructions. An extended-precision shift-left operation always
starts with the least-significant quad word, and each succeeding rcl instruc-
tion operates on the next-most-significant double word. For example, to
perform a 192-bit shift-left operation on a memory location, you could use
the following instructions:

shl qword ptr Operand[0], 1
rcl qword ptr Operand[8], 1
rcl qword ptr Operand[16], 1

If you need to shift your data by 2 or more bits, you can either repeat
the preceding sequence the desired number of times (for a constant num-
ber of shifts) or place the instructions in a loop to repeat them a certain
number of times. For example, the following code shifts the 192-bit value
Operand to the left by the number of bits specified in CL:

ShiftLoop:
 shl qword ptr Operand[0], 1
 rcl qword ptr Operand[8], 1
 rcl qword ptr Operand[16], 1
 dec cl
 jnz ShiftLoop

482 Chapter 8

8.1.11.2 Extended-Precision Shift Right and Shift Arithmetic Right

You implement shr (shift right) and sar (shift arithmetic right) in a similar way,
except you must start at the HO word of the operand and work your way
down to the LO word:

; Extended-precision SAR:

 sar qword ptr Operand[16], 1
 rcr qword ptr Operand[8], 1
 rcr qword ptr Operand[0], 1

; Extended-precision SHR:

 shr qword ptr Operand[16], 1
 rcr qword ptr Operand[8], 1
 rcr qword ptr Operand[0], 1

The extended-precision shifts set the flags differently than their 8-, 16-,
32-, and 64-bit counterparts, because the rotate instructions affect the flags
differently than the shift instructions. Fortunately, the carry flag is the one
you’ll test most often after a shift operation, and the extended-precision
shift operations (that is, rotate instructions) properly set this flag.

8.1.11.3 Efficient Multi-bit Extended-Precision Shifts

The shld and shrd instructions let you efficiently implement extended-precision
shifts of several bits. These instructions have the following syntax:

shld Operand1, Operand2, constant
shld Operand1, Operand2, cl
shrd Operand1, Operand2, constant
shrd Operand1, Operand2, cl

The shld instruction works as shown in Figure 8-8.

01234

01234

Operand1

C

Temporary copy of Operand2

HO bit

HO bit

...

...

Figure 8-8: shld operation

Operand2 must be a 16-, 32-, or 64-bit register. Operand1 can be a register or
a memory location. Both operands must be the same size. The third oper-
and, constant or cl, specifies the number of bits to shift, and may be a value
in the range 0 through n – 1, where n is the size of the first two operands.

The shld instruction shifts a copy of the bits in Operand2 to the left by the
number of bits specified by the third operand, storing the result into the

Advanced Arithmetic 483

location specified by the first operand. The HO bits shift into the carry flag,
and the HO bits of Operand2 shift into the LO bits of Operand1. The third oper-
and specifies the number of bits to shift. If the count is n, then shld shifts bit
n – 1 into the carry flag (obviously, this instruction maintains only the last
bit shifted into the carry). The shld instruction sets the flag bits as follows:

•	 If the shift count is 0, shld doesn’t affect any flags.

•	 The carry flag contains the last bit shifted out of the HO bit of Operand1.

•	 If the shift count is 1, the overflow flag will contain 1 if the sign bit of
Operand1 changes during the shift. If the count is not 1, the overflow flag
is undefined.

•	 The zero flag will be 1 if the shift produces a 0 result.

•	 The sign flag will contain the HO bit of the result.

The shrd instruction is similar to shld except, of course, it shifts its bits
right rather than left. To get a clear picture of the shrd instruction, consider
Figure 8-9.

5 4 3 2 1 0

5 4 3 2 1 0HO bit
Operand1

C

Temporary copy of Operand2

HO bit

...

...

Figure 8-9: shrd operation

The shrd instruction sets the flag bits as follows:

•	 If the shift count is 0, shrd doesn’t affect any flags.

•	 The carry flag contains the last bit shifted out of the LO bit of Operand1.

•	 If the shift count is 1, the overflow flag will contain 1 if the HO bit of
Operand1 changes. If the count is not 1, the overflow flag is undefined.

•	 The zero flag will be 1 if the shift produces a 0 result.

•	 The sign flag will contain the HO bit of the result.

Consider the following code sequence:

 .data
ShiftMe qword 012345678h, 90123456h, 78901234h
 .
 .
 .
 mov rax, ShiftMe[8]
 shld ShiftMe[16], rax, 6

484 Chapter 8

 mov rax, ShiftMe[0]
 shld ShiftMe[8], rax, 6
 shl ShiftMe[0], 6

The first shld instruction shifts the bits from ShiftMe[8] into ShiftMe[16]
without affecting the value in ShiftMe[8]. The second shld instruction shifts
the bits from ShiftMe into ShiftMe[8]. Finally, the shl instruction shifts the
LO double word the appropriate amount.

There are two important things to note about this code. First, unlike
the other extended-precision shift-left operations, this sequence works from
the HO quad word down to the LO quad word. Second, the carry flag does
not contain the carry from the HO shift operation. If you need to preserve
the carry flag at that point, you will need to push the flags after the first
shld instruction and pop the flags after the shl instruction.

You can do an extended-precision shift-right operation by using the shrd
instruction. It works almost the same way as the preceding code sequence,
except you work from the LO quad word to the HO quad word. The solution
is left as an exercise for you.

8.1.12 Extended-Precision Rotate Operations
The rcl and rcr operations extend in a manner similar to shl and shr.
For example, to perform 192-bit rcl and rcr operations, use the following
instructions:

rcl qword ptr Operand[0], 1
rcl qword ptr Operand[8], 1
rcl qword ptr Operand[16], 1

rcr qword ptr Operand[16], 1
rcr qword ptr Operand[8], 1
rcr qword ptr Operand[0], 1

The only difference between this code and the code for the extended-
precision shift operations is that the first instruction is a rcl or rcr rather
than a shl or shr.

Performing an extended-precision rol or ror operation isn’t quite as
simple because of the way the incoming bit is processed. You can use the bt,
shld, and shrd instructions to implement an extended-precision rol or ror
instruction.3 The following code shows how to use the shld and bt instruc-
tions to do a 128-bit extended-precision rol:

; Compute rol RDX:RAX, 4:

 mov rbx, rdx
 shld rdx, rax, 4
 shld rax, rbx, 4
 bt rbx, 28 ; Set carry flag, if desired

3. See Chapter 12 for a discussion of the bt (bit test) instruction.

Advanced Arithmetic 485

An extended-precision ror instruction is similar; just keep in mind that
you work on the LO end of the object first, and the HO end last.

 8.2 Operating on Different-Size Operands
Occasionally, you may need to do a computation on a pair of operands
that are not the same size. For example, you may need to add a word and
a double word together or subtract a byte value from a word value. To do
so, extend the smaller operand to the size of the larger operand and then
operate on two same-size operands. For signed operands, you sign-extend
the smaller operand to the same size as the larger operand; for unsigned
values, you zero-extend the smaller operand. This works for any operation.

The following examples demonstrate adding a byte variable and a word
variable:

 .data
var1 byte ?
var2 word ?
 .
 .
 .
; Unsigned addition:

 movzx ax, var1
 add ax, var2

; Signed addition:

 movsx ax, var1
 add ax, var2

In both cases, the byte variable was loaded into the AL register,
extended to 16 bits, and then added to the word operand. This code works
out really well if you can choose the order of the operations (for example,
adding the 8-bit value to the 16-bit value).

Sometimes you cannot specify the order of the operations. Perhaps the
16-bit value is already in the AX register, and you want to add an 8-bit value
to it. For unsigned addition, you could use the following code:

 mov ax, var2 ; Load 16-bit value into AX
 . ; Do some other operations, leaving
 . ; a 16-bit quantity in AX
 add al, var1 ; Add in the 8-bit value
 adc ah, 0 ; Add carry into the HO word

The first add instruction adds the byte at var1 to the LO byte of the
value in the accumulator. The adc instruction adds the carry from the addi-
tion of the LO bytes into the HO byte of the accumulator. If you leave out
adc, you may not get the correct result.

486 Chapter 8

Adding an 8-bit signed operand to a 16-bit signed value is a little more
difficult. Unfortunately, you cannot add an immediate value (as in the pre-
ceding example) to the HO word of AX, because the HO extension byte
can be either 0 or 0FFh. If a register is available, the best thing to do is the
following:

mov bx, ax ; BX is the available register
movsx ax, var1
add ax, bx

If an extra register is not available, you might try the following code:

push ax ; Save word value
movsx ax, var1 ; Sign-extend 8-bit operand to 16 bits
add ax, [rsp] ; Add in previous word value
add rsp, 2 ; Pop junk from stack

This works because the x86-64 can push 16-bit registers. One word
of advice: don’t leave the RSP register misaligned (not on an 8-byte
boundary) for very long. If you’re working with 32- or 64-bit registers,
you’ll have to push the full 64-bit register and add 8 to RSP when you’re
done with the stack.

Another alternative is to store the 16-bit value in the accumulator into a
memory location and then proceed as before:

mov temp, ax
movsx ax, var1
add ax, temp

All these examples add a byte value to a word value. By zero- or sign-
extending the smaller operand to the size of the larger operand, you can
easily add any two different-size variables together.

As a last example, consider adding an 8-bit signed value to an oword
(128-bit) value:

 .data
OVal qword ?
BVal byte ?
 .
 .
 .
movsx rax, BVal
cqo
add rax, qword ptr OVal
adc rdx, qword ptr OVal[8]

 8.3 Decimal Arithmetic
The x86-64 CPUs use the binary numbering system for their native inter-
nal representation. In the early days of computing, designers thought that
decimal (base-10) arithmetic was more accurate for business calculations.

Advanced Arithmetic 487

Mathematicians have shown that this is not the case; nevertheless, some algo-
rithms depend on decimal calculations to produce correct results. Therefore,
although decimal arithmetic is generally less efficient and less accurate than
using binary arithmetic, the need for decimal arithmetic persists.

To represent decimal numbers in the native binary format, the most
common technique is to use the binary-coded decimal (BCD) representation.
This uses 4 bits to represent the 10 possible decimal digits (see Table 8-1).
The binary value of those 4 bits is equal to the corresponding decimal value
in the range 0 to 9. Of course, with 4 bits we can actually represent 16 dif-
ferent values; the BCD format ignores the remaining six bit combinations.
Because each BCD digit requires 4 bits, we can represent a two-digit BCD
value with a single byte. This means that we can represent the decimal val-
ues in the range 0 to 99 by using a single byte (as opposed to 0 to 255 with a
byte in binary format).

Table 8-1: Binary-Coded Decimal Representation

BCD representation Decimal equivalent

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 Illegal

1011 Illegal

1100 Illegal

1101 Illegal

1110 Illegal

1111 Illegal

8.3.1 Literal BCD Constants
MASM does not provide, nor do you need, a literal BCD constant. Because
BCD is just a form of hexadecimal notation that does not allow the values
0Ah to 0Fh, you can easily create BCD constants by using MASM’s hexadec-
imal notation. For example, the following mov instruction copies the BCD
value 99 into the AL register:

mov al, 99h

488 Chapter 8

The important thing to keep in mind is that you must not use MASM
literal decimal constants for BCD values. That is, mov al, 95 does not load
the BCD representation for 95 into the AL register. Instead, it loads 5Fh
into AL, and that’s an illegal BCD value.

8.3.2 Packed Decimal Arithmetic Using the FPU
To improve the performance of applications that rely on decimal arithme-
tic, Intel incorporated support for decimal arithmetic directly into the FPU.
The FPU supports values with up to 18 decimal digits of precision, with
computations using all the arithmetic capabilities of the FPU, from addition
to transcendental operations. Assuming you can live with only 18 digits of
precision and a few other restrictions, decimal arithmetic on the FPU is the
right way to go.

The FPU supports only one BCD data type: a 10-byte 18-digit packed
decimal value. The packed decimal format uses the first 9 bytes to hold the
BCD value in a standard packed decimal format. The first byte contains
the two LO digits, and the ninth byte holds the two HO digits. The HO bit
of the tenth byte holds the sign bit, and the FPU ignores the remaining bits in
the tenth byte (as using those bits would create possible BCD values that
the FPU could not exactly represent in the native floating-point format).

The FPU uses a one’s complement notation for negative BCD values.
The sign bit contains a 1 if the number is negative, and it contains a 0 if
the number is positive. If the number is 0, the sign bit may be either 0 or
1, because, like the binary one’s complement format, there are two distinct
representations for 0.

MASM’s tbyte type is the standard data type used to define packed
BCD variables. The fbld and fbstp instructions require a tbyte operand
(which you can initialize with a hexadecimal/BCD value).

Instead of fully supporting decimal arithmetic, the FPU provides two
instructions, fbld and fbstp, that convert between packed decimal and
binary floating-point formats when moving data to and from the FPU. The
fbld (float/BCD load) instruction loads an 80-bit packed BCD value onto the
top of the FPU stack after converting that BCD value to the binary floating-
point format. Likewise, the fbstp (float/BCD store and pop) instruction pops
the floating-point value off the top of stack, converts it to a packed BCD
value, and stores the BCD value into the destination memory location. This
means calculations are done using binary arithmetic. If you have an algo-
rithm that absolutely, positively depends on the use of decimal arithmetic,
it may fail if you use the FPU to implement it.4

The conversion between packed BCD and the floating-point format is
not a cheap operation. The fbld and fbstp instructions can be quite slow

4. An example of such an algorithm might be a multiplication by 10 by shifting the number
one digit to the left. However, such operations are not possible within the FPU itself, so
algorithms that misbehave inside the FPU are rare.

Advanced Arithmetic 489

(more than two orders of magnitude slower than fld and fstp, for example).
Therefore, these instructions can be costly if you’re doing simple additions
or subtractions.

Because the FPU converts packed decimal values to the internal floating-
point format, you can mix packed decimal, floating point, and (binary)
integer formats in the same calculation. The following code fragment dem-
onstrates how you might achieve this:

 .data
tb tbyte 654321h
two real8 2.0
one dword 1

 fbld tb
 fmul two
 fiadd one
 fbstp tb

; TB now contains: 1308643h.

The FPU treats packed decimal values as integer values. Therefore, if
your calculations produce fractional results, the fbstp instruction will round
the result according to the current FPU rounding mode. If you need to
work with fractional values, you need to stick with floating-point results.

 8.4 For More Information
Donald Knuth’s The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (Addison-Wesley Professional, 1997) contains a lot of useful
information about decimal arithmetic and extended-precision arithmetic,
though that text is generic and doesn’t describe how to do this in x86-64
assembly language. Additional information on BCD arithmetic can also be
found at the following websites:

•	 BCD Arithmetic, a Tutorial, http://homepage.divms.uiowa.edu/~jones/bcd/
bcd.html

•	 General Decimal Arithmetic, http://speleotrove.com/decimal/

•	 Intel Decimal Floating-Point Math Library, https://software.intel.com/
en-us/articles/intel-decimal-floating-point-math-library/

 8.5 Test Yourself
1. Provide the code to compute x = y + z, assuming the following:

a. x, y, and z are 128-bit integers

b. x and y are 96-bit integers, and z is a 64-bit integer

c. x, y, and z are 48-bit integers

http://homepage.divms.uiowa.edu/~jones/bcd/bcd.html
http://homepage.divms.uiowa.edu/~jones/bcd/bcd.html
http://speleotrove.com/decimal/
https://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library/
https://software.intel.com/en-us/articles/intel-decimal-floating-point-math-library/

490 Chapter 8

2. Provide the code to compute x = y − z, assuming the following:

a. x, y, and z are 192-bit integers

b. x, y, and z are 96-bit integers

3. Provide the code to compute x = y × z, assuming x, y, and z are 128-bit
unsigned integers.

4. Provide the code to compute x = y / z, assuming x and y are 128-bit
signed integers, and z is a 64-bit signed integer.

5. Assuming x and y are unsigned 128-bit integers, convert the following to
assembly language:

a. if(x == y) then code

b. if(x < y) then code

c. if(x > y) then code

d. if(x ≠ y) then code

6. Assuming x and y are signed 96-bit integers, convert the following to
assembly language:

a. if(x == y) then code

b. if(x < y) then code

c. if(x > y) then code

7. Assuming x and y are signed 128-bit integers, provide two distinct ways
to convert the following to assembly language:

a. x = –x

b. x = –y

8. Assuming x, y, and z are all 128-bit integer values, convert the following
to assembly language:

a. x = y & z (bitwise logical AND)

b. x = y | z (bitwise logical OR)

c. x = y ^ z (bitwise logical XOR)

d. x = ~y (bitwise logical NOT)

e. x = y << 1 (bitwise shift left)

f. x = y >> 1 (bitwise shift right)

9. Assuming x and y are signed 128-bit values, convert x = y >> 1 to assem-
bly language (bitwise arithmetic shift right).

10. Provide the assembly code to rotate the 128-bit value in x through the
carry flag (left by 1 bit).

11. Provide the assembly code to rotate the 128-bit value in x through the
carry flag (right by 1 bit).

9
N U M E R I C C O N V E R S I O N

This chapter discusses the conversion
between various numeric formats, including

integer to decimal string, integer to hexadeci-
mal string, floating-point to string, hexadecimal

string to integer, decimal string to integer, and real string
to floating-point. In addition to the basic conversions, this
chapter discusses error handling (for string-to-numeric
conversions) and performance enhancements. This chapter discusses standard-
precision conversions (for 8-, 16-, 32-, and 64-bit integer formats) as well
as extended-precision conversions (for example, 128-bit integer and string
conversions).

 9.1 Converting Numeric Values to Strings
Up to this point, this book has relied upon the C Standard Library to
perform numeric I/O (writing numeric data to the display and reading
numeric data from the user). However, the C Standard Library doesn’t

492 Chapter 9

provide extended-precision numeric I/O facilities (and even 64-bit numeric
I/O is questionable; this book has been using a Microsoft extension to
printf() to do 64-bit numeric output). Therefore, it’s time to break down
and discuss how to do numeric I/O in assembly language—well, sort of.
Because most operating systems support only character or string input and out-
put, we aren’t going to do actual numeric I/O. Instead, we’re going write func-
tions that convert between numeric values and strings, and then do string I/O.

The examples in this section work specifically with 64-bit (non-
extended-precision) and 128-bit values, but the algorithms are general
and extend to any number of bits.

9.1.1 Converting Numeric Values to Hexadecimal Strings
Converting a numeric value to a hexadecimal string is relatively straightfor-
ward. Just take each nibble (4 bits) in the binary representation and convert
that to one of the 16 characters “0” through “9” or “A” through “F”. Consider
the btoh function in Listing 9-1 that takes a byte in the AL register and returns
the two corresponding characters in AH (HO nibble) and AL (LO nibble).

N O T E For brevity, only the btoh function appears in Listing 9-1. The full Listing 9-1 is avail-
able online at https://artofasm.randallhyde.com/.

; btoh - This procedure converts the binary value
; in the AL register to two hexadecimal
; characters and returns those characters
; in the AH (HO nibble) and AL (LO nibble)
; registers.

btoh proc

 mov ah, al ; Do HO nibble first
 shr ah, 4 ; Move HO nibble to LO
 or ah, '0' ; Convert to char
 cmp ah, '9' + 1 ; Is it "A" through "F"?
 jb AHisGood

; Convert 3Ah to 3Fh to "A" through "F":

 add ah, 7

; Process the LO nibble here:

AHisGood: and al, 0Fh ; Strip away HO nibble
 or al, '0' ; Convert to char
 cmp al, '9' + 1 ; Is it "A" through "F"?
 jb ALisGood

; Convert 3Ah to 3Fh to "A" through "F":

 add al, 7

https://artofasm.randallhyde.com/

Numeric Conversion 493

ALisGood: ret
btoh endp

Listing 9-1: A function that converts a byte to two hexadecimal characters

You can convert any numeric value in the range 0 to 9 to its correspond-
ing ASCII character by ORing the numeric value with 0 (30h). Unfortunately,
this maps numeric values in the range 0Ah through 0Fh to 3Ah through 3Fh.
So, the code in Listing 9-1 checks to see if it produces a value greater than
3Ah and adds 7 to produce a final character code in the range 41h to 46h
(“A” through “F”).

Once we can convert a single byte to a pair of hexadecimal characters,
creating a string, output to the display is straightforward. We can call the
btoh (byte to hex) function for each byte in the number and store the corre-
sponding characters away in a string. Listing 9-2 provides examples of btoStr
(byte to string), wtoStr (word to string), dtoStr (double word to string), and qtoStr
(quad word to string) functions.

; Listing 9-2

; Numeric-to-hex string functions.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 9-2", 0
fmtStr1 byte "btoStr: Value=%I64x, string=%s"
 byte nl, 0

fmtStr2 byte "wtoStr: Value=%I64x, string=%s"
 byte nl, 0

fmtStr3 byte "dtoStr: Value=%I64x, string=%s"
 byte nl, 0

fmtStr4 byte "qtoStr: Value=%I64x, string=%s"
 byte nl, 0

 .data
buffer byte 20 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr

494 Chapter 9

 ret
getTitle endp

; btoh - This procedure converts the binary value
; in the AL register to two hexadecimal
; characters and returns those characters
; in the AH (HO nibble) and AL (LO nibble)
; registers.

btoh proc

 mov ah, al ; Do HO nibble first
 shr ah, 4 ; Move HO nibble to LO
 or ah, '0' ; Convert to char
 cmp ah, '9' + 1 ; Is it "A" to "F"?
 jb AHisGood

; Convert 3Ah through 3Fh to "A" to "F":

 add ah, 7

; Process the LO nibble here:

AHisGood: and al, 0Fh ; Strip away HO nibble
 or al, '0' ; Convert to char
 cmp al, '9' + 1 ; Is it "A" to "F"?
 jb ALisGood

; Convert 3Ah through 3Fh to "A" to "F":

 add al, 7
ALisGood: ret

btoh endp

; btoStr - Converts the byte in AL to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 3 bytes.
; This function zero-terminates the string.

btoStr proc
 push rax
 call btoh ; Do conversion here

; Create a zero-terminated string at [RDI] from the
; two characters we converted to hex format:

 mov [rdi], ah
 mov [rdi + 1], al
 mov byte ptr [rdi + 2], 0
 pop rax
 ret
btoStr endp

Numeric Conversion 495

; wtoStr - Converts the word in AX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 5 bytes.
; This function zero-terminates the string.

wtoStr proc
 push rdi
 push rax ; Note: leaves LO byte at [RSP]

; Use btoStr to convert HO byte to a string:

 mov al, ah
 call btoStr

 mov al, [rsp] ; Get LO byte
 add rdi, 2 ; Skip HO chars
 call btoStr

 pop rax
 pop rdi
 ret
wtoStr endp

; dtoStr - Converts the dword in EAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 9 bytes.
; This function zero-terminates the string.

dtoStr proc
 push rdi
 push rax ; Note: leaves LO word at [RSP]

; Use wtoStr to convert HO word to a string:

 shr eax, 16
 call wtoStr

 mov ax, [rsp] ; Get LO word
 add rdi, 4 ; Skip HO chars
 call wtoStr

 pop rax
 pop rdi
 ret
dtoStr endp

; qtoStr - Converts the qword in RAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 17 bytes.
; This function zero-terminates the string.

qtoStr proc
 push rdi
 push rax ; Note: leaves LO dword at [RSP]

496 Chapter 9

; Use dtoStr to convert HO dword to a string:

 shr rax, 32
 call dtoStr

 mov eax, [rsp] ; Get LO dword
 add rdi, 8 ; Skip HO chars
 call dtoStr

 pop rax
 pop rdi
 ret
qtoStr endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer

; Demonstrate call to btoStr:

 mov al, 0aah
 call btoStr

 lea rcx, fmtStr1
 mov edx, eax
 mov r8, rdi
 call printf

; Demonstrate call to wtoStr:

 mov ax, 0a55ah
 call wtoStr

 lea rcx, fmtStr2
 mov edx, eax
 mov r8, rdi
 call printf

; Demonstrate call to dtoStr:

 mov eax, 0aa55FF00h
 call dtoStr

 lea rcx, fmtStr3
 mov edx, eax

Numeric Conversion 497

 mov r8, rdi
 call printf

; Demonstrate call to qtoStr:

 mov rax, 1234567890abcdefh
 call qtoStr

 lea rcx, fmtStr4
 mov rdx, rax
 mov r8, rdi
 call printf

 leave
 pop rdi
 ret ; Returns to caller

asmMain endp
 end

Listing 9-2: btoStr, wtoStr, dtoStr, and qtoStr functions

Here’s the build command and sample output:

C:\>build listing9-2

C:\>echo off
 Assembling: listing9-2.asm
c.cpp

C:\>listing9-2
Calling Listing 9-2:
btoStr: Value=aa, string=AA
wtoStr: Value=a55a, string=A55A
dtoStr: Value=aa55ff00, string=AA55FF00
qtoStr: Value=1234567890abcdef, string=1234567890ABCDEF
Listing 9-2 terminated

Each successive function in Listing 9-2 builds on the work done in the pre-
vious functions. For example, wtoStr calls btoStr twice to convert the 2 bytes in
AX to a string of four hexadecimal characters. The code would be faster (but
a lot larger) if you were to inline-expand each of these functions wherever the
code calls them. If you needed only one of these functions, an inline expan-
sion of any calls it makes would be worth the extra effort.

Here’s a version of qtoStr with two improvements: inline expansion of the
calls to dtoStr, wtoStr, and btoStr, plus the use of a simple table lookup (array
access) to do the nibble-to-hex-character conversion (see Chapter 10 for more
information on table lookups). The framework for this faster version of qtoStr
appears in Listing 9-3.

N O T E Because of the length and redundancy of Listing 9-3, a large part has been removed,
but the missing code is obvious; the full Listing 9-3 is available online at https://
artofasm.randallhyde.com/.

https://artofasm.randallhyde.com/
https://artofasm.randallhyde.com/

498 Chapter 9

; qtoStr - Converts the qword in RAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 17 bytes.
; This function zero-terminates the string.

hexChar byte "0123456789ABCDEF"

qtoStr proc
 push rdi
 push rcx
 push rdx
 push rax ; Leaves LO dword at [RSP]

 lea rcx, hexChar

 xor edx, edx ; Zero-extends!
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1] ; Table lookup
 mov [rdi], dl

; Emit bits 56-59:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 1], dl

; Emit bits 52-55:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 2], dl
 .
 .
 .
 Code to emit bits 8-51 was deleted for length reasons.
 The code should be obvious if you look at the output
 for the other nibbles appearing here.
 .
 .
 .
; Emit bits 4-7:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 14], dl

Numeric Conversion 499

; Emit bits 0-3:

 xor edx, edx
 shld rdx, rax, 4
 shl rax, 4
 mov dl, [rcx][rdx * 1]
 mov [rdi + 15], dl

; Zero-terminate string:

 mov byte ptr [rdi + 16], 0

 pop rax
 pop rdx
 pop rcx
 pop rdi
 ret
qtoStr endp

Listing 9-3: Faster implementation of qtoStr

Writing a short main program that contains the following loop

 lea rdi, buffer
 mov rax, 07fffffffh
loopit: call qtoStr
 dec eax
 jnz loopit

and then using a stopwatch on an old 2012-era 2.6 GHz Intel Core i7 processor,
I got the approximate timings for the inline and original versions of qtoStr:

•	 Inline version: 19 seconds

•	 Original version: 85 seconds

As you can see, the inline version is significantly (four times) faster, but
you probably won’t convert 64-bit numbers to hexadecimal strings often
enough to justify the kludgy code of the inline version.

For what it’s worth, you could probably cut the time almost in half by using
a much larger table (256 16-bit entries) for the hex characters and convert a
whole byte at a time rather than a nibble. This would require half the instruc-
tions of the inline version (though the table would be 32 times bigger).

9.1.2 Converting Extended-Precision Hexadecimal Values to Strings
Extended-precision hexadecimal-to-string conversion is easy. It’s simply an
extension of the normal hexadecimal conversion routines from the previ-
ous section. For example, here’s a 128-bit hexadecimal conversion function:

; otoStr - Converts the oword in RDX:RAX to a string of hexadecimal
; characters and stores them at the buffer pointed at
; by RDI. Buffer must have room for at least 33 bytes.
; This function zero-terminates the string.

500 Chapter 9

otoStr proc
 push rdi
 push rax ; Note: leaves LO dword at [RSP]

; Use qtoStr to convert each qword to a string:

 mov rax, rdx
 call qtoStr

 mov rax, [rsp] ; Get LO qword
 add rdi, 16 ; Skip HO chars
 call qtoStr

 pop rax
 pop rdi
 ret
otoStr endp

9.1.3 Converting Unsigned Decimal Values to Strings
Decimal output is a little more complicated than hexadecimal output
because the HO bits of a binary number affect the LO digits of the deci-
mal representation (this was not true for hexadecimal values, which is
why hexadecimal output is so easy). Therefore, we will have to create the
decimal representation for a binary number by extracting one decimal
digit at a time from the number.

The most common solution for unsigned decimal output is to succes-
sively divide the value by 10 until the result becomes 0. The remainder after
the first division is a value in the range 0 to 9, and this value corresponds to
the LO digit of the decimal number. Successive divisions by 10 (and their
corresponding remainder) extract successive digits from the number.

Iterative solutions to this problem generally allocate storage for a string
of characters large enough to hold the entire number. Then the code extracts
the decimal digits in a loop and places them in the string one by one. At the
end of the conversion process, the routine prints the characters in the string
in reverse order (remember, the divide algorithm extracts the LO digits first
and the HO digits last, the opposite of the way you need to print them).

This section employs a recursive solution because it is a little more elegant.
This solution begins by dividing the value by 10 and saving the remainder in
a local variable. If the quotient is not 0, the routine recursively calls itself to
output any leading digits first. On return from the recursive call (which
outputs all the leading digits), the recursive algorithm outputs the digit
associated with the remainder to complete the operation. Here’s how the
operation works when printing the decimal value 789:

1. Divide 789 by 10. The quotient is 78, and the remainder is 9.

2. Save the remainder (9) in a local variable and recursively call the rou-
tine with the quotient.

3. Recursive entry 1: Divide 78 by 10. The quotient is 7, and the remainder is 8.

Numeric Conversion 501

4. Save the remainder (8) in a local variable and recursively call the rou-
tine with the quotient.

5. Recursive entry 2: Divide 7 by 10. The quotient is 0, and the remainder is 7.

6. Save the remainder (7) in a local variable. Because the quotient is 0,
don’t call the routine recursively.

7. Output the remainder value saved in the local variable (7). Return to
the caller (recursive entry 1).

8. Return to recursive entry 1: Output the remainder value saved in the local
variable in recursive entry 1 (8). Return to the caller (original invoca-
tion of the procedure).

9. Original invocation: Output the remainder value saved in the local variable
in the original call (9). Return to the original caller of the output routine.

Listing 9-4 implements the recursive algorithm.

; Listing 9-4

; Numeric unsigned integer-to-string function.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 9-4", 0
fmtStr1 byte "utoStr: Value=%I64u, string=%s"
 byte nl, 0

 .data
buffer byte 24 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; utoStr - Unsigned integer to string.

; Inputs:

; RAX: Unsigned integer to convert.
; RDI: Location to hold string.

; Note: for 64-bit integers, resulting
; string could be as long as 21 bytes
; (including the zero-terminating byte).

502 Chapter 9

utoStr proc
 push rax
 push rdx
 push rdi

; Handle zero specially:

 test rax, rax
 jnz doConvert

 mov byte ptr [rdi], '0'
 inc rdi
 jmp allDone

doConvert: call rcrsvUtoStr

; Zero-terminate the string and return:

allDone: mov byte ptr [rdi], 0
 pop rdi
 pop rdx
 pop rax
 ret
utoStr endp

ten qword 10

; Here's the recursive code that does the
; actual conversion:

rcrsvUtoStr proc

 xor rdx, rdx ; Zero-extend RAX -> RDX
 div ten
 push rdx ; Save output value
 test eax, eax ; Quit when RAX is 0
 jz allDone

; Recursive call to handle value % 10:

 call rcrsvUtoStr

allDone: pop rax ; Retrieve char to print
 and al, 0Fh ; Convert to "0" to "9"
 or al, '0'
 mov byte ptr [rdi], al ; Save in buffer
 inc rdi ; Next char position
 ret
rcrsvUtoStr endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rdi

Numeric Conversion 503

 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer
 mov rax, 1234567890
 call utoStr

; Print the result:

 lea rcx, fmtStr1
 mov rdx, rax
 mov r8, rdi
 call printf

 leave
 pop rdi
 ret ; Returns to caller

asmMain endp
 end

Listing 9-4: Unsigned integer-to-string function (recursive)

Here’s the build command and program output:

C:\>build listing9-4

C:\>echo off
 Assembling: listing9-4.asm
c.cpp

C:\>listing9-4
Calling Listing 9-4:
utoStr: Value=1234567890, string=1234567890
Listing 9-4 terminated

Unlike hexadecimal output, there really is no need to provide a byte-
size, word-size, or dword-size numeric-to-decimal-string conversion function.
Simply zero-extending the smaller values to 64 bits is sufficient. Unlike the
hexadecimal conversions, there are no leading zeros emitted by the qtoStr
function, so the output is the same for all sizes of variables (64 bits and
smaller).

Unlike the hexadecimal conversion (which is very fast to begin with,
plus you don’t really call it that often), you will frequently call the integer-to-
string conversion function. Because it uses the div instruction, it can be fairly
slow. Fortunately, we can speed it up by using the fist and fbstp instructions.

The fbstp instruction converts the 80-bit floating-point value currently
sitting on the top of stack to an 18-digit packed BCD value (using the for-
mat appearing in Figure 6-7 in Chapter 6). The fist instruction allows you

504 Chapter 9

to load a 64-bit integer onto the FPU stack. So, by using these two instruc-
tions, you can (mostly) convert a 64-bit integer to a packed BCD value,
which encodes a single decimal digit per 4 bits. Therefore, you can convert
the packed BCD result that fbstp produces to a character string by using the
same algorithm you use for converting hexadecimal numbers to a string.

There is only one catch with using fist and fbstp to convert an inte-
ger to a string: the Intel packed BCD format (see Figure 6-7 in Chapter 6)
supports only 18 digits, whereas a 64-bit integer can have up to 19 digits.
Therefore, any fbstp-based utoStr function will have to handle that 19th digit
as a special case. With all this in mind, Listing 9-5 provides this new version
of the utoStr function.

; Listing 9-5

; Fast unsigned integer-to-string function
; using fist and fbstp.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 9-5", 0
fmtStr1 byte "utoStr: Value=%I64u, string=%s"
 byte nl, 0

 .data
buffer byte 30 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; utoStr - Unsigned integer to string.

; Inputs:

; RAX: Unsigned integer to convert.
; RDI: Location to hold string.

; Note: for 64-bit integers, resulting
; string could be as long as 21 bytes
; (including the zero-terminating byte).

Numeric Conversion 505

bigNum qword 1000000000000000000
utoStr proc
 push rcx
 push rdx
 push rdi
 push rax
 sub rsp, 10

; Quick test for zero to handle that special case:

 test rax, rax
 jnz not0
 mov byte ptr [rdi], '0'
 jmp allDone

; The FBSTP instruction supports only 18 digits.
; 64-bit integers can have up to 19 digits.
; Handle that 19th possible digit here:

not0: cmp rax, bigNum
 jb lt19Digits

; The number has 19 digits (which can be 0-9).
; Pull off the 19th digit:

 xor edx, edx
 div bigNum ; 19th digit in AL
 mov [rsp + 10], rdx ; Remainder
 or al, '0'
 mov [rdi], al
 inc rdi

; The number to convert is nonzero.
; Use BCD load and store to convert
; the integer to BCD:

lt19Digits: fild qword ptr [rsp + 10]
 fbstp tbyte ptr [rsp]

; Begin by skipping over leading zeros in
; the BCD value (max 19 digits, so the most
; significant digit will be in the LO nibble
; of DH).

 mov dx, [rsp + 8]
 mov rax, [rsp]
 mov ecx, 20
 jmp testFor0

Skip0s: shld rdx, rax, 4
 shl rax, 4
testFor0: dec ecx ; Count digits we've processed
 test dh, 0fh ; Because the number is not 0
 jz Skip0s ; this always terminates

506 Chapter 9

; At this point the code has encountered
; the first nonzero digit. Convert the remaining
; digits to a string:

cnvrtStr: and dh, 0fh
 or dh, '0'
 mov [rdi], dh
 inc rdi
 mov dh, 0
 shld rdx, rax, 4
 shl rax, 4
 dec ecx
 jnz cnvrtStr

; Zero-terminate the string and return:

allDone: mov byte ptr [rdi], 0
 add rsp, 10
 pop rax
 pop rdi
 pop rdx
 pop rcx
 ret
utoStr endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer
 mov rax, 9123456789012345678
 call utoStr

 lea rcx, fmtStr1
 mov rdx, 9123456789012345678
 lea r8, buffer
 call printf

 leave
 ret ; Returns to caller
asmMain endp
 end

Listing 9-5: A fist and fbstp-based utoStr function

Numeric Conversion 507

Here’s the build command and sample output from this program:

C:\>build listing9-5

C:\>echo off
 Assembling: listing9-5.asm
c.cpp

C:\>listing9-5
Calling Listing 9-5:
utoStr: Value=9123456789012345678, string=9123456789012345678
Listing 9-5 terminated

The program in Listing 9-5 does use a div instruction, but it executes
only once or twice, and only if there are 19 or 20 digits in the number.
Therefore, the execution time of this div instruction will have little overall
impact on the speed of the utoStr function (especially when you consider
how often you actually print 19-digit numbers).

I got the following execution times on a 2.6 GHz circa-2012 Core i7
processor:

•	 Original utoStr: 108 seconds

•	 fist and fbstp implementation: 11 seconds

Clearly, the fist and fbstp implementation is the winner.

9.1.4 Converting Signed Integer Values to Strings
To convert a signed integer value to a string, you first check to see if the
number is negative; if it is, you emit a hyphen (-) character and negate the
value. Then you call the utoStr function to finish the job. Listing 9-6 shows
the relevant code.

N O T E The full Listing 9-6 is available online at https://artofasm.randallhyde.com/.

; itoStr - Signed integer-to-string conversion.

; Inputs:
; RAX - Signed integer to convert.
; RDI - Destination buffer address.

itoStr proc
 push rdi
 push rax
 test rax, rax
 jns notNeg

; Number was negative, emit "-" and negate
; value.

https://artofasm.randallhyde.com/.

508 Chapter 9

 mov byte ptr [rdi], '-'
 inc rdi
 neg rax

; Call utoStr to convert non-negative number:

notNeg: call utoStr
 pop rax
 pop rdi
 ret
itoStr endp

Listing 9-6: Signed integer-to-string conversion

9.1.5 Converting Extended-Precision Unsigned Integers to Strings
For extended-precision output, the only operation through the entire
string-conversion algorithm that requires extended-precision arithmetic is
the divide-by-10 operation. Because we are dividing an extended-precision
value by a value that easily fits into a quad word, we can use the fast (and
easy) extended-precision division algorithm that uses the div instruction
(see “Special Case Form Using div Instruction” in “Extended-Precision
Division” in Chapter 8). Listing 9-7 implements a 128-bit decimal output
routine utilizing this technique.

; Listing 9-7

; Extended-precision numeric unsigned
; integer-to-string function.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 9-7", 0
fmtStr1 byte "otoStr(0): string=%s", nl, 0
fmtStr2 byte "otoStr(1234567890): string=%s", nl, 0
fmtStr3 byte "otoStr(2147483648): string=%s", nl, 0
fmtStr4 byte "otoStr(4294967296): string=%s", nl, 0
fmtStr5 byte "otoStr(FFF...FFFF): string=%s", nl, 0

 .data
buffer byte 40 dup (?)

b0 oword 0
b1 oword 1234567890
b2 oword 2147483648
b3 oword 4294967296

; Largest oword value
; (decimal=340,282,366,920,938,463,463,374,607,431,768,211,455):

b4 oword 0FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFh

Numeric Conversion 509

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; DivideBy10 - Divides "divisor" by 10 using fast
; extended-precision division algorithm
; that employs the div instruction.

; Returns quotient in "quotient."
; Returns remainder in RAX.
; Trashes RDX.

; RCX - Points at oword dividend and location to
; receive quotient.

ten qword 10

DivideBy10 proc
parm equ <[rcx]>

 xor edx, edx ; Zero-extends!
 mov rax, parm[8]
 div ten
 mov parm[8], rax

 mov rax, parm
 div ten
 mov parm, rax
 mov eax, edx ; Remainder (always "0" to "9"!)
 ret
DivideBy10 endp

; Recursive version of otoStr.
; A separate "shell" procedure calls this so that
; this code does not have to preserve all the registers
; it uses (and DivideBy10 uses) on each recursive call.

; On entry:
; Stack - Contains oword in/out parameter (dividend in/quotient out).
; RDI - Contains location to place output string.

; Note: this function must clean up stack (parameters)
; on return.

rcrsvOtoStr proc
value equ <[rbp + 16]>
remainder equ <[rbp - 8]>
 push rbp

510 Chapter 9

 mov rbp, rsp
 sub rsp, 8
 lea rcx, value
 call DivideBy10
 mov remainder, al

; If the quotient (left in value) is not 0, recursively
; call this routine to output the HO digits.

 mov rax, value
 or rax, value[8]
 jz allDone

 mov rax, value[8]
 push rax
 mov rax, value
 push rax
 call rcrsvOtoStr

allDone: mov al, remainder
 or al, '0'
 mov [rdi], al
 inc rdi
 leave
 ret 16 ; Remove parms from stack
rcrsvOtoStr endp

; Nonrecursive shell to the above routine so we don't bother
; saving all the registers on each recursive call.

; On entry:

; RDX:RAX - Contains oword to print.
; RDI - Buffer to hold string (at least 40 bytes).

otostr proc

 push rax
 push rcx
 push rdx
 push rdi

; Special-case zero:

 test rax, rax
 jnz not0
 test rdx, rdx
 jnz not0
 mov byte ptr [rdi], '0'
 inc rdi
 jmp allDone

not0: push rdx

Numeric Conversion 511

 push rax
 call rcrsvOtoStr

; Zero-terminate string before leaving:

allDone: mov byte ptr [rdi], 0

 pop rdi
 pop rdx
 pop rcx
 pop rax
 ret

otostr endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

; Because all the (x)toStr functions preserve RDI,
; we need to do the following only once:

 lea rdi, buffer

; Convert b0 to a string and print the result:

 mov rax, qword ptr b0
 mov rdx, qword ptr b0[8]
 call otostr

 lea rcx, fmtStr1
 lea rdx, buffer
 call printf

; Convert b1 to a string and print the result:

 mov rax, qword ptr b1
 mov rdx, qword ptr b1[8]
 call otostr

 lea rcx, fmtStr2
 lea rdx, buffer
 call printf

; Convert b2 to a string and print the result:

 mov rax, qword ptr b2
 mov rdx, qword ptr b2[8]

512 Chapter 9

 call otostr

 lea rcx, fmtStr3
 lea rdx, buffer
 call printf

; Convert b3 to a string and print the result:

 mov rax, qword ptr b3
 mov rdx, qword ptr b3[8]
 call otostr

 lea rcx, fmtStr4
 lea rdx, buffer
 call printf

; Convert b4 to a string and print the result:

 mov rax, qword ptr b4
 mov rdx, qword ptr b4[8]
 call otostr

 lea rcx, fmtStr5
 lea rdx, buffer
 call printf

 leave
 pop rdi
 ret ; Returns to caller

asmMain endp
 end

Listing 9-7: 128-bit extended-precision decimal output routine

Here’s the build command and program output:

C:\>build listing9-7

C:\>echo off
 Assembling: listing9-7.asm
c.cpp

C:\>listing9-7
Calling Listing 9-7:
otoStr(0): string=0
otoStr(1234567890): string=1234567890
otoStr(2147483648): string=2147483648
otoStr(4294967296): string=4294967296
otoStr(FFF...FFFF):
 string=340282366920938463463374607431768211455
Listing 9-7 terminated

Numeric Conversion 513

Sadly, we cannot use the fbstp instruction to improve the performance
of this algorithm as fbstp is limited to 80-bit BCD values.

9.1.6 Converting Extended-Precision Signed Decimal Values to Strings
Once you have an extended-precision unsigned decimal output routine,
writing an extended-precision signed decimal output routine is easy. The
basic algorithm is similar to that for 64-bit integers given earlier:

1. Check the sign of the number.

2. If it is positive, call the unsigned output routine to print it. If the num-
ber is negative, print a minus sign. Then negate the number and call
the unsigned output routine to print it.

To check the sign of an extended-precision integer, test the HO bit of
the number. To negate a large value, the best solution is probably to sub-
tract that value from 0. Listing 9-8 is a quick version of i128toStr that uses
the otoStr routine from the previous section.

N O T E The full Listing 9-8 is available online at https://artofasm.randallhyde.com/.

; i128toStr - Converts a 128-bit signed integer to a string.

; Inputs:
; RDX:RAX - Signed integer to convert.
; RDI - Pointer to buffer to receive string.

i128toStr proc
 push rax
 push rdx
 push rdi

 test rdx, rdx ; Is number negative?
 jns notNeg

 mov byte ptr [rdi], '-'
 inc rdi
 neg rdx ; 128-bit negation
 neg rax
 sbb rdx, 0

notNeg: call otostr
 pop rdi
 pop rdx
 pop rax
 ret
i128toStr endp

Listing 9-8: 128-bit signed integer-to-string conversion

https://artofasm.randallhyde.com/

514 Chapter 9

9.1.7 Formatted Conversions
The code in the previous sections converted signed and unsigned integers
to strings by using the minimum number of necessary character positions.
To create nicely formatted tables of values, you will need to write functions
that provide appropriate padding in front of the string of digits before
actually emitting the digits. Once you have the “unformatted” versions of
these routines, implementing the formatted versions is easy.

The first step is to write iSize and uSize routines that compute the
minimum number of character positions needed to display the value. One
algorithm to accomplish this is similar to the numeric string conversion
routines. In fact, the only difference is that you initialize a counter to 0
upon entry into the routine (for example, the nonrecursive shell routine),
and you increment this counter rather than outputting a digit on each
recursive call. (Don’t forget to increment the counter inside iSize if the
number is negative; you must allow for the output of the minus sign.) After
the calculation is complete, these routines should return the size of the
operand in the EAX register.

The only problem is that such a conversion scheme is slow (using recur-
sion and div is not very fast). As it turns out, a brute-force version that simply
compares the integer value against 1, 10, 100, 1000, and so on, works much
faster. Here’s the code that will do this:

; uSize - Determines how many character positions it will take
; to hold a 64-bit numeric-to-string conversion.

; Input:
; RAX - Number to check.

; Returns:
; RAX - Number of character positions required.

dig2 qword 10
dig3 qword 100
dig4 qword 1000
dig5 qword 10000
dig6 qword 100000
dig7 qword 1000000
dig8 qword 10000000
dig9 qword 100000000
dig10 qword 1000000000
dig11 qword 10000000000
dig12 qword 100000000000
dig13 qword 1000000000000
dig14 qword 10000000000000
dig15 qword 100000000000000
dig16 qword 1000000000000000
dig17 qword 10000000000000000
dig18 qword 100000000000000000
dig19 qword 1000000000000000000
dig20 qword 10000000000000000000

Numeric Conversion 515

uSize proc
 push rdx
 cmp rax, dig10
 jae ge10
 cmp rax, dig5
 jae ge5
 mov edx, 4
 cmp rax, dig4
 jae allDone
 dec edx
 cmp rax, dig3
 jae allDone
 dec edx
 cmp rax, dig2
 jae allDone
 dec edx
 jmp allDone

ge5: mov edx, 9
 cmp rax, dig9
 jae allDone
 dec edx
 cmp rax, dig8
 jae allDone
 dec edx
 cmp rax, dig7
 jae allDone
 dec edx
 cmp rax, dig6
 jae allDone
 dec edx ; Must be 5
 jmp allDone

ge10: cmp rax, dig14
 jae ge14
 mov edx, 13
 cmp rax, dig13
 jae allDone
 dec edx
 cmp rax, dig12
 jae allDone
 dec edx
 cmp rax, dig11
 jae allDone
 dec edx ; Must be 10
 jmp allDone

ge14: mov edx, 20
 cmp rax, dig20
 jae allDone
 dec edx
 cmp rax, dig19
 jae allDone
 dec edx
 cmp rax, dig18

516 Chapter 9

 jae allDone
 dec edx
 cmp rax, dig17
 jae allDone
 dec edx
 cmp rax, dig16
 jae allDone
 dec edx
 cmp rax, dig15
 jae allDone
 dec edx ; Must be 14

allDone: mov rax, rdx ; Return digit count
 pop rdx
 ret
uSize endp

For signed integers, you can use the following code:

; iSize - Determines the number of print positions required by
; a 64-bit signed integer.

iSize proc
 test rax, rax
 js isNeg

 jmp uSize ; Effectively a call and ret

; If the number is negative, negate it, call uSize,
; and then bump the size up by 1 (for the "-" character):

isNeg: neg rax
 call uSize
 inc rax
 ret
iSize endp

For extended-precision size operations, the brute-force approach
quickly becomes unwieldy (64 bits is bad enough). The best solution is to
divide your extended-precision value by a power of 10 (say, 1e+18). This will
reduce the size of the number by 18 digits. Repeat this process as long as
the quotient is greater than 64 bits (keeping track of the number of times
you’ve divided the number by 1e+18). When the quotient fits into 64 bits
(19 or 20 digits), call the 64-bit uSize function and add in the number of
digits you eliminated with the division operation (18 for each division by
1e+18). The implementation is left to you on this one . . .

Once you have the iSize and uSize routines, writing the formatted out-
put routines, utoStrSize or itoStrSize, is easy. On initial entry, these routines
call the corresponding iSize or uSize routine to determine the number of
character positions for the number. If the value that the iSize or uSize routine
returns is greater than the value of the minimum size parameter (passed
into utoStrSize or itoStrSize), no other formatting is necessary. If the value

Numeric Conversion 517

of the parameter size is greater than the value iSize or uSize returns, the
program must compute the difference between these two values and emit
that many spaces (or other filler characters) to the output string before the
numeric conversion. Listing 9-9 shows the utoStrSize and itoStrSize functions.

N O T E The full Listing 9-9 is available online at https://artofasm.randallhyde.com/.
The following listing omits everything except the actual utoStrSize and itoStrSize
functions.

; utoStrSize - Converts an unsigned integer to a formatted string
; having at least "minDigits" character positions.
; If the actual number of digits is smaller than
; "minDigits" then this procedure inserts enough
; "pad" characters to extend the size of the string.

; Inputs:
; RAX - Number to convert to string.
; CL - minDigits (minimum print positions).
; CH - Padding character.
; RDI - Buffer pointer for output string.

utoStrSize proc
 push rcx
 push rdi
 push rax

 call uSize ; Get actual number of digits
 sub cl, al ; >= the minimum size?
 jbe justConvert

; If the minimum size is greater than the number of actual
; digits, we need to emit padding characters here.

; Note that this code used "sub" rather than "cmp" above.
; As a result, CL now contains the number of padding
; characters to emit to the string (CL is always positive
; at this point as negative and zero results would have
; branched to justConvert).

padLoop: mov [rdi], ch
 inc rdi
 dec cl
 jne padLoop

; Okay, any necessary padding characters have already been
; added to the string. Call utoStr to convert the number
; to a string and append to the buffer:

justConvert:
 mov rax, [rsp] ; Retrieve original value
 call utoStr

 pop rax
 pop rdi

https://artofasm.randallhyde.com/

518 Chapter 9

 pop rcx
 ret
utoStrSize endp

; itoStrSize - Converts a signed integer to a formatted string
; having at least "minDigits" character positions.
; If the actual number of digits is smaller than
; "minDigits" then this procedure inserts enough
; "pad" characters to extend the size of the string.

; Inputs:
; RAX - Number to convert to string.
; CL - minDigits (minimum print positions).
; CH - Padding character.
; RDI - Buffer pointer for output string.

itoStrSize proc
 push rcx
 push rdi
 push rax

 call iSize ; Get actual number of digits
 sub cl, al ; >= the minimum size?
 jbe justConvert

; If the minimum size is greater than the number of actual
; digits, we need to emit padding characters here.

; Note that this code used "sub" rather than "cmp" above.
; As a result, CL now contains the number of padding
; characters to emit to the string (CL is always positive
; at this point as negative and zero results would have
; branched to justConvert).

padLoop: mov [rdi], ch
 inc rdi
 dec cl
 jne padLoop

; Okay, any necessary padding characters have already been
; added to the string. Call utoStr to convert the number
; to a string and append to the buffer:

justConvert:
 mov rax, [rsp] ; Retrieve original value
 call itoStr

 pop rax
 pop rdi
 pop rcx
 ret
itoStrSize endp

Listing 9-9: Formatted integer-to-string conversion functions

Numeric Conversion 519

9.1.8 Converting Floating-Point Values to Strings
The code appearing thus far in this chapter has dealt with converting inte-
ger numeric values to character strings (typically for output to the user).
Converting floating-point values to a string is just as important. This section
(and its subsections) covers that conversion.

Floating-point values can be converted to strings in one of two forms:

•	 Decimal notation conversion (for example, ± xxx.yyy format)

•	 Exponential (or scientific) notation conversion (for example,
± x.yyyyye ± zz format)

Regardless of the final output format, two distinct operations are needed
to convert a value in floating-point form to a character string. First, you must
convert the mantissa to an appropriate string of digits. Second, you must con-
vert the exponent to a string of digits.

However, this isn’t a simple case of converting two integer values to
a decimal string and concatenating them (with an e between the man-
tissa and exponent). First of all, the mantissa is not an integer value: it is
a fixed-point fractional binary value. Simply treating it as an n-bit binary
value (where n is the number of mantissa bits) will almost always result in
an incorrect conversion. Second, while the exponent is, more or less, an
integer value,1 it represents a power of 2, not a power of 10. Displaying that
power of 2 as an integer value is not appropriate for decimal floating-point
representation. Dealing with these two issues (fractional mantissa and
binary exponent) is the major complication associated with converting a
floating-point value to a string.

Though there are three floating-point formats on the x86-64—
single-precision (32-bit real4), double-precision (64-bit real8), and extended-
precision (80-bit real10)—the x87 FPU automatically converts the real4 and
real8 formats to real10 upon loading the value into the FPU. Therefore, by
using the x87 FPU for all floating-point arithmetic during the conversion, all
we need to do is write code to convert real10 values into string form.

real10 floating-point values have a 64-bit mantissa. This is not a 64-bit inte-
ger. Instead, those 64 bits represent a value between 0 and slightly less than 2.
(See “IEEE Floating-Point Formats” in Chapter 2 for more details on the IEEE
80-bit floating-point format.) Bit 63 is usually 1. If bit 63 is 0, the mantissa is
denormalized, representing numbers between 0 and about 3.65 × 10-4951.

To output the mantissa in decimal form with approximately 18 digits
of precision, the trick is to successively multiply or divide the floating-point
value by 10 until the number is between 1e+18 and just less than 1e+19
(that is, 9.9999 . . . e+18). Once the exponent is in the appropriate range,
the mantissa bits form an 18-digit integer value (no fractional part), which
can be converted to a decimal string to obtain the 18 digits that make up
the mantissa value (using our friend, the fbstp instruction). In practice,

1. It’s actually a biased-exponent value. However, that’s easy to convert to a signed binary
integer.

520 Chapter 9

you would multiply or divide by large powers of 10 to get the value into the
range 1e+18 to 1e+19. This is faster (fewer floating-point operations) and
more accurate (also because of fewer floating-point operations).

N O T E As discussed in “Converting Unsigned Decimal Values to Strings” on page 500, a
64-bit integer can produce slightly more than 18 significant digits (the maximum
unsigned 64-bit value is 18,446,744,073,709,551,615, or 20 digits), but the fbstp
instruction produces only an 18-digit result. Also, the sequence of floating-point oper-
ations that divide or multiply the value by 10 to get the number into the range 1e+18
to 1e+19 will introduce a small amount of error such that the LO digits produced by
fbstp won’t be completely accurate. Therefore, limiting the output to 18 significant dig-
its is reasonable.2

To convert the exponent to an appropriate decimal string, you need to
track the number of multiplications or divisions by 10. For each division by
10, add 1 to the decimal exponent value; for each multiplication by 10, sub-
tract 1 from the decimal exponent value. At the end of the process, subtract
18 from the decimal exponent value (as this process produces a value whose
exponent is 18) and convert the decimal exponent value to a string.

9.1.8.1 Converting Floating-Point Exponents

To convert the exponent to a string of decimal digits, use the following
algorithm:

1. If the number is 0.0, directly produce the mantissa output string of
“ 000000000000000000” (notice the space at the beginning of the
string).

2. Initialize the decimal exponent to 0.

3. If the exponent is negative, emit a hyphen (-) character and negate the
value; if it is positive, emit a space character.

4. If the value of the (possibly negated) exponent is less than 1.0, go to
step 8.

5. Positive exponents: Compare the number against successively smaller pow-
ers of 10, starting with 10+4096, then 10+2048, then 10+1024, then . . . , then
100. After each comparison, if the current value is greater than the power
of 10, divide by that power of 10 and add the power of 10 exponent
(4096, 2048, . . . , 0) to the decimal exponent value.

6. Repeat step 5 until the exponent is 0 (that is, the value is in the range
1.0 ≤ value < 10.0).

7. Go to step 10.

8. Negative exponents: Compare the number against successful larger pow-
ers of 10 starting with 10-4096, then 10-2048, then 10-1024, then . . . , then
100. After each comparison, if the current value is less than the power

2. Most programs deal with 64-bit double-precision floating-point values that have around
16 digits of precision, so the 18-digit limitation is more than sufficient when dealing with
double-precision values.

Numeric Conversion 521

of 10, divide by that power of 10 and subtract the power of 10 exponent
(4096, 2048, . . . , 0) from the decimal exponent value.

9. Repeat step 8 until the exponent is 0 (that is, the value is in the range
1.0 ≤ value < 10.0).

10. Certain legitimate floating-point values are too large to represent with
18 digits (for example, 9,223,372,036,854,775,807 fits into 63 bits but
requires more than 18 significant digits to represent). Specifically, values
in the range 403A_DE0B_6B3A_763F_FF01h to 403A_DE0B_6B3A
_763F_FFFFh are greater than 999,999,999,999,999,999 but still fit
within a 64-bit mantissa. The fbstp instruction will not be able to convert
these values to a packed BCD value.

To resolve this issue, the code should explicitly test for values in this range
and round them up to 1e+17 (and increment the decimal exponent value,
should this happen). In some cases, values could be greater than 1e+19. In
such instances, one last division by 10.0 will solve the problem.

11. At this point, the floating-point value is a reasonable number that the
fbstp instruction can convert to a packed BCD value, so the conversion
function uses fbstp to do this conversion.

12. Finally, convert the packed BCD value to a string of ASCII characters
using an operation converting numeric values to hexadecimal (BCD) to
strings (see “Converting Unsigned Decimal Values to Strings” on page 500
and Listing 9-5).

Listing 9-10 provides the (abbreviated) code and data to implement
the mantissa-to-string conversion function, FPDigits. FPDigits converts the
mantissa to a sequence of 18 digits and returns the decimal exponent value
in the EAX register. It doesn’t place a decimal point anywhere in the string,
nor does it process the exponent at all.

N O T E The full Listing 9-10 is available online at https://artofasm.randallhyde.com/.

 .data

 align 4

; TenTo17 - Holds the value 1.0e+17. Used to get a floating-
; point number into the range x.xxxxxxxxxxxxe+17.

TenTo17 real10 1.0e+17

; PotTblN - Hold powers of 10 raised to negative powers of 2.

PotTblN real10 1.0,
 1.0e-1,
 1.0e-2,
 1.0e-4,
 1.0e-8,
 1.0e-16,
 1.0e-32,

https://artofasm.randallhyde.com/.

522 Chapter 9

 1.0e-64,
 1.0e-128,
 1.0e-256,
 1.0e-512,
 1.0e-1024,
 1.0e-2048,
 1.0e-4096

; PotTblP - Hold powers of 10 raised to positive powers of 2.

 align 4
PotTblP real10 1.0,
 1.0e+1,
 1.0e+2,
 1.0e+4,
 1.0e+8,
 1.0e+16,
 1.0e+32,
 1.0e+64,
 1.0e+128,
 1.0e+256,
 1.0e+512,
 1.0e+1024,
 1.0e+2048,
 1.0e+4096

; ExpTbl - Integer equivalents to the powers
; in the tables above.

 align 4
ExpTab dword 0,
 1,
 2,
 4,
 8,
 16,
 32,
 64,
 128,
 256,
 512,
 1024,
 2048,
 4096
 .
 .
 .

; FPDigits - Used to convert a floating-point number on the FPU
; stack (ST(0)) to a string of digits.

Numeric Conversion 523

; Entry Conditions:

; ST(0) - 80-bit number to convert.
; Note: code requires two free FPU stack elements.
; RDI - Points at array of at least 18 bytes where
; FPDigits stores the output string.

; Exit Conditions:

; RDI - Converted digits are found here.
; RAX - Contains exponent of the number.
; CL - Contains the sign of the mantissa (" " or "-").
; ST(0) - Popped from stack.

P10TblN equ <real10 ptr [r8]>
P10TblP equ <real10 ptr [r9]>
xTab equ <dword ptr [r10]>

FPDigits proc
 push rbx
 push rdx
 push rsi
 push r8
 push r9
 push r10

; Special case if the number is zero.

 ftst
 fstsw ax
 sahf
 jnz fpdNotZero

; The number is zero, output it as a special case.

 fstp tbyte ptr [rdi] ; Pop value off FPU stack
 mov rax, "00000000"
 mov [rdi], rax
 mov [rdi + 8], rax
 mov [rdi + 16], ax
 add rdi, 18
 xor edx, edx ; Return an exponent of 0
 mov bl, ' ' ; Sign is positive
 jmp fpdDone

fpdNotZero:

; If the number is not zero, then fix the sign of the value.

 mov bl, ' ' ; Assume it's positive
 jnc WasPositive ; Flags set from sahf above

524 Chapter 9

 fabs ; Deal only with positive numbers
 mov bl, '-' ; Set the sign return result

WasPositive:

; Get the number between 1 and 10 so we can figure out
; what the exponent is. Begin by checking to see if we have
; a positive or negative exponent.

 xor edx, edx ; Initialize exponent to 0
 fld1
 fcomip st(0), st(1)
 jbe PosExp

; We've got a value between zero and one, exclusive,
; at this point. That means this number has a negative
; exponent. Multiply the number by an appropriate power
; of 10 until we get it in the range 1 through 10.

 mov esi, sizeof PotTblN ; After last element
 mov ecx, sizeof ExpTab ; Ditto
 lea r8, PotTblN
 lea r9, PotTblP
 lea r10, ExpTab

CmpNegExp:
 sub esi, 10 ; Move to previous element
 sub ecx, 4 ; Zeroes HO bytes
 jz test1

 fld P10TblN[rsi * 1] ; Get current power of 10
 fcomip st(0), st(1) ; Compare against NOS
 jbe CmpNegExp ; While Table >= value

 mov eax, xTab[rcx * 1]
 test eax, eax
 jz didAllDigits

 sub edx, eax
 fld P10TblP[rsi * 1]
 fmulp
 jmp CmpNegExp

; If the remainder is *exactly* 1.0, then we can branch
; on to InRange1_10; otherwise, we still have to multiply
; by 10.0 because we've overshot the mark a bit.

test1:
 fld1
 fcomip st(0), st(1)
 je InRange1_10

didAllDigits:

Numeric Conversion 525

; If we get to this point, then we've indexed through
; all the elements in the PotTblN and it's time to stop.

 fld P10TblP[10] ; 10.0
 fmulp
 dec edx
 jmp InRange1_10

; At this point, we've got a number that is 1 or greater.
; Once again, our task is to get the value between 1 and 10.

PosExp:

 mov esi, sizeof PotTblP ; After last element
 mov ecx, sizeof ExpTab ; Ditto
 lea r9, PotTblP
 lea r10, ExpTab

CmpPosExp:
 sub esi, 10 ; Move back 1 element in
 sub ecx, 4 ; PotTblP and ExpTbl
 fld P10TblP[rsi * 1]
 fcomip st(0), st(1)
 ja CmpPosExp;
 mov eax, xTab[rcx * 1]
 test eax, eax
 jz InRange1_10

 add edx, eax
 fld P10TblP[rsi * 1]
 fdivp
 jmp CmpPosExp

InRange1_10:

; Okay, at this point the number is in the range 1 <= x < 10.
; Let's multiply it by 1e+18 to put the most significant digit
; into the 18th print position. Then convert the result to
; a BCD value and store away in memory.

 sub rsp, 24 ; Make room for BCD result
 fld TenTo17
 fmulp

; We need to check the floating-point result to make sure it
; is not outside the range we can legally convert to a BCD
; value.

; Illegal values will be in the range:

; >999,999,999,999,999,999 ... <1,000,000,000,000,000,000
; $403a_de0b_6b3a_763f_ff01 ... $403a_de0b_6b3a_763f_ffff

526 Chapter 9

; Should one of these values appear, round the result up to
; $403a_de0b_6b3a_7640_0000:

 fstp real10 ptr [rsp]
 cmp word ptr [rsp + 8], 403ah
 jne noRounding

 cmp dword ptr [rsp + 4], 0de0b6b3ah
 jne noRounding

 mov eax, [rsp]
 cmp eax, 763fff01h
 jb noRounding;
 cmp eax, 76400000h
 jae TooBig

 fld TenTo17
 inc edx ; Inc exp as this is really 10^18
 jmp didRound

; If we get down here, there were problems getting the
; value in the range 1 <= x <= 10 above and we've got a value
; that is 10e+18 or slightly larger. We need to compensate for
; that here.

TooBig:
 lea r9, PotTblP
 fld real10 ptr [rsp]
 fld P10TblP[10] ; /10
 fdivp
 inc edx ; Adjust exp due to fdiv
 jmp didRound

noRounding:
 fld real10 ptr [rsp]
didRound:
 fbstp tbyte ptr [rsp]

; The data on the stack contains 18 BCD digits. Convert these
; to ASCII characters and store them at the destination location
; pointed at by EDI.

 mov ecx, 8
repeatLp:
 mov al, byte ptr [rsp + rcx]
 shr al, 4 ; Always in the
 or al, '0' ; range "0" to "9"
 mov [rdi], al
 inc rdi

 mov al, byte ptr [rsp + rcx]
 and al, 0fh

Numeric Conversion 527

 or al, '0'
 mov [rdi], al
 inc rdi

 dec ecx
 jns repeatLp

 add rsp, 24 ; Remove BCD data from stack

fpdDone:

 mov eax, edx ; Return exponent in EAX
 mov cl, bl ; Return sign in CL
 pop r10
 pop r9
 pop r8
 pop rsi
 pop rdx
 pop rbx
 ret

FPDigits endp

Listing 9-10: Floating-point mantissa-to-string conversion

9.1.8.2 Converting a Floating-Point Value to a Decimal String

The FPDigits function does most of the work needed to convert a floating-
point value to a string in decimal notation: it converts the mantissa to
a string of digits and provides the exponent in a decimal integer form.
Although the decimal format does not explicitly display the exponent value,
a procedure that converts the floating-point value to a decimal string will
need the (decimal) exponent value to determine where to put the decimal
point. Along with a few additional arguments that the caller supplies, it’s
relatively easy to take the output from FPDigits and convert it to an appro-
priately formatted decimal string of digits.

The final function to write is r10ToStr, the main function to call when
converting a real10 value to a string. This is a formatted output function
that translates the binary floating-point value by using standard formatting
options to control the output width, the number of positions after the deci-
mal point, and any fill characters to write where digits don’t appear (usually,
this is a space). The r10ToStr function call will need the following arguments:

r10

The real10 value to convert to a string (if r10 is a real4 or real8 value, the
FPU will automatically convert it to a real10 value when loading it into
the FPU).

528 Chapter 9

fWidth

The field width. This is the total number of character positions that the
string will consume. This count includes room for a sign (which could be
a space or a hyphen) but does not include space for a zero-terminating
byte for the string. The field width must be greater than 0 and less than
or equal to 1024.

decDigits

The number of digits to the right of the decimal point. This value must
be at least 3 less than fWidth because there must be room for a sign
character, at least one digit to the left of the decimal point, and the
decimal point. If this value is 0, the conversion routine will not emit a
decimal point to the string. This is an unsigned value; if the caller sup-
plies a negative number here, the procedure will treat it as a very large
positive value (and will return an error).

fill

The fill character. If the numeric string that r10ToStr produces uses fewer
characters than fWidth, the procedure will right-justify the numeric value
in the output string and fill the leftmost characters with this fill charac-
ter (which is usually a space character).

buffer

A buffer to receive the numeric string.

maxLength

The size of the buffer (including the zero-terminating byte). If the conver-
sion routine attempts to create a string larger than this value (meaning
fWidth is greater than or equal to this value), then it returns an error.

The string output operation has only three real tasks: properly position
the decimal point (if present), copy only those digits specified by the fWidth
value, and round the truncated digits into the output digits.

The rounding operation is the most interesting part of the procedure.
The r10ToStr function converts the real10 value to ASCII characters before
rounding because it’s easier to round the result after the conversion. So the
rounding operation consists of adding 5 to the (ASCII) digit just beyond the
least significant displayed digit. If this sum exceeds (the character) 9, the
rounding algorithm has to add 1 to the least significant displayed digit. If that
sum exceeds 9, the algorithm must subtract (the value) 10 from the character
and add 1 to the next least significant digit. This process repeats until reach-
ing the most significant digit or until there is no carry out of a given digit
(that is, the sum does not exceed 9). In the (rare) case that rounding bubbles
through all the digits (for example, the string is “999999 . . . 9”), then the
rounding algorithm has to replace the string with “10000 . . . 0” and incre-
ment the decimal exponent by 1.

Numeric Conversion 529

The algorithm for emitting the string differs for values with negative
and non-negative exponents. Negative exponents are probably the easiest to
process. Here’s the algorithm for emitting values with a negative exponent:

1. The function begins by adding 3 to decDigits.

2. If decDigits is less than 4, the function sets it to 4 as a default value.3

3. If decDigits is greater than fWidth, the function emits fWidth "#" charac-
ters to the string and returns.

4. If decDigits is less than fWidth, then output (fWidth - decDigits) padding
characters (fill) to the output string.

5. If r10 was negative, emit -0. to the string; otherwise, emit 0. to the
string (with a leading space in front of the 0 if non-negative).

6. Next, output the digits from the converted number. If the field width is
less than 21 (18 digits plus the 3 leading 0. or -0. characters), then the
function outputs the specified (fWidth) characters from the converted
digit string. If the width is greater than 21, the function emits all
18 digits from the converted digits and follows it by however many 0
characters are necessary to fill out the field width.

7. Finally, the function zero-terminates the string and returns.

If the exponent is positive or 0, the conversion is slightly more compli-
cated. First, the code has to determine the number of character positions
required by the result. This is computed as follows:

exponent + 2 + decDigits + (0 if decDigits is 0, 1 otherwise)

The exponent value is the number of digits to the left of the decimal
point (minus 1). The 2 component is present because there is always a posi-
tion for the sign character (space or hyphen) and there is always at least
one digit to the left of the decimal point. The decDigits component adds in
the number of digits to appear after the decimal point. Finally, this equa-
tion adds in 1 for the dot character if a decimal point is present (that is, if
decDigits is greater than 0).

Once the required width is computed, the function compares this
value against the fWidth value the caller supplies. If the computed value is
greater than fWidth, the function emits fWidth “#” characters and returns.
Otherwise, it can emit the digits to the output string.

As happens with negative exponents, the code begins by determining
whether the number will consume all the character positions in the output
string. If not, it computes the difference between fWidth and the actual num-
ber of characters and outputs the fill character to pad the numeric string.
Next, it outputs a space or a hyphen character (depending on the sign of the
original value). Then the function outputs the digits to the left of the decimal
point (by counting down the exponent value). If the decDigits value is nonzero,
the function emits the dot character and any digits remaining in the digit

3. This is because fractional values (those with negative exponents) always have a leading - or
space character, a 0, a decimal point (.), and at least one digit, for a total of four digits.

530 Chapter 9

string that FPDigits produced. If the function ever exceeds the 18 digits that
FPDigits produces (either before or after the decimal point), then the func-
tion fills the remaining positions with the 0 character. Finally, the function
emits the zero-terminating byte for the string and returns to the caller.

Listing 9-11 provides the source code for the r10ToStr function.

N O T E The full Listing 9-11 is available online at https://artofasm.randallhyde.com/.
For brevity, the following listing only provides the actual r10ToStr function.

; r10ToStr - Converts a real10 floating-point number to the
; corresponding string of digits. Note that this
; function always emits the string using decimal
; notation. For scientific notation, use the e10ToBuf
; routine.

; On Entry:

; r10 - real10 value to convert.
; Passed in ST(0).

; fWidth - Field width for the number (note that this
; is an *exact* field width, not a minimum
; field width).
; Passed in EAX (RAX).

; decimalpts - # of digits to display after the decimal pt.
; Passed in EDX (RDX).

; fill - Padding character if the number is smaller
; than the specified field width.
; Passed in CL (RCX).

; buffer - Stores the resulting characters in
; this string.
; Address passed in RDI.

; maxLength - Maximum string length.
; Passed in R8d (R8).

; On Exit:

; Buffer contains the newly formatted string. If the
; formatted value does not fit in the width specified,
; r10ToStr will store "#" characters into this string.

; Carry - Clear if success; set if an exception occurs.
; If width is larger than the maximum length of
; the string specified by buffer, this routine
; will return with the carry set and RAX = -1,
; -2, or -3.

https://artofasm.randallhyde.com/

Numeric Conversion 531

r10ToStr proc

; Local variables:

fWidth equ <dword ptr [rbp - 8]> ; RAX: uns32
decDigits equ <dword ptr [rbp - 16]> ; RDX: uns32
fill equ <[rbp - 24]> ; CL: char
bufPtr equ <[rbp - 32]> ; RDI: pointer
exponent equ <dword ptr [rbp - 40]> ; uns32
sign equ <byte ptr [rbp - 48]> ; char
digits equ <byte ptr [rbp - 128]> ; char[80]
maxWidth = 64 ; Must be smaller than 80 - 2

 push rdi
 push rbx
 push rcx
 push rdx
 push rsi
 push rax
 push rbp
 mov rbp, rsp
 sub rsp, 128 ; 128 bytes of local vars

; First, make sure the number will fit into the
; specified string.

 cmp eax, r8d ; R8d = max length
 jae strOverflow

; If the width is zero, raise an exception:

 test eax, eax
 jz voor ; Value out of range

 mov bufPtr, rdi
 mov qword ptr decDigits, rdx
 mov fill, rcx
 mov qword ptr fWidth, rax

; If the width is too big, raise an exception:

 cmp eax, maxWidth
 ja badWidth

; Okay, do the conversion.
; Begin by processing the mantissa digits:

 lea rdi, digits ; Store result here
 call FPDigits ; Convert r80 to string
 mov exponent, eax ; Save exp result
 mov sign, cl ; Save mantissa sign char

532 Chapter 9

; Round the string of digits to the number of significant
; digits we want to display for this number:

 cmp eax, 17
 jl dontForceWidthZero

 xor rax, rax ; If the exp is negative or
 ; too large, set width to 0
dontForceWidthZero:
 mov rbx, rax ; Really just 8 bits
 add ebx, decDigits ; Compute rounding position
 cmp ebx, 17
 jge dontRound ; Don't bother if a big #

; To round the value to the number of significant digits,
; go to the digit just beyond the last one we are considering
; (EAX currently contains the number of decimal positions)
; and add 5 to that digit. Propagate any overflow into the
; remaining digit positions.

 inc ebx ; Index + 1 of last sig digit
 mov al, digits[rbx * 1] ; Get that digit
 add al, 5 ; Round (for example, +0.5)
 cmp al, '9'
 jbe dontRound

 mov digits[rbx * 1], '0' + 10 ; Force to zero

whileDigitGT9: ; (See sub 10 below)
 sub digits[rbx * 1], 10 ; Sub out overflow,
 dec ebx ; carry, into prev
 js hitFirstDigit; ; digit (until 1st
 ; digit in the #)
 inc digits[rbx * 1]
 cmp digits[rbx], '9' ; Overflow if > "9"
 ja whileDigitGT9
 jmp dontRound

hitFirstDigit:

; If we get to this point, then we've hit the first
; digit in the number. So we've got to shift all
; the characters down one position in the string of
; bytes and put a "1" in the first character position.

 mov ebx, 17

repeatUntilEBXeq0:

 mov al, digits[rbx * 1]
 mov digits[rbx * 1 + 1], al
 dec ebx
 jnz repeatUntilEBXeq0

 mov digits, '1'

Numeric Conversion 533

 inc exponent ; Because we added a digit

dontRound:

; Handle positive and negative exponents separately.

 mov rdi, bufPtr ; Store the output here
 cmp exponent, 0
 jge positiveExponent

; Negative exponents:
; Handle values between 0 and 1.0 here (negative exponents
; imply negative powers of 10).

; Compute the number's width. Since this value is between
; 0 and 1, the width calculation is easy: it's just the
; number of decimal positions they've specified plus three
; (since we need to allow room for a leading "-0.").

 mov ecx, decDigits
 add ecx, 3
 cmp ecx, 4
 jae minimumWidthIs4

 mov ecx, 4 ; Minimum possible width is four

minimumWidthIs4:
 cmp ecx, fWidth
 ja widthTooBig

; This number will fit in the specified field width,
; so output any necessary leading pad characters.

 mov al, fill
 mov edx, fWidth
 sub edx, ecx
 jmp testWhileECXltWidth

whileECXltWidth:
 mov [rdi], al
 inc rdi
 inc ecx

testWhileECXltWidth:
 cmp ecx, fWidth
 jb whileECXltWidth

; Output " 0." or "-0.", depending on the sign of the number.

 mov al, sign
 cmp al, '-'
 je isMinus

 mov al, ' '

534 Chapter 9

isMinus: mov [rdi], al
 inc rdi
 inc edx

 mov word ptr [rdi], '.0'
 add rdi, 2
 add edx, 2

; Now output the digits after the decimal point:

 xor ecx, ecx ; Count the digits in ECX
 lea rbx, digits ; Pointer to data to output d

; If the exponent is currently negative, or if
; we've output more than 18 significant digits,
; just output a zero character.

repeatUntilEDXgeWidth:
 mov al, '0'
 inc exponent
 js noMoreOutput

 cmp ecx, 18
 jge noMoreOutput

 mov al, [rbx]
 inc ebx

noMoreOutput:
 mov [rdi], al
 inc rdi
 inc ecx
 inc edx
 cmp edx, fWidth
 jb repeatUntilEDXgeWidth
 jmp r10BufDone

; If the number's actual width was bigger than the width
; specified by the caller, emit a sequence of "#" characters
; to denote the error.

widthTooBig:

; The number won't fit in the specified field width,
; so fill the string with the "#" character to indicate
; an error.

 mov ecx, fWidth
 mov al, '#'
fillPound: mov [rdi], al
 inc rdi
 dec ecx
 jnz fillPound
 jmp r10BufDone

Numeric Conversion 535

; Handle numbers with a positive exponent here.

positiveExponent:

; Compute # of digits to the left of the ".".
; This is given by:

; Exponent ; # of digits to left of "."
; + 2 ; Allow for sign and there
; ; is always 1 digit left of "."
; + decimalpts ; Add in digits right of "."
; + 1 ; If there is a decimal point

 mov edx, exponent ; Digits to left of "."
 add edx, 2 ; 1 digit + sign posn
 cmp decDigits, 0
 je decPtsIs0

 add edx, decDigits ; Digits to right of "."
 inc edx ; Make room for the "."

decPtsIs0:

; Make sure the result will fit in the
; specified field width.

 cmp edx, fWidth
 ja widthTooBig

; If the actual number of print positions
; is fewer than the specified field width,
; output leading pad characters here.

 cmp edx, fWidth
 jae noFillChars

 mov ecx, fWidth
 sub ecx, edx
 jz noFillChars
 mov al, fill
fillChars: mov [rdi], al
 inc rdi
 dec ecx
 jnz fillChars

noFillChars:

; Output the sign character.

 mov al, sign
 cmp al, '-'
 je outputMinus;

 mov al, ' '

536 Chapter 9

outputMinus:
 mov [rdi], al
 inc rdi

; Okay, output the digits for the number here.

 xor ecx, ecx ; Counts # of output chars
 lea rbx, digits ; Ptr to digits to output

; Calculate the number of digits to output
; before and after the decimal point.

 mov edx, decDigits ; Chars after "."
 add edx, exponent ; # chars before "."
 inc edx ; Always one digit before "."

; If we've output fewer than 18 digits, go ahead
; and output the next digit. Beyond 18 digits,
; output zeros.

repeatUntilEDXeq0:
 mov al, '0'
 cmp ecx, 18
 jnb putChar

 mov al, [rbx]
 inc rbx

putChar: mov [rdi], al
 inc rdi

; If the exponent decrements to zero,
; then output a decimal point.

 cmp exponent, 0
 jne noDecimalPt
 cmp decDigits, 0
 je noDecimalPt

 mov al, '.'
 mov [rdi], al
 inc rdi

noDecimalPt:
 dec exponent ; Count down to "." output
 inc ecx ; # of digits thus far
 dec edx ; Total # of digits to output
 jnz repeatUntilEDXeq0

; Zero-terminate string and leave:

r10BufDone: mov byte ptr [rdi], 0
 leave
 clc ; No error
 jmp popRet

Numeric Conversion 537

badWidth: mov rax, -2 ; Illegal width
 jmp ErrorExit

strOverflow:
 mov rax, -3 ; String overflow
 jmp ErrorExit

voor: or rax, -1 ; Range error
ErrorExit: leave
 stc ; Error
 mov [rsp], rax ; Change RAX on return

popRet: pop rax
 pop rsi
 pop rdx
 pop rcx
 pop rbx
 pop rdi
 ret

r10ToStr endp

Listing 9-11: r10ToStr conversion function

9.1.8.3 Converting a Floating-Point Value to Exponential Form

Converting a floating-point value to exponential (scientific) form is a bit
easier than converting it to decimal form. The mantissa always takes the
form sx.y where s is a hyphen or a space, x is exactly one decimal digit, and
y is one or more decimal digits. The FPDigits function does almost all the
work to create this string. The exponential conversion function needs to
output the mantissa string with sign and decimal point characters and then
output the decimal exponent for the number. Converting the exponent
value (returned as a decimal integer in the EAX register by FPDigits) to a
string is just the numeric-to-decimal string conversion given earlier in this
chapter, using different output formatting.

The function this chapter presents allows you to specify the number of
digits for the exponent as 1, 2, 3, or 4. If the exponent requires more digits
than the caller specifies, the function returns a failure. If it requires fewer
digits than the caller specifies, the function pads the exponent with leading
0s. To emulate the typical floating-point conversion forms, specify an expo-
nent size of 2 for single-precision values, 3 for double-precision values, and
4 for extended-precision values.

Listing 9-12 provides a quick-and-dirty function that converts the decimal
exponent value to the appropriate string form and emits those characters to
a buffer. This function leaves RDI pointing beyond the last exponent digit
and doesn’t zero-terminate the string. It’s really just a helper function to
output characters for the e10ToStr function that will appear in the next listing.

N O T E The full Listing 9-12 is available online at https://artofasm.randallhyde.com/.
For brevity, the following listing only provides the actual expToBuf function.

https://artofasm.randallhyde.com/.

538 Chapter 9

; expToBuf - Unsigned integer to buffer.
; Used to output up to 4-digit exponents.

; Inputs:

; EAX: Unsigned integer to convert.
; ECX: Print width 1-4.
; RDI: Points at buffer.

; FPU: Uses FPU stack.

; Returns:

; RDI: Points at end of buffer.

expToBuf proc

expWidth equ <[rbp + 16]>
exp equ <[rbp + 8]>
bcd equ <[rbp - 16]>

 push rdx
 push rcx ; At [RBP + 16]
 push rax ; At [RBP + 8]
 push rbp
 mov rbp, rsp
 sub rsp, 16

; Verify exponent digit count is in the range 1-4:

 cmp rcx, 1
 jb badExp
 cmp rcx, 4
 ja badExp
 mov rdx, rcx

; Verify the actual exponent will fit in the number of digits:

 cmp rcx, 2
 jb oneDigit
 je twoDigits
 cmp rcx, 3
 ja fillZeros ; 4 digits, no error
 cmp eax, 1000
 jae badExp
 jmp fillZeros

oneDigit: cmp eax, 10
 jae badExp
 jmp fillZeros

Numeric Conversion 539

twoDigits: cmp eax, 100
 jae badExp

; Fill in zeros for exponent:

fillZeros: mov byte ptr [rdi + rcx * 1 - 1], '0'
 dec ecx
 jnz fillZeros

; Point RDI at the end of the buffer:

 lea rdi, [rdi + rdx * 1 - 1]
 mov byte ptr [rdi + 1], 0
 push rdi ; Save pointer to end

; Quick test for zero to handle that special case:

 test eax, eax
 jz allDone

; The number to convert is nonzero.
; Use BCD load and store to convert
; the integer to BCD:

 fild dword ptr exp ; Get integer value
 fbstp tbyte ptr bcd ; Convert to BCD

; Begin by skipping over leading zeros in
; the BCD value (max 10 digits, so the most
; significant digit will be in the HO nibble
; of byte 4).

 mov eax, bcd ; Get exponent digits
 mov ecx, expWidth ; Number of total digits

OutputExp: mov dl, al
 and dl, 0fh
 or dl, '0'
 mov [rdi], dl
 dec rdi
 shr ax, 4
 jnz OutputExp

; Zero-terminate the string and return:

allDone: pop rdi
 leave
 pop rax
 pop rcx
 pop rdx
 clc
 ret

badExp: leave
 pop rax

540 Chapter 9

 pop rcx
 pop rdx
 stc
 ret

expToBuf endp

Listing 9-12: Exponent conversion function

The actual e10ToStr function in Listing 9-13 is similar to the r10ToStr
function. The output of the mantissa is less complex because the form is
fixed, but there is a little additional work at the end to output the exponent.
Refer back to “Converting a Floating-Point Value to a Decimal String” on
page 527 for details on the operation of this code.

N O T E The full Listing 9-13 is available online at https://artofasm.randallhyde.com/.
For brevity, the following listing only provides the actual e10ToStr function.

; e10ToStr - Converts a real10 floating-point number to the
; corresponding string of digits. Note that this
; function always emits the string using scientific
; notation; use the r10ToStr routine for decimal notation.

; On Entry:

; e10 - real10 value to convert.
; Passed in ST(0).

; width - Field width for the number (note that this
; is an *exact* field width, not a minimum
; field width).
; Passed in RAX (LO 32 bits).

; fill - Padding character if the number is smaller
; than the specified field width.
; Passed in RCX.

; buffer - e10ToStr stores the resulting characters in
; this buffer (passed in RDI).

; expDigs - Number of exponent digits (2 for real4,
; 3 for real8, and 4 for real10).
; Passed in RDX (LO 8 bits).

; maxLength - Maximum buffer size.
; Passed in R8.

; On Exit:

; RDI - Points at end of converted string.

https://artofasm.randallhyde.com/

Numeric Conversion 541

; Buffer contains the newly formatted string. If the
; formatted value does not fit in the width specified,
; e10ToStr will store "#" characters into this string.

; If there was an error, EAX contains -1, -2, or -3
; denoting the error (value out of range, bad width,
; or string overflow, respectively).

; Unlike the integer-to-string conversions, this routine
; always right-justifies the number in the specified
; string. Width must be a positive number; negative
; values are illegal (actually, they are treated as
; *really* big positive numbers that will always raise
; a string overflow exception).

e10ToStr proc

fWidth equ <[rbp - 8]> ; RAX
buffer equ <[rbp - 16]> ; RDI
expDigs equ <[rbp - 24]> ; RDX
rbxSave equ <[rbp - 32]>
rcxSave equ <[rbp - 40]>
rsiSave equ <[rbp - 48]>
Exponent equ <dword ptr [rbp - 52]>
MantSize equ <dword ptr [rbp - 56]>
Sign equ <byte ptr [rbp - 60]>
Digits equ <byte ptr [rbp - 128]>

 push rbp
 mov rbp, rsp
 sub rsp, 128

 mov buffer, rdi
 mov rsiSave, rsi
 mov rcxSave, rcx
 mov rbxSave, rbx
 mov fWidth, rax
 mov expDigs, rdx

 cmp eax, r8d
 jae strOvfl
 mov byte ptr [rdi + rax * 1], 0 ; Zero-terminate str

; First, make sure the width isn't zero.

 test eax, eax
 jz voor

542 Chapter 9

; Just to be on the safe side, don't allow widths greater
; than 1024:

 cmp eax, 1024
 ja badWidth

; Okay, do the conversion.

 lea rdi, Digits ; Store result string here
 call FPDigits ; Convert e80 to digit str
 mov Exponent, eax ; Save away exponent result
 mov Sign, cl ; Save mantissa sign char

; Verify that there is sufficient room for the mantissa's sign,
; the decimal point, two mantissa digits, the "E", and the
; exponent's sign. Also add in the number of digits required
; by the exponent (2 for real4, 3 for real8, 4 for real10).

; -1.2e+00 :real4
; -1.2e+000 :real8
; -1.2e+0000 :real10

 mov ecx, 6 ; Char posns for above chars
 add ecx, expDigs ; # of digits for the exp
 cmp ecx, fWidth
 jbe goodWidth

; Output a sequence of "#...#" chars (to the specified width)
; if the width value is not large enough to hold the
; conversion:

 mov ecx, fWidth
 mov al, '#'
 mov rdi, buffer
fillPound: mov [rdi], al
 inc rdi
 dec ecx
 jnz fillPound
 jmp exit_eToBuf

; Okay, the width is sufficient to hold the number; do the
; conversion and output the string here:

goodWidth:

 mov ebx, fWidth ; Compute the # of mantissa
 sub ebx, ecx ; digits to display
 add ebx, 2 ; ECX allows for 2 mant digs
 mov MantSize,ebx

; Round the number to the specified number of print positions.
; (Note: since there are a maximum of 18 significant digits,
; don't bother with the rounding if the field width is greater
; than 18 digits.)

Numeric Conversion 543

 cmp ebx, 18
 jae noNeedToRound

; To round the value to the number of significant digits,
; go to the digit just beyond the last one we are considering
; (EBX currently contains the number of decimal positions)
; and add 5 to that digit. Propagate any overflow into the
; remaining digit positions.

 mov al, Digits[rbx * 1] ; Get least sig digit + 1
 add al, 5 ; Round (for example, +0.5)
 cmp al, '9'
 jbe noNeedToRound
 mov Digits[rbx * 1], '9' + 1
 jmp whileDigitGT9Test

whileDigitGT9:

; Subtract out overflow and add the carry into the previous
; digit (unless we hit the first digit in the number).

 sub Digits[rbx * 1], 10
 dec ebx
 cmp ebx, 0
 jl firstDigitInNumber

 inc Digits[rbx * 1]
 jmp whileDigitGT9Test

firstDigitInNumber:

; If we get to this point, then we've hit the first
; digit in the number. So we've got to shift all
; the characters down one position in the string of
; bytes and put a "1" in the first character position.

 mov ebx, 17
repeatUntilEBXeq0:

 mov al, Digits[rbx * 1]
 mov Digits[rbx * 1 + 1], al
 dec ebx
 jnz repeatUntilEBXeq0

 mov Digits, '1'
 inc Exponent ; Because we added a digit
 jmp noNeedToRound

whileDigitGT9Test:
 cmp Digits[rbx], '9' ; Overflow if char > "9"
 ja whileDigitGT9

noNeedToRound:

544 Chapter 9

; Okay, emit the string at this point. This is pretty easy
; since all we really need to do is copy data from the
; digits array and add an exponent (plus a few other simple chars).

 xor ecx, ecx ; Count output mantissa digits
 mov rdi, buffer
 xor edx, edx ; Count output chars
 mov al, Sign
 cmp al, '-'
 je noMinus

 mov al, ' '

noMinus: mov [rdi], al

; Output the first character and a following decimal point
; if there are more than two mantissa digits to output.

 mov al, Digits
 mov [rdi + 1], al
 add rdi, 2
 add edx, 2
 inc ecx
 cmp ecx, MantSize
 je noDecPt

 mov al, '.'
 mov [rdi], al
 inc rdi
 inc edx

noDecPt:

; Output any remaining mantissa digits here.
; Note that if the caller requests the output of
; more than 18 digits, this routine will output zeros
; for the additional digits.

 jmp whileECXltMantSizeTest

whileECXltMantSize:

 mov al, '0'
 cmp ecx, 18
 jae justPut0

 mov al, Digits[rcx * 1]

justPut0:
 mov [rdi], al
 inc rdi
 inc ecx
 inc edx

Numeric Conversion 545

whileECXltMantSizeTest:
 cmp ecx, MantSize
 jb whileECXltMantSize

; Output the exponent:

 mov byte ptr [rdi], 'e'
 inc rdi
 inc edx
 mov al, '+'
 cmp Exponent, 0
 jge noNegExp

 mov al, '-'
 neg Exponent

noNegExp:
 mov [rdi], al
 inc rdi
 inc edx

 mov eax, Exponent
 mov ecx, expDigs
 call expToBuf
 jc error

exit_eToBuf:
 mov rsi, rsiSave
 mov rcx, rcxSave
 mov rbx, rbxSave
 mov rax, fWidth
 mov rdx, expDigs
 leave
 clc
 ret

strOvfl: mov rax, -3
 jmp error

badWidth: mov rax, -2
 jmp error

voor: mov rax, -1
error: mov rsi, rsiSave
 mov rcx, rcxSave
 mov rbx, rbxSave
 mov rdx, expDigs
 leave
 stc
 ret

e10ToStr endp

Listing 9-13: e10ToStr conversion function

546 Chapter 9

 9.2 String-to-Numeric Conversion Routines
The routines converting numeric values to strings, and strings to numeric val-
ues, have a couple of fundamental differences. First of all, numeric-to-string
conversions generally occur without possibility of error;4 string-to-numeric
conversion, on the other hand, must handle the real possibility of errors such
as illegal characters and numeric overflow.

A typical numeric input operation consists of reading a string of char-
acters from the user and then translating this string of characters into an
internal numeric representation. For example, in C++ a statement like
cin >> i32; reads a line of text from the user and converts a sequence of
digits appearing at the beginning of that line of text into a 32-bit signed
integer (assuming i32 is a 32-bit int object). The cin >> i32; statement skips
over certain characters, like leading spaces, in the string that may appear
before the actual numeric characters. The input string may also contain
additional data beyond the end of the numeric input (for example, it is pos-
sible to read two integer values from the same input line), and therefore the
input conversion routine must determine where the numeric data ends in
the input stream.

Typically, C++ achieves this by looking for a character from a set of
delimiter characters. The delimiter character set could be something as
simple as “any character that is not a numeric digit” or the set of whitespace
characters (space, tab, and so on), and perhaps a few other characters such
as a comma (,) or some other punctuation character. For the sake of exam-
ple, the code in this section will assume that any leading spaces or tab char-
acters (ASCII code 9) may precede any numeric digits, and the conversion
stops on the first nondigit character it encounters. Possible error conditions
are as follows:

•	 No numeric digits at all at the beginning of the string (following any
spaces or tabs).

•	 The string of digits is a value that would be too large for the intended
numeric size (for example, 64 bits).

It will be up to the caller to determine if the numeric string ends with
an invalid character (upon return from the function call).

9.2.1 Converting Decimal Strings to Integers
The basic algorithm to convert a string containing decimal digits to a num-
ber is the following:

1. Initialize an accumulator variable to 0.

2. Skip any leading spaces or tabs in the string.

3. Fetch the first character after the spaces or tabs.

4. Well, assuming you have allocated a sufficiently large buffer so that the conversion routines
don’t write data beyond the end of the buffer.

Numeric Conversion 547

4. If the character is not a numeric digit, return an error. If the character
is a numeric digit, fall through to step 5.

5. Convert the numeric character to a numeric value (using AND 0Fh).

6. Set the accumulator = (accumulator × 10) + current numeric value.

7. If overflow occurs, return and report an error. If no overflow occurs,
fall through to step 8.

8. Fetch the next character from the string.

9. If the character is a numeric digit, go back to step 5, else fall through to
step 10.

10. Return success, with accumulator containing the converted value.

For signed integer input, you use this same algorithm with the follow-
ing modifications:

•	 If the first non-space or tab character is a hyphen (-), set a flag denot-
ing that the number is negative and skip the “-” character (if the first
character is not -, then clear the flag).

•	 At the end of a successful conversion, if the flag is set, then negate the
integer result before return (must check for overflow on the negate
operation).

Listing 9-14 implements the conversion algorithm.

; Listing 9-14

; String-to-numeric conversion.

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte "Listing 9-14", 0
fmtStr1 byte "strtou: String='%s'", nl
 byte " value=%I64u", nl, 0

fmtStr2 byte "Overflow: String='%s'", nl
 byte " value=%I64x", nl, 0

fmtStr3 byte "strtoi: String='%s'", nl
 byte " value=%I64i",nl, 0

unexError byte "Unexpected error in program", nl, 0

value1 byte " 1", 0
value2 byte "12 ", 0
value3 byte " 123 ", 0
value4 byte "1234", 0

548 Chapter 9

value5 byte "1234567890123456789", 0
value6 byte "18446744073709551615", 0
OFvalue byte "18446744073709551616", 0
OFvalue2 byte "999999999999999999999", 0

ivalue1 byte " -1", 0
ivalue2 byte "-12 ", 0
ivalue3 byte " -123 ", 0
ivalue4 byte "-1234", 0
ivalue5 byte "-1234567890123456789", 0
ivalue6 byte "-9223372036854775807", 0
OFivalue byte "-9223372036854775808", 0
OFivalue2 byte "-999999999999999999999", 0

 .data
buffer byte 30 dup (?)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; strtou - Converts string data to a 64-bit unsigned integer.

; Input:
; RDI - Pointer to buffer containing string to convert.

; Output:
; RAX - Contains converted string (if success), error code
; if an error occurs.

; RDI - Points at first char beyond end of numeric string.
; If error, RDI's value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.

; C - (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0FFFFFFFFFFFFFFFFh (overflow).

strtou proc
 push rdi ; In case we have to restore RDI
 push rdx ; Munged by mul
 push rcx ; Holds input char

Numeric Conversion 549

 xor edx, edx ; Zero-extends!
 xor eax, eax ; Zero-extends!

; The following loop skips over any whitespace (spaces and
; tabs) that appears at the beginning of the string.

 dec rdi ; Because of inc below
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ' '
 je skipWS
 cmp al, tab
 je skipWS

; If we don't have a numeric digit at this point,
; return an error.

 cmp cl, '0' ; Note: "0" < "1" < ... < "9"
 jb badNumber
 cmp cl, '9'
 ja badNumber

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: and ecx, 0fh ; Convert to numeric in RCX
 mul ten ; Accumulator *= 10
 jc overflow
 add rax, rcx ; Accumulator += digit
 jc overflow
 inc rdi ; Move on to next character
 mov cl, [rdi]
 cmp cl, '0'
 jb endOfNum
 cmp cl, '9'
 jbe convert

; If we get to this point, we've successfully converted
; the string to numeric form:

endOfNum: pop rcx
 pop rdx

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don't restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI's saved value.

 add rsp, 8
 clc ; Return success in carry flag
 ret

550 Chapter 9

; badNumber - Drop down here if the first character in
; the string was not a valid digit.

badNumber: mov rax, 0
 pop rcx
 pop rdx
 pop rdi
 stc ; Return error in carry flag
 ret

overflow: mov rax, -1 ; 0FFFFFFFFFFFFFFFFh
 pop rcx
 pop rdx
 pop rdi
 stc ; Return error in carry flag
 ret

ten qword 10

strtou endp

; strtoi - Converts string data to a 64-bit signed integer.

; Input:
; RDI - Pointer to buffer containing string to convert.

; Output:
; RAX - Contains converted string (if success), error code
; if an error occurs.

; RDI - Points at first char beyond end of numeric string.
; If error, RDI's value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.

; C - (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0FFFFFFFFFFFFFFFFh (-1, indicating overflow).

strtoi proc
negFlag equ <byte ptr [rsp]>

 push rdi ; In case we have to restore RDI
 sub rsp, 8

; Assume we have a non-negative number.

 mov negFlag, false

; The following loop skips over any whitespace (spaces and
; tabs) that appears at the beginning of the string.

 dec rdi ; Because of inc below

Numeric Conversion 551

skipWS: inc rdi
 mov al, [rdi]
 cmp al, ' '
 je skipWS
 cmp al, tab
 je skipWS

; If the first character we've encountered is "-",
; then skip it, but remember that this is a negative
; number.

 cmp al, '-'
 jne notNeg
 mov negFlag, true
 inc rdi ; Skip "-"

notNeg: call strtou ; Convert string to integer
 jc hadError

; strtou returned success. Check the negative flag and
; negate the input if the flag contains true.

 cmp negFlag, true
 jne itsPosOr0

 cmp rax, tooBig ; Number is too big
 ja overflow
 neg rax
itsPosOr0: add rsp, 16 ; Success, so don't restore RDI
 clc ; Return success in carry flag
 ret

; If we have an error, we need to restore RDI from the stack:

overflow: mov rax, -1 ; Indicate overflow
hadError: add rsp, 8 ; Remove locals
 pop rdi
 stc ; Return error in carry flag
 ret

tooBig qword 7fffffffffffffffh
strtoi endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test unsigned conversions:

 lea rdi, value1
 call strtou

552 Chapter 9

jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value1
 mov r8, rax
 call printf

 lea rdi, value2
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value2
 mov r8, rax
 call printf

 lea rdi, value3
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value3
 mov r8, rax
 call printf

 lea rdi, value4
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value4
 mov r8, rax
 call printf

 lea rdi, value5
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value5
 mov r8, rax
 call printf

 lea rdi, value6
 call strtou
 jc UnexpectedError

 lea rcx, fmtStr1
 lea rdx, value6
 mov r8, rax
 call printf

Numeric Conversion 553

 lea rdi, OFvalue
 call strtou
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFvalue
 mov r8, rax
 call printf

 lea rdi, OFvalue2
 call strtou
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFvalue2
 mov r8, rax
 call printf

; Test signed conversions:

 lea rdi, ivalue1
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue1
 mov r8, rax
 call printf

 lea rdi, ivalue2
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue2
 mov r8, rax
 call printf

 lea rdi, ivalue3
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue3
 mov r8, rax
 call printf

554 Chapter 9

 lea rdi, ivalue4
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue4
 mov r8, rax
 call printf

 lea rdi, ivalue5
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue5
 mov r8, rax
 call printf

 lea rdi, ivalue6
 call strtoi
 jc UnexpectedError

 lea rcx, fmtStr3
 lea rdx, ivalue6
 mov r8, rax
 call printf

 lea rdi, OFivalue
 call strtoi
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFivalue
 mov r8, rax
 call printf

 lea rdi, OFivalue2
 call strtoi
 jnc UnexpectedError
 test rax, rax ; Nonzero for overflow
 jz UnexpectedError

 lea rcx, fmtStr2
 lea rdx, OFivalue2
 mov r8, rax
 call printf

 jmp allDone

UnexpectedError:
 lea rcx, unexError
 call printf

Numeric Conversion 555

allDone: leave
 ret ; Returns to caller
asmMain endp
 end

Listing 9-14: Numeric-to-string conversions

Here’s the build command and sample output for this program:

C:\>build listing9-14

C:\>echo off
 Assembling: listing9-14.asm
c.cpp

C:\>listing9-14
Calling Listing 9-14:
strtou: String=' 1'
 value=1
strtou: String='12 '
 value=12
strtou: String=' 123 '
 value=123
strtou: String='1234'
 value=1234
strtou: String='1234567890123456789'
 value=1234567890123456789
strtou: String='18446744073709551615'
 value=18446744073709551615
Overflow: String='18446744073709551616'
 value=ffffffffffffffff
Overflow: String='999999999999999999999'
 value=ffffffffffffffff
strtoi: String=' -1'
 value=-1
strtoi: String='-12 '
 value=-12
strtoi: String=' -123 '
 value=-123
strtoi: String='-1234'
 value=-1234
strtoi: String='-1234567890123456789'
 value=-1234567890123456789
strtoi: String='-9223372036854775807'
 value=-9223372036854775807
Overflow: String='-9223372036854775808'
 value=ffffffffffffffff
Overflow: String='-999999999999999999999'
 value=ffffffffffffffff
Listing 9-14 terminated

For an extended-precision string-to-numeric conversion, you simply
modify the strtou function to have an extend-precision accumulator and
then do an extended-precision multiplication by 10 (rather than a standard
multiplication).

556 Chapter 9

9.2.2 Converting Hexadecimal Strings to Numeric Form
As was the case for numeric output, hexadecimal input is the easiest numeric
input routine to write. The basic algorithm for hexadecimal-string-to-numeric
conversion is the following:

1. Initialize an extended-precision accumulator value to 0.

2. For each input character that is a valid hexadecimal digit, repeat steps 3
through 6; drop down to step 7 when it is not a valid hexadecimal digit.

3. Convert the hexadecimal character to a value in the range 0 to 15
(0h to 0Fh).

4. If the HO 4 bits of the extended-precision accumulator value are non-
zero, raise an exception.

5. Multiply the current extended-precision value by 16 (that is, shift left
4 bits).

6. Add the converted hexadecimal digit value to the accumulator.

7. Check the current input character to ensure it is a valid delimiter. Raise
an exception if it is not.

Listing 9-15 implements this extended-precision hexadecimal input
routine for 64-bit values.

; Listing 9-15

; Hexadecimal string-to-numeric conversion.

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte "Listing 9-15", 0
fmtStr1 byte "strtoh: String='%s' "
 byte "value=%I64x", nl, 0

fmtStr2 byte "Error, RAX=%I64x, str='%s'", nl, 0
fmtStr3 byte "Error, expected overflow: RAX=%I64x, "
 byte "str='%s'", nl, 0

fmtStr4 byte "Error, expected bad char: RAX=%I64x, "
 byte "str='%s'", nl, 0

hexStr byte "1234567890abcdef", 0
hexStrOVFL byte "1234567890abcdef0", 0
hexStrBAD byte "x123", 0

 .code
 externdef printf:proc

Numeric Conversion 557

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; strtoh - Converts string data to a 64-bit unsigned integer.

; Input:
; RDI - Pointer to buffer containing string to convert.

; Output:
; RAX - Contains converted string (if success), error code
; if an error occurs.

; RDI - Points at first char beyond end of hexadecimal string.
; If error, RDI's value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.

; C - (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0FFFFFFFFFFFFFFFFh (overflow).

strtoh proc
 push rcx ; Holds input char
 push rdx ; Special mask value
 push rdi ; In case we have to restore RDI

; This code will use the value in RDX to test and see if overflow
; will occur in RAX when shifting to the left 4 bits:

 mov rdx, 0F000000000000000h
 xor eax, eax ; Zero out accumulator

; The following loop skips over any whitespace (spaces and
; tabs) that appears at the beginning of the string.

 dec rdi ; Because of inc below
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ' '
 je skipWS
 cmp al, tab
 je skipWS

; If we don't have a hexadecimal digit at this point,
; return an error.

558 Chapter 9

 cmp cl, '0' ; Note: "0" < "1" < ... < "9"
 jb badNumber
 cmp cl, '9'
 jbe convert
 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, 'A'
 jb badNumber
 cmp cl, 'F'
 ja badNumber
 sub cl, 7 ; Maps 41h to 46h -> 3Ah to 3Fh

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: test rdx, rax ; See if adding in the current
 jnz overflow ; digit will cause an overflow

 and ecx, 0fh ; Convert to numeric in RCX

; Multiply 64-bit accumulator by 16 and add in new digit:

 shl rax, 4
 add al, cl ; Never overflows outside LO 4 bits

; Move on to next character:

 inc rdi
 mov cl, [rdi]
 cmp cl, '0'
 jb endOfNum
 cmp cl, '9'
 jbe convert

 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, 'A'
 jb endOfNum
 cmp cl, 'F'
 ja endOfNum
 sub cl, 7 ; Maps 41h to 46h -> 3Ah to 3Fh
 jmp convert

; If we get to this point, we've successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don't restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI's saved value.

Numeric Conversion 559

 add rsp, 8 ; Remove original RDI value
 pop rdx ; Restore RDX
 pop rcx ; Restore RCX
 clc ; Return success in carry flag
 ret

; badNumber- Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 jmp errorExit

overflow: or rax, -1 ; Return -1 as error on overflow
errorExit: pop rdi ; Restore RDI if an error occurs
 pop rdx
 pop rcx
 stc ; Return error in carry flag
 ret

strtoh endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test hexadecimal conversion:

 lea rdi, hexStr
 call strtoh
 jc error

 lea rcx, fmtStr1
 mov r8, rax
 lea rdx, hexStr
 call printf

; Test overflow conversion:

 lea rdi, hexStrOVFL
 call strtoh
 jnc unexpected

 lea rcx, fmtStr2
 mov rdx, rax
 mov r8, rdi
 call printf

560 Chapter 9

; Test bad character:

 lea rdi, hexStrBAD
 call strtoh
 jnc unexp2

 lea rcx, fmtStr2
 mov rdx, rax
 mov r8, rdi
 call printf
 jmp allDone

unexpected: lea rcx, fmtStr3
 mov rdx, rax
 mov r8, rdi
 call printf
 jmp allDone

unexp2: lea rcx, fmtStr4
 mov rdx, rax
 mov r8, rdi
 call printf
 jmp allDone

error: lea rcx, fmtStr2
 mov rdx, rax
 mov r8, rdi
 call printf

allDone: leave
 ret ; Returns to caller
asmMain endp
 end

Listing 9-15: Hexadecimal string-to-numeric conversion

Here’s the build command and program output:

C:\>build listing9-15

C:\>echo off
 Assembling: listing9-15.asm
c.cpp

C:\>listing9-15
Calling Listing 9-15:
strtoh: String='1234567890abcdef' value=1234567890abcdef
Error, RAX=ffffffffffffffff, str='1234567890abcdef0'
Error, RAX=0, str='x123'
Listing 9-15 terminated

For hexadecimal string conversions that handle numbers greater
than 64 bits, you have to use an extended-precision shift left by 4 bits.
Listing 9-16 demonstrates the necessary modifications to the strtoh func-
tion for a 128-bit conversion.

Numeric Conversion 561

N O T E Because of the length and redundancy of Listing 9-16, a large part of the uninterest-
ing code has been removed. The full Listing 9-16 is available online at https://
artofasm.randallhyde.com/.

; strtoh128 - Converts string data to a 128-bit unsigned integer.

; Input:
; RDI - Pointer to buffer containing string to convert.

; Output:
; RDX:RAX - Contains converted string (if success), error code
; if an error occurs.

; RDI - Points at first char beyond end of hex string.
; If error, RDI's value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.

; C - (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0FFFFFFFFFFFFFFFFh (overflow).

strtoh128 proc
 push rbx ; Special mask value
 push rcx ; Input char to process
 push rdi ; In case we have to restore RDI

; This code will use the value in RDX to test and see if overflow
; will occur in RAX when shifting to the left 4 bits:

 mov rbx, 0F000000000000000h
 xor eax, eax ; Zero out accumulator
 xor edx, edx

; The following loop skips over any whitespace (spaces and
; tabs) that appears at the beginning of the string.

 dec rdi ; Because of inc below
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ' '
 je skipWS
 cmp al, tab
 je skipWS

; If we don't have a hexadecimal digit at this point,
; return an error.

 cmp cl, '0' ; Note: "0" < "1" < ... < "9"
 jb badNumber
 cmp cl, '9'
 jbe convert

https://artofasm.randallhyde.com/
https://artofasm.randallhyde.com/

562 Chapter 9

 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, 'A'
 jb badNumber
 cmp cl, 'F'
 ja badNumber
 sub cl, 7 ; Maps 41h to 46h -> 3Ah to 3Fh

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: test rdx, rbx ; See if adding in the current
 jnz overflow ; digit will cause an overflow

 and ecx, 0fh ; Convert to numeric in RCX

; Multiply 64-bit accumulator by 16 and add in new digit:

 shld rdx, rax, 4
 shl rax, 4
 add al, cl ; Never overflows outside LO 4 bits

; Move on to next character:

 inc rdi
 mov cl, [rdi]
 cmp cl, '0'
 jb endOfNum
 cmp cl, '9'
 jbe convert

 and cl, 5fh ; Cheesy LC -> UC conversion
 cmp cl, 'A'
 jb endOfNum
 cmp cl, 'F'
 ja endOfNum
 sub cl, 7 ; Maps 41h to 46h -> 3Ah to 3Fh
 jmp convert

; If we get to this point, we've successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don't restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI's saved value.

 add rsp, 8 ; Remove original RDI value
 pop rcx ; Restore RCX
 pop rbx ; Restore RBX
 clc ; Return success in carry flag
 ret

Numeric Conversion 563

; badNumber - Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 jmp errorExit

overflow: or rax, -1 ; Return -1 as error on overflow
errorExit: pop rdi ; Restore RDI if an error occurs
 pop rcx
 pop rbx
 stc ; Return error in carry flag
 ret

strtoh128 endp

Listing 9-16: 128-bit hexadecimal string-to-numeric conversion

9.2.3 Converting Unsigned Decimal Strings to Integers
The algorithm for unsigned decimal input is nearly identical to that for
hexadecimal input. In fact, the only difference (beyond accepting only dec-
imal digits) is that you multiply the accumulating value by 10 rather than 16
for each input character (in general, the algorithm is the same for any base;
just multiply the accumulating value by the input base). Listing 9-17 demon-
strates how to write a 64-bit unsigned decimal input routine.

; Listing 9-17

; 64-bit unsigned decimal string-to-numeric conversion.

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte "Listing 9-17", 0
fmtStr1 byte "strtou: String='%s' value=%I64u", nl, 0
fmtStr2 byte "strtou: error, rax=%d", nl, 0

qStr byte "12345678901234567", 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr

564 Chapter 9

 ret
getTitle endp

; strtou - Converts string data to a 64-bit unsigned integer.

; Input:
; RDI - Pointer to buffer containing string to convert.

; Output:
; RAX - Contains converted string (if success), error code
; if an error occurs.

; RDI - Points at first char beyond end of numeric string.
; If error, RDI's value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.

; C - (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0FFFFFFFFFFFFFFFFh (overflow).

strtou proc
 push rcx ; Holds input char
 push rdx ; Save, used for multiplication
 push rdi ; In case we have to restore RDI

 xor rax, rax ; Zero out accumulator

; The following loop skips over any whitespace (spaces and
; tabs) that appears at the beginning of the string.

 dec rdi ; Because of inc below
skipWS: inc rdi
 mov cl, [rdi]
 cmp cl, ' '
 je skipWS
 cmp al, tab
 je skipWS

; If we don't have a numeric digit at this point,
; return an error.

 cmp cl, '0' ; Note: "0" < "1" < ... < "9"
 jb badNumber
 cmp cl, '9'
 ja badNumber

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: and ecx, 0fh ; Convert to numeric in RCX

Numeric Conversion 565

; Multiple 64-bit accumulator by 10:

 mul ten
 test rdx, rdx ; Test for overflow
 jnz overflow

 add rax, rcx
 jc overflow

; Move on to next character:

 inc rdi
 mov cl, [rdi]
 cmp cl, '0'
 jb endOfNum
 cmp cl, '9'
 jbe convert

; If we get to this point, we've successfully converted
; the string to numeric form:

endOfNum:

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don't restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI's saved value.

 add rsp, 8 ; Remove original RDI value
 pop rdx
 pop rcx ; Restore RCX
 clc ; Return success in carry flag
 ret

; badNumber - Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 jmp errorExit

overflow: mov rax, -1 ; 0FFFFFFFFFFFFFFFFh
errorExit: pop rdi
 pop rdx
 pop rcx
 stc ; Return error in carry flag
 ret

ten qword 10

strtou endp

; Here is the "asmMain" function.

566 Chapter 9

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test hexadecimal conversion:

 lea rdi, qStr
 call strtou
 jc error

 lea rcx, fmtStr1
 mov r8, rax
 lea rdx, qStr
 call printf
 jmp allDone

error: lea rcx, fmtStr2
 mov rdx, rax
 call printf

allDone: leave
 ret ; Returns to caller
asmMain endp
 end

Listing 9-17: Unsigned decimal string-to-numeric conversion

Here’s the build command and sample output for the program in
Listing 9-17:

C:\>build listing9-17

C:\>echo off
 Assembling: listing9-17.asm
c.cpp

C:\>listing9-17
Calling Listing 9-17:
strtou: String='12345678901234567' value=12345678901234567
Listing 9-17 terminated

Is it possible to create a faster function that uses the fbld (x87 FPU BCD
store) instruction? Probably not. The fbstp instruction was much faster for
integer conversions because the standard algorithm used multiple execu-
tions of the (very slow) div instruction. Decimal-to-numeric conversion uses
the mul instruction, which is much faster than div. Though I haven’t actually
tried it, I suspect using fbld won’t produce faster running code.

9.2.4 Conversion of Extended-Precision String to Unsigned Integer
The algorithm for (decimal) string-to-numeric conversion is the same regard-
less of integer size. You read a decimal character, convert it to an integer,

Numeric Conversion 567

multiply the accumulating result by 10, and add in the converted character.
The only things that change for larger-than-64-bit values are the multiplica-
tion by 10 and addition operations. For example, to convert a string to a 128-bit
integer, you would need to be able to multiply a 128-bit value by 10 and add an
8-bit value (zero-extended to 128 bits) to a 128-bit value.

Listing 9-18 demonstrates how to write a 128-bit unsigned decimal
input routine. Other than the 128-bit multiplication by 10 and 128-bit addi-
tion operations, this code is functionally identical to the 64-bit string to
integer conversion.

N O T E Because of the length and redundancy of Listing 9-18, a large part has been removed;
the full Listing 9-18 is available online at https://artofasm.randallhyde.com/.

; strtou128 - Converts string data to a 128-bit unsigned integer.

; Input:
; RDI - Pointer to buffer containing string to convert.

; Output:
; RDX:RAX - Contains converted string (if success), error code
; if an error occurs.

; RDI - Points at first char beyond end of numeric string.
; If error, RDI's value is restored to original value.
; Caller can check character at [RDI] after a
; successful result to see if the character following
; the numeric digits is a legal numeric delimiter.

; C - (carry flag) Set if error occurs, clear if
; conversion was successful. On error, RAX will
; contain 0 (illegal initial character) or
; 0FFFFFFFFFFFFFFFFh (overflow).

strtou128 proc
accumulator equ <[rbp - 16]>
partial equ <[rbp - 24]>
 push rcx ; Holds input char
 push rdi ; In case we have to restore RDI
 push rbp
 mov rbp, rsp
 sub rsp, 24 ; Accumulate result here

 xor edx, edx ; Zero-extends!
 mov accumulator, rdx
 mov accumulator[8], rdx

; The following loop skips over any whitespace (spaces and
; tabs) that appears at the beginning of the string.

 dec rdi ; Because of inc below
skipWS: inc rdi
 mov cl, [rdi]

https://artofasm.randallhyde.com/

568 Chapter 9

 cmp cl, ' '
 je skipWS
 cmp al, tab
 je skipWS

; If we don't have a numeric digit at this point,
; return an error.

 cmp cl, '0' ; Note: "0" < "1" < ... < "9"
 jb badNumber
 cmp cl, '9'
 ja badNumber

; Okay, the first digit is good. Convert the string
; of digits to numeric form:

convert: and ecx, 0fh ; Convert to numeric in RCX

; Multiply 128-bit accumulator by 10:

 mov rax, accumulator
 mul ten
 mov accumulator, rax
 mov partial, rdx ; Save partial product
 mov rax, accumulator[8]
 mul ten
 jc overflow1
 add rax, partial
 mov accumulator[8], rax
 jc overflow1

; Add in the current character to the 128-bit accumulator:

 mov rax, accumulator
 add rax, rcx
 mov accumulator, rax
 mov rax, accumulator[8]
 adc rax, 0
 mov accumulator[8], rax
 jc overflow2

; Move on to next character:

 inc rdi
 mov cl, [rdi]
 cmp cl, '0'
 jb endOfNum
 cmp cl, '9'
 jbe convert

; If we get to this point, we've successfully converted
; the string to numeric form:

endOfNum:

Numeric Conversion 569

; Because the conversion was successful, this procedure
; leaves RDI pointing at the first character beyond the
; converted digits. As such, we don't restore RDI from
; the stack. Just bump the stack pointer up by 8 bytes
; to throw away RDI's saved value.

 mov rax, accumulator
 mov rdx, accumulator[8]
 leave
 add rsp, 8 ; Remove original RDI value
 pop rcx ; Restore RCX
 clc ; Return success in carry flag
 ret

; badNumber - Drop down here if the first character in
; the string was not a valid digit.

badNumber: xor rax, rax
 xor rdx, rdx
 jmp errorExit

overflow1: mov rax, -1
 cqo ; RDX = -1, too
 jmp errorExit

overflow2: mov rax, -2 ; 0FFFFFFFFFFFFFFFEh
 cqo ; Just to be consistent
errorExit: leave ; Remove accumulator from stack
 pop rdi
 pop rcx
 stc ; Return error in carry flag
 ret

ten qword 10

strtou128 endp

Listing 9-18: Extended-precision unsigned decimal input

9.2.5 Conversion of Extended-Precision Signed Decimal String
to Integer

Once you have an unsigned decimal input routine, writing a signed decimal
input routine is easy, as described by the following algorithm:

1. Consume any delimiter characters at the beginning of the input stream.

2. If the next input character is a minus sign, consume this character and set
a flag noting that the number is negative; else just drop down to step 3.

3. Call the unsigned decimal input routine to convert the rest of the string
to an integer.

570 Chapter 9

4. Check the return result to make sure its HO bit is clear. Raise a value
out of range exception if the HO bit of the result is set.

5. If the code encountered a minus sign in step 2, negate the result.

I’ll leave the actual code implementation as a programming exercise
for you.

9.2.6 Conversion of Real String to Floating-Point
Converting a string of characters representing a floating-point number to
the 80-bit real10 format is slightly easier than the real10-to-string conver-
sion appearing earlier in this chapter. Because decimal conversion (with
no exponent) is a subset of the more general scientific notation conversion,
if you can handle scientific notation, you get decimal conversion for free.
Beyond that, the basic algorithm is to convert the mantissa characters to a
packed BCD form (so the function can use the fbld instruction to do the
string-to-numeric conversion) and then read the (optional) exponent and
adjust the real10 exponent accordingly. The algorithm to do the conversion
is the following:

1. Begin by stripping away any leading space or tab characters (and any
other delimiters).

2. Check for a leading plus (+) or minus (-) sign character. Skip it if one
is present. Set a sign flag to true if the number is negative (false if
non-negative).

3. Initialize an exponent value to –18. The algorithm will create a left-
justified packed BCD value from the mantissa digits in the string to
provide to the fbld instruction, and left-justified packed BCD values are
always greater than or equal to 1018. Initializing the exponent to –18
accounts for this.

4. Initialize a significant-digit-counter variable that counts the number of
significant digits processed thus far to 18.

5. If the number begins with any leading zeros, skip over them (do not
change the exponent or significant digit counters for leading zeros to
the left of the decimal point).

6. If the scan encounters a decimal point after processing any leading
zeros, go to step 11; else fall through to step 7.

7. For each nonzero digit to the left of the decimal point, if the signifi-
cant digit counter is not zero, insert the nonzero digit into a “digit
string” array at the position specified by the significant digit counter
(minus 1).5 Note that this will insert the characters into the string in a
reversed position.

5. If the significant digit counter is zero, the algorithm has already processed 18 significant
digits and will ignore any additional digits as the real10 format cannot represent more than
18 significant digits.

Numeric Conversion 571

8. For each digit to the left of the decimal point, increment the exponent
value (originally initialized to –18) by 1.

9. If the significant digit counter is not zero, decrement the significant
digit counter (this will also provide the index into the digit string
array).

10. If the first nondigit encountered is not a decimal point, skip to step 14.

11. Skip over the decimal point character.

12. For each digit encountered to the right of the decimal point, continue
adding the digits (in reverse order) to the digit string array as long as
the significant digit counter is not zero. If the significant digit counter
is greater than zero, decrement it. Also, decrement the exponent value.

13. If the algorithm hasn’t encountered at least one decimal digit by this point, report
an illegal character exception and return.

14. If the current character is not e or E, then go to step 20.6 Otherwise, skip
over the e or E character and continue with step 15.

15. If the next character is + or -, skip over it. Set a flag to true if the sign
character is -, and set it to false otherwise (note that this exponent sign
flag is different from the mantissa sign flag set earlier in this algorithm).

16. If the next character is not a decimal digit, report an error.

17. Convert the string of digits (starting with the current decimal digit
character) to an integer.

18. Add the converted integer to the exponent value (which was initialized
to –18 at the start of this algorithm).

19. If the exponent value is outside the range –4930 to +4930, report an
out-of-range exception.

20. Convert the digit string array of characters to an 18-digit (9-byte)
packed BCD value by stripping the HO 4 bits of each character, merg-
ing pairs of characters into a single byte (by shifting the odd-indexed
byte to the left 4 bits and logically ORing with the even-indexed byte of
each pair), and then setting the HO (10th) byte to 0.

21. Convert the packed BCD value to a real10 value (using the fbld
instruction).

22. Take the absolute value of the exponent (though preserve the sign of
the exponent). This value will be 13 bits or less (4096 has bit 12 set, so
4930 or less will have some combination of bits 0 to 13 set to 1, with all
other bits 0).

23. If the exponent was positive, then for each set bit in the exponent, mul-
tiply the current real10 value by 10 raised to the power specified by that
bit. For example, if bits 12, 10, and 1 are set, multiply the real10 value by
104096, 101024, and 102.

6. Some string formats also allow d or D to denote a double-precision value. The choice is up
to you whether you wish to also allow this (and possibly check the range of the value if the
algorithm encounters e or E versus d or D).

572 Chapter 9

24. If the exponent was negative, then for each set bit in the exponent,
divide the current real10 value by 10 raised to the power specified by
that bit. For example, if bits 12, 10, and 1 are set, divide the real10 value
by 104096, 101024, and 102.

25. If the mantissa is negative (the first sign flag set at the beginning of the
algorithm), then negate the floating-point number.

Listing 9-19 provides an implementation of this algorithm.

; Listing 9-19

; Real string-to-floating-point conversion.

 option casemap:none

false = 0
true = 1
tab = 9
nl = 10

 .const
ttlStr byte "Listing 9-19", 0
fmtStr1 byte "strToR10: str='%s', value=%e", nl, 0

fStr1a byte "1.234e56",0
fStr1b byte "-1.234e56",0
fStr1c byte "1.234e-56",0
fStr1d byte "-1.234e-56",0
fStr2a byte "1.23",0
fStr2b byte "-1.23",0
fStr3a byte "1",0
fStr3b byte "-1",0
fStr4a byte "0.1",0
fStr4b byte "-0.1",0
fStr4c byte "0000000.1",0
fStr4d byte "-0000000.1",0
fStr4e byte "0.1000000",0
fStr4f byte "-0.1000000",0
fStr4g byte "0.0000001",0
fStr4h byte "-0.0000001",0
fStr4i byte ".1",0
fStr4j byte "-.1",0

values qword fStr1a, fStr1b, fStr1c, fStr1d,
 fStr2a, fStr2b,
 fStr3a, fStr3b,
 fStr4a, fStr4b, fStr4c, fStr4d,
 fStr4e, fStr4f, fStr4g, fStr4h,
 fStr4i, fStr4j,
 0

 align 4
PotTbl real10 1.0e+4096,
 1.0e+2048,

Numeric Conversion 573

 1.0e+1024,
 1.0e+512,
 1.0e+256,
 1.0e+128,
 1.0e+64,
 1.0e+32,
 1.0e+16,
 1.0e+8,
 1.0e+4,
 1.0e+2,
 1.0e+1,
 1.0e+0

 .data
r8Val real8 ?

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; strToR10 - RSI points at a string of characters that represent a
; floating-point value. This routine converts that string
; to the corresponding FP value and leaves the result on
; the top of the FPU stack. On return, ESI points at the
; first character this routine couldn't convert.

; Like the other ATOx routines, this routine raises an
; exception if there is a conversion error or if ESI
; contains NULL.

strToR10 proc

sign equ <cl>
expSign equ <ch>

DigitStr equ <[rbp - 20]>
BCDValue equ <[rbp - 30]>
rsiSave equ <[rbp - 40]>

 push rbp
 mov rbp, rsp
 sub rsp, 40

 push rbx

574 Chapter 9

 push rcx
 push rdx
 push r8
 push rax

; Verify that RSI is not NULL.

 test rsi, rsi
 jz refNULL

; Zero out the DigitStr and BCDValue arrays.

 xor rax, rax
 mov qword ptr DigitStr, rax
 mov qword ptr DigitStr[8], rax
 mov dword ptr DigitStr[16], eax

 mov qword ptr BCDValue, rax
 mov word ptr BCDValue[8], ax

; Skip over any leading space or tab characters in the sequence.

 dec rsi
whileDelimLoop:
 inc rsi
 mov al, [rsi]
 cmp al, ' '
 je whileDelimLoop
 cmp al, tab
 je whileDelimLoop

; Check for "+" or "-".

 cmp al, '-'
 sete sign
 je doNextChar
 cmp al, '+'
 jne notPlus
doNextChar: inc rsi ; Skip the "+" or "-"
 mov al, [rsi]

notPlus:

; Initialize EDX with -18 since we have to account
; for BCD conversion (which generates a number * 10^18 by
; default). EDX holds the value's decimal exponent.

 mov rdx, -18

; Initialize EBX with 18, which is the number of significant
; digits left to process and it is also the index into the
; DigitStr array.

Numeric Conversion 575

 mov ebx, 18 ; Zero-extends!

; At this point, we're beyond any leading sign character.
; Therefore, the next character must be a decimal digit
; or a decimal point.

 mov rsiSave, rsi ; Save to look ahead 1 digit
 cmp al, '.'
 jne notPeriod

; If the first character is a decimal point, then the
; second character needs to be a decimal digit.

 inc rsi
 mov al, [rsi]

notPeriod:
 cmp al, '0'
 jb convError
 cmp al, '9'
 ja convError
 mov rsi, rsiSave ; Go back to orig char
 mov al, [rsi]
 jmp testWhlAL0

; Eliminate any leading zeros (they do not affect the value or
; the number of significant digits).

whileAL0: inc rsi
 mov al, [rsi]
testWhlAL0: cmp al, '0'
 je whileAL0

; If we're looking at a decimal point, we need to get rid of the
; zeros immediately after the decimal point since they don't
; count as significant digits. Unlike zeros before the decimal
; point, however, these zeros do affect the number's value as
; we must decrement the current exponent for each such zero.

 cmp al, '.'
 jne testDigit

 inc edx ; Counteract dec below
repeatUntilALnot0:
 dec edx
 inc rsi
 mov al, [rsi]
 cmp al, '0'
 je repeatUntilALnot0
 jmp testDigit2

; If we didn't encounter a decimal point after removing leading
; zeros, then we've got a sequence of digits before a decimal
; point. Process those digits here.

576 Chapter 9

; Each digit to the left of the decimal point increases
; the number by an additional power of 10. Deal with
; that here.

whileADigit:
 inc edx

; Save all the significant digits, but ignore any digits
; beyond the 18th digit.

 test ebx, ebx
 jz Beyond18

 mov DigitStr[rbx * 1], al
 dec ebx

Beyond18: inc rsi
 mov al, [rsi]

testDigit:
 sub al, '0'
 cmp al, 10
 jb whileADigit

 cmp al, '.'-'0'
 jne testDigit2

 inc rsi ; Skip over decimal point
 mov al, [rsi]
 jmp testDigit2

; Okay, process any digits to the right of the decimal point.

whileDigit2:
 test ebx, ebx
 jz Beyond18_2

 mov DigitStr[rbx * 1], al
 dec ebx

Beyond18_2: inc rsi
 mov al, [rsi]

testDigit2: sub al, '0'
 cmp al, 10
 jb whileDigit2

; At this point, we've finished processing the mantissa.
; Now see if there is an exponent we need to deal with.

 mov al, [rsi]
 cmp al, 'E'
 je hasExponent
 cmp al, 'e'
 jne noExponent

Numeric Conversion 577

hasExponent:
 inc rsi
 mov al, [rsi] ; Skip the "E".
 cmp al, '-'
 sete expSign
 je doNextChar_2
 cmp al, '+'
 jne getExponent;

doNextChar_2:
 inc rsi ; Skip "+" or "-"
 mov al, [rsi]

; Okay, we're past the "E" and the optional sign at this
; point. We must have at least one decimal digit.

getExponent:
 sub al, '0'
 cmp al, 10
 jae convError

 xor ebx, ebx ; Compute exponent value in EBX
ExpLoop: movzx eax, byte ptr [rsi] ; Zero-extends to RAX!
 sub al, '0'
 cmp al, 10
 jae ExpDone

 imul ebx, 10
 add ebx, eax
 inc rsi
 jmp ExpLoop

; If the exponent was negative, negate our computed result.

ExpDone:
 cmp expSign, false
 je noNegExp

 neg ebx

noNegExp:

; Add in the BCD adjustment (remember, values in DigitStr, when
; loaded into the FPU, are multiplied by 10^18 by default.
; The value in EDX adjusts for this).

 add edx, ebx

noExponent:

; Verify that the exponent is between -4930 and +4930 (which
; is the maximum dynamic range for an 80-bit FP value).

 cmp edx, 4930
 jg voor ; Value out of range

578 Chapter 9

 cmp edx, -4930
 jl voor

; Now convert the DigitStr variable (unpacked BCD) to a packed
; BCD value.

 mov r8, 8
for9: mov al, DigitStr[r8 * 2 + 2]
 shl al, 4
 or al, DigitStr[r8 * 2 + 1]
 mov BCDValue[r8 * 1], al

 dec r8
 jns for9

 fbld tbyte ptr BCDValue

; Okay, we've got the mantissa into the FPU. Now multiply the
; mantissa by 10 raised to the value of the computed exponent
; (currently in EDX).

; This code uses power of 10 tables to help make the
; computation a little more accurate.

; We want to determine which power of 10 is just less than the
; value of our exponent. The powers of 10 we are checking are
; 10**4096, 10**2048, 10**1024, 10**512, and so on. A slick way to
; do this check is by shifting the bits in the exponent
; to the left. Bit #12 is the 4096 bit. So if this bit is set,
; our exponent is >= 10**4096. If not, check the next bit down
; to see if our exponent >= 10**2048, etc.

 mov ebx, -10 ; Initial index into power of 10 table
 test edx, edx
 jns positiveExponent

; Handle negative exponents here.

 neg edx
 shl edx, 19 ; Bits 0 to 12 -> 19 to 31
 lea r8, PotTbl

whileEDXne0:
 add ebx, 10
 shl edx, 1
 jnc testEDX0

 fld real10 ptr [r8][rbx * 1]
 fdivp

testEDX0: test edx, edx
 jnz whileEDXne0
 jmp doMantissaSign

Numeric Conversion 579

; Handle positive exponents here.

positiveExponent:
 lea r8, PotTbl
 shl edx, 19 ; Bits 0 to 12 -> 19 to 31
 jmp testEDX0_2

whileEDXne0_2:
 add ebx, 10
 shl edx, 1
 jnc testEDX0_2

 fld real10 ptr [r8][rbx * 1]
 fmulp

testEDX0_2: test edx, edx
 jnz whileEDXne0_2

; If the mantissa was negative, negate the result down here.

doMantissaSign:
 cmp sign, false
 je mantNotNegative

 fchs

mantNotNegative:
 clc ; Indicate success
 jmp Exit

refNULL: mov rax, -3
 jmp ErrorExit

convError: mov rax, -2
 jmp ErrorExit

voor: mov rax, -1 ; Value out of range
 jmp ErrorExit

illChar: mov rax, -4

ErrorExit: stc ; Indicate failure
 mov [rsp], rax ; Save error code
Exit: pop rax
 pop r8
 pop rdx
 pop rcx
 pop rbx
 leave
 ret

strToR10 endp

580 Chapter 9

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; Test floating-point conversion:

 lea rbx, values
ValuesLp: cmp qword ptr [rbx], 0
 je allDone

 mov rsi, [rbx]
 call strToR10
 fstp r8Val

 lea rcx, fmtStr1
 mov rdx, [rbx]
 mov r8, qword ptr r8Val
 call printf
 add rbx, 8
 jmp ValuesLp

allDone: leave
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 9-19: A strToR10 function

Here’s the build command and sample output for Listing 9-19.

C:\>build listing9-19

C:\>echo off
 Assembling: listing9-19.asm
c.cpp

C:\>listing9-19
Calling Listing 9-19:
strToR10: str='1.234e56', value=1.234000e+56
strToR10: str='-1.234e56', value=-1.234000e+56
strToR10: str='1.234e-56', value=1.234000e-56
strToR10: str='-1.234e-56', value=-1.234000e-56
strToR10: str='1.23', value=1.230000e+00
strToR10: str='-1.23', value=-1.230000e+00

Numeric Conversion 581

strToR10: str='1', value=1.000000e+00
strToR10: str='-1', value=-1.000000e+00
strToR10: str='0.1', value=1.000000e-01
strToR10: str='-0.1', value=-1.000000e-01
strToR10: str='0000000.1', value=1.000000e-01
strToR10: str='-0000000.1', value=-1.000000e-01
strToR10: str='0.1000000', value=1.000000e-01
strToR10: str='-0.1000000', value=-1.000000e-01
strToR10: str='0.0000001', value=1.000000e-07
strToR10: str='-0.0000001', value=-1.000000e-07
strToR10: str='.1', value=1.000000e-01
strToR10: str='-.1', value=-1.000000e-01
Listing 9-19 terminated

 9.3 For More Information
Donald Knuth’s The Art of Computer Programming, Volume 2: Seminumerical
Algorithms (Addison-Wesley Professional, 1997) contains a lot of useful
information about decimal arithmetic and extended-precision arithme-
tic, though that text is generic and doesn’t describe how to do this in x86
assembly language.

 9.4 Test Yourself
1. What is the code that will convert an 8-bit hexadecimal value in AL into

two hexadecimal digits (in AH and AL)?

2. How many hexadecimal digits will dToStr produce?

3. Explain how to use qToStr to write a 128-bit hexadecimal output routine.

4. What instruction should you use to produce the fastest 64-bit decimal-
to-string conversion function?

5. How do you write a signed decimal-to-string conversion if you’re given a
function that does an unsigned decimal-to-string conversion?

6. What are the parameters for the utoStrSize function?

7. What string will uSizeToStr produce if the number requires more print
positions than specified by the minDigits parameter?

8. What are the parameters for the r10ToStr function?

9. What string will r10ToStr produce if the output won’t fit in the string size
specified by the fWidth argument?

10. What are the arguments to the e10ToStr function?

11. What is a delimiter character?

12. What are two possible errors that could occur during a string-to-
numeric conversion?

10
T A B L E L O O K U P S

This chapter discusses how to speed up
or reduce the complexity of computations

by using table lookups. Back in the early
days of x86 programming, replacing expensive

computations with table lookups was a common way
to improve program performance. Today, memory
speeds in modern systems limit performance gains
that can be obtained by using table lookups. However, for complex calcu-
lations, this is still a viable technique for writing high-performance code.
This chapter demonstrates the space/speed trade-offs when using table
lookups.

 10.1 Tables
To an assembly language programmer, a table is an array containing initial-
ized values that do not change once created. In assembly language, you
can use tables for a variety of purposes: computing functions, controlling

584 Chapter 10

program flow, or simply looking things up. In general, tables provide a fast
mechanism for performing an operation at the expense of space in your
program (the extra space holds the tabular data). In this section, we’ll
explore some of the many possible uses of tables in an assembly language
program.

N O T E Because tables typically contain initialized data that does not change during program
execution, the .const section is a good place to put your table objects.

10.1.1 Function Computation via Table Lookup
A simple-looking high-level-language arithmetic expression can be equivalent
to a considerable amount of x86-64 assembly language code and, therefore,
could be expensive to compute. Assembly language programmers often
precompute many values and use a table lookup of those values to speed up
their programs. This has the advantage of being easier, and it’s often more
efficient as well.

Consider the following Pascal statement:

if (character >= 'a') and (character <= 'z') then
 character := chr(ord(character) - 32);

This Pascal if statement converts the character variable’s value from lower-
case to uppercase if character is in the range a to z. The MASM code that does
the same thing requires a total of seven machine instructions, as follows:

 mov al, character
 cmp al, 'a'
 jb notLower
 cmp al, 'z'
 ja notLower

 and al, 5fh ; Same as sub(32, al) in this code
 mov character, al
notLower:

Using a table lookup, however, allows you to reduce this sequence to
just four instructions:

mov al, character
lea rbx, CnvrtLower
xlat
mov character, al

The xlat, or translate, instruction does the following:

mov al, [rbx + al * 1]

This instruction uses the current value of the AL register as an index
into the array whose base address is found in RBX. It fetches the byte at
that index in the array and copies that byte into the AL register. Intel calls

Table Lookups 585

this instruction translate because programmers typically use it to translate
characters from one form to another by using a lookup table, exactly the
way we are using it here.

In the previous example, CnvrtLower is a 256-byte table that contains the
values 0 to 60h at indices 0 to 60h, 41h to 5Ah at indices 61h to 7Ah, and
7Bh to 0FFh at indices 7Bh to 0FFh. Therefore, if AL contains a value in
the range 0 to 60h or 7Ah to 0FFh, the xlat instruction returns the same
value, effectively leaving AL unchanged. However, if AL contains a value in
the range 61h to 7Ah (the ASCII codes for a to z), then the xlat instruction
replaces the value in AL with a value in the range 41h to 5Ah (the ASCII
codes for A to Z), thereby converting lowercase to uppercase.

As the complexity of a function increases, the performance benefits of
the table-lookup method increase dramatically. While you would almost
never use a lookup table to convert lowercase to uppercase, consider what
happens if you want to swap cases; for example, via computation:

 mov al, character
 cmp al, 'a'
 jb notLower
 cmp al, 'z'
 ja allDone

 and al, 5fh
 jmp allDone

notLower:
 cmp al, 'A'
 jb allDone
 cmp al, 'Z'
 ja allDone

 or al, 20h
allDone:
 mov character, al

This code has 13 machine instructions.
The table-lookup code to compute this same function is as follows:

mov al, character
lea rbx, SwapUL
xlat
mov character, al

As you can see, when using a table lookup to compute a function, only
the table changes; the code remains the same.

10.1.1.1 Function Domains and Range

Functions computed via table lookup have a limited domain (the set of pos-
sible input values they accept), because each element in the domain of a
function requires an entry in the lookup table. For example, our previous

586 Chapter 10

uppercase/lowercase conversion functions have the 256-character extended
ASCII character set as their domain. A function such as sin or cos accepts
the (infinite) set of real numbers as possible input values. You won’t find it
very practical to implement a function via table lookup whose domain is the
set of real numbers, because you must limit the domain to a small set.

Most lookup tables are quite small, usually 10 to 256 entries. Rarely do
lookup tables grow beyond 1000 entries. Most programmers don’t have the
patience to create (and verify the correctness) of a 1000-entry table (though
see “Generating Tables” on page 590 for a discussion of generating tables
programmatically).

Another limitation of functions based on lookup tables is that the ele-
ments in the domain must be fairly contiguous. Table lookups use the input
value to a function as an index into the table, and return the value at that
entry in the table. A function that accepts values 0, 100, 1000, and 10,000
would require 10,001 different elements in the lookup table because of the
range of input values. Therefore, you cannot efficiently create such a func-
tion via a table lookup. Throughout this section on tables, we’ll assume that
the domain of the function is a fairly contiguous set of values.

The range of a function is the set of possible output values it produces.
From the perspective of a table lookup, a function’s range determines the
size of each table entry. For example, if a function’s range is the integer val-
ues 0 through 255, then each table entry requires a single byte; if the range
is 0 through 65,535, each table entry requires 2 bytes, and so on.

The best functions you can implement via table lookups are those whose
domain and range are always 0 to 255 (or a subset of this range). Any such
function can be computed using the same two instructions: lea rbx, table and
xlat. The only thing that ever changes is the lookup table. The uppercase/
lowercase conversion routines presented earlier are good examples of such a
function.

You cannot (conveniently) use the xlat instruction to compute a func-
tion value once the range or domain of the function takes on values outside
0 to 255. There are three situations to consider:

•	 The domain is outside 0 to 255, but the range is within 0 to 255.

•	 The domain is inside 0 to 255, but the range is outside 0 to 255.

•	 Both the domain and range of the function take on values outside
0 to 255.

We will consider these cases in the following sections.

10.1.1.2 Domain Outside 0 to 255, Range Within 0 to 255

If the domain of a function is outside 0 to 255, but the range of the func-
tion falls within this set of values, our lookup table will require more than
256 entries, but we can represent each entry with a single byte. Therefore,
the lookup table can be an array of bytes. Other than those lookups that

Table Lookups 587

can use the xlat instruction, functions falling into this class are the most
efficient. The following Pascal function invocation

B := Func(X);

where Func is

function Func(X:dword):byte;

is easily converted to the following MASM code:

mov edx, X ; Zero-extends into RDX!
lea rbx, FuncTable
mov al, [rbx][rdx * 1]
mov B, al

This code loads the function parameter into RDX, uses this value (in
the range 0 to ??) as an index into the FuncTable table, fetches the byte at
that location, and stores the result into B. Obviously, the table must contain
a valid entry for each possible value of X. For example, suppose you wanted
to map a cursor position on an 80×25 text-based video display in the range
0 to 1999 (there are 2000 character positions on an 80×25 video display) to
its X (0 to 79) or Y (0 to 24) coordinate on the screen. You could compute
the X coordinate via the function

X = Posn % 80;

and the Y coordinate with the formula

Y = Posn / 80;

(where Posn is the cursor position on the screen). This can be computed
using this x86-64 code:

mov ax, Posn
mov cl, 80
div cl

; X is now in AH, Y is now in AL.

However, the div instruction on the x86-64 is very slow. If you need to
do this computation for every character you write to the screen, you will
seriously degrade the speed of your video-display code. The following code,
which realizes these two functions via table lookup, may improve the per-
formance of your code considerably:

lea rbx, yCoord
movzx ecx, Posn ; Use a plain mov instr if Posn
mov al, [rbx][rcx * 1] ; is uns32 rather than an
lea rbx, xCoord ; uns16 value
mov ah, [rbx][rcx * 1]

588 Chapter 10

Keep in mind that loading a value into ECX automatically zero-extends
that value into RCX. Therefore, the movzx instruction in this code sequence
actually zero-extends Posn into RCX, not just ECX.

If you’re willing to live with the limitations of the LARGEADDRESSAWARE:NO
linking option (see “Large Address Unaware Applications” in Chapter 3),
you can simplify this code somewhat:

movzx ecx, Posn ; Use a plain mov instr if Posn
mov al, yCoord[rcx * 1] ; is uns32 rather than an
mov ah, xCoord[rcx * 1] ; uns16 value

10.1.1.3 Domain in 0 to 255 and Range Outside 0 to 255, or Both Outside 0 to 255

If the domain of a function is within 0 to 255, but the range is outside this
set, the lookup table will contain 256 or fewer entries, but each entry will
require 2 or more bytes. If both the range and domains of the function are
outside 0 to 255, each entry will require 2 or more bytes and the table will
contain more than 256 entries.

Recall from Chapter 4 that the formula for indexing into a single-
dimensional array (of which a table is a special case) is as follows:

element_address = Base + index * element_size

If elements in the range of the function require 2 bytes, you must mul-
tiply the index by 2 before indexing into the table. Likewise, if each entry
requires 3, 4, or more bytes, the index must be multiplied by the size of
each table entry before being used as an index into the table. For example,
suppose you have a function, F(x), defined by the following (pseudo) Pascal
declaration:

function F(x:dword):word;

You can create this function by using the following x86-64 code (and,
of course, the appropriate table named F):

movzx ebx, x
lea r8, F
mov ax, [r8][rbx * 2]

If you can live with the limitations of LARGEADDRESSAWARE:NO, you can
reduce this as follows:

movzx ebx, x
mov ax, F[rbx * 2]

Any function whose domain is small and mostly contiguous is a good
candidate for computation via table lookup. In some cases, noncontiguous
domains are acceptable as well, as long as the domain can be coerced into
an appropriate set of values (an example you’ve already seen is processing
switch statement expressions). Such operations, called conditioning, are the
subject of the next section.

Table Lookups 589

10.1.1.4 Domain Conditioning

Domain conditioning is taking a set of values in the domain of a function and
massaging them so that they are more acceptable as inputs to that function.
Consider the following function:

sin x = sin x|(x∈[–2π,2π])

This says that the (computer) function sin(x) is equivalent to the (math-
ematical) function sin x where

–2π <= x <= 2π

As we know, sine is a circular function, which will accept any real-value
input. The formula used to compute sine, however, accepts only a small set
of these values.

This range limitation doesn’t present any real problems; by simply
computing sin(x mod (2 * pi)), we can compute the sine of any input
value. Modifying an input value so that we can easily compute a function
is called conditioning the input. In the preceding example, we computed
x mod 2 * pi and used the result as the input to the sin function. This trun-
cates x to the domain sin needs without affecting the result. We can apply
input conditioning to table lookups as well. In fact, scaling the index to
handle word entries is a form of input conditioning. Consider the follow-
ing Pascal function:

function val(x:word):word; begin
 case x of
 0: val := 1;
 1: val := 1;
 2: val := 4;
 3: val := 27;
 4: val := 256;
 otherwise val := 0;
 end;
end;

This function computes a value for x in the range 0 to 4 and returns 0
if x is outside this range. Since x can take on 65,536 different values (being
a 16-bit word), creating a table containing 65,536 words where only the first
five entries are nonzero seems to be quite wasteful. However, we can still
compute this function by using a table lookup if we use input conditioning.
The following assembly language code presents this principle:

 mov ax, 0 ; AX = 0, assume x > 4
 movzx ebx, x ; Note that HO bits of RBX must be 0!
 lea r8, val
 cmp bx, 4
 ja defaultResult

590 Chapter 10

 mov ax, [r8][rbx * 2]

defaultResult:

This code checks to see if x is outside the range 0 to 4. If so, it manually
sets AX to 0; otherwise, it looks up the function value through the val table.
With input conditioning, you can implement several functions that would
otherwise be impractical to do via table lookup.

10.1.2 Generating Tables
One big problem with using table lookups is creating the table in the first
place. This is particularly true if the table has many entries. Figuring out the
data to place in the table, then laboriously entering the data and, finally,
checking that data to make sure it is valid, is very time-consuming and bor-
ing. For many tables, there is no way around this process. For other tables,
there is a better way: using the computer to generate the table for you.

An example is probably the best way to describe this. Consider the fol-
lowing modification to the sine function:

sin(x) × r = ⟨ [x ∈ 0,359]⟩(r × (1000 × sin x))
1000

This states that x is an integer in the range 0 to 359 and r must be an
integer. The computer can easily compute this with the following code:

Thousand dword 1000
 .
 .
 .
lea r8, Sines
movzx ebx, x
mov eax, [r8][rbx * 2] ; Get sin(x) * 1000
imul r ; Note that this extends EAX into EDX
idiv Thousand ; Compute (r *(sin(x) * 1000)) / 1000

(This provides the usual improvement if you can live with the limita-
tions of LARGEADDRESSAWARE:NO.)

Note that integer multiplication and division are not associative. You
cannot remove the multiplication by 1000 and the division by 1000 because
they appear to cancel each other out. Furthermore, this code must compute
this function in exactly this order.

All that we need to complete this function is Sines, a table containing
360 different values corresponding to the sine of the angle (in degrees)
times 1000. The C/C++ program in Listing 10-1 generates this table for you.

// Listing 10-1: GenerateSines

// A C program that generates a table of sine values for
// an assembly language lookup table.

Table Lookups 591

#include <stdlib.h>
#include <stdio.h>
#include <math.h>

int main(int argc, char **argv)
{
 FILE *outFile;
 int angle;
 int r;

 // Open the file:

 outFile = fopen("sines.asm", "w");

 // Emit the initial part of the declaration to
 // the output file:

 fprintf
 (
 outFile,
 "Sines:" // sin(0) = 0
);

 // Emit the sines table:

 for(angle = 0; angle <= 359; ++angle)
 {
 // Convert angle in degrees to an angle in
 // radians using:

 // radians = angle * 2.0 * pi / 360.0;

 // Multiply by 1000 and store the rounded
 // result into the integer variable r.

 double theSine =
 sin
 (
 angle * 2.0 *
 3.14159265358979323846 /
 360.0
);
 r = (int) (theSine * 1000.0);

 // Write out the integers eight per line to the
 // source file.
 // Note: If (angle AND %111) is 0, then angle
 // is divisible by 8 and we should output a
 // newline first.

 if((angle & 7) == 0)
 {
 fprintf(outFile, "\n\tword\t");
 }
 fprintf(outFile, "%5d", r);

592 Chapter 10

 if ((angle & 7) != 7)
 {
 fprintf(outFile, ",");
 }

 } // endfor
 fprintf(outFile, "\n");

 fclose(outFile);
 return 0;

} // end main

Listing 10-1: A C program that generates a table of sines

This program produces the following output (truncated for brevity):

Sines:
 word 0, 17, 34, 52, 69, 87, 104, 121
 word 139, 156, 173, 190, 207, 224, 241, 258
 word 275, 292, 309, 325, 342, 358, 374, 390
 word 406, 422, 438, 453, 469, 484, 499, 515
 word 529, 544, 559, 573, 587, 601, 615, 629
 word 642, 656, 669, 681, 694, 707, 719, 731
 word 743, 754, 766, 777, 788, 798, 809, 819
 word 829, 838, 848, 857, 866, 874, 882, 891
 word 898, 906, 913, 920, 927, 933, 939, 945
 word 951, 956, 961, 965, 970, 974, 978, 981
 word 984, 987, 990, 992, 994, 996, 997, 998
 word 999, 999, 1000, 999, 999, 998, 997, 996
 word 994, 992, 990, 987, 984, 981, 978, 974
 word 970, 965, 961, 956, 951, 945, 939, 933
 word 927, 920, 913, 906, 898, 891, 882, 874
 .
 .
 .
 word -898, -891, -882, -874, -866, -857, -848, -838
 word -829, -819, -809, -798, -788, -777, -766, -754
 word -743, -731, -719, -707, -694, -681, -669, -656
 word -642, -629, -615, -601, -587, -573, -559, -544
 word -529, -515, -500, -484, -469, -453, -438, -422
 word -406, -390, -374, -358, -342, -325, -309, -292
 word -275, -258, -241, -224, -207, -190, -173, -156
 word -139, -121, -104, -87, -69, -52, -34, -17

Obviously, it’s much easier to write the C program that generated this
data than to enter (and verify) this data by hand. Of course, you don’t
even have to write the table-generation program in C (or Pascal/Delphi,
Java, C#, Swift, or another high-level language). Because the program will
execute only once, the performance of the table-generation program is
not an issue.

Table Lookups 593

Once you run your table-generation program, all that remains to be
done is to cut and paste the table from the file (sines.asm in this example)
into the program that will actually use the table.

10.1.3 Table-Lookup Performance
In the early days of PCs, table lookups were a preferred way to do high-
performance computations. Today, it is not uncommon for a CPU to be 10
to 100 times faster than main memory. As a result, using a table lookup may
not be faster than doing the same calculation with machine instructions.
However, the on-chip CPU cache memory subsystems operate at near CPU
speeds. Therefore, table lookups can be cost-effective if your table resides
in cache memory on the CPU. This means that the way to get good perfor-
mance using table lookups is to use small tables (because there’s only so
much room on the cache) and use tables whose entries you reference fre-
quently (so the tables stay in the cache).

See Write Great Code, Volume 1 (No Starch Press, 2020) or the electronic
version of The Art of Assembly Language at https://www.randallhyde.com/ for
details concerning the operation of cache memory and how you can opti-
mize your use of cache memory.

 10.2 For More Information
Donald Knuth’s The Art of Computer Programming, Volume 3: Searching and
Sorting (Addison-Wesley Professional, 1998) contains a lot of useful informa-
tion about searching for data in tables. Searching for data is an alternative
when a straight array access won’t work in a given situation.

 10.3 Test Yourself
1. What is the domain of a function?

2. What is the range of a function?

3. What does the xlat instruction do?

4. Which domain and range values allow you to use the xlat instruction?

5. Provide the code that implements the following functions (using
pseudo-C prototypes and f as the table name):

a. byte f(byte input)

b. word f(byte input)

c. byte f(word input)

d. word f(word input)

6. What is domain conditioning?

7. Why might table lookups not be effective on modern processors?

https://www.randallhyde.com/

11
S I M D I N S T R U C T I O N S

This chapter discusses the vector instructions
on the x86-64. This special class of instruc-

tions provides parallel processing, traditionally
known as single-instruction, multiple-data (SIMD)

instructions because, quite literally, a single instruc-
tion operates on several pieces of data concurrently.
As a result of this concurrency, SIMD instructions can
often execute several times faster (in theory, as much
as 32 to 64 times faster) than the comparable single-
instruction, single-data (SISD), or scalar, instructions that
compose the standard x86-64 instruction set.

The x86-64 actually provides three sets of vector instructions: the Multi-
media Extensions (MMX) instruction set, the Streaming SIMD Extensions
(SSE) instruction set, and the Advanced Vector Extensions (AVX) instruction

596 Chapter 11

set. This book does not consider the MMX instructions as they are obsolete
(SSE equivalents exist for the MMX instructions).

The x86-64 vector instruction set (SSE/AVX) is almost as large as the
scalar instruction set. A whole book could be written about SSE/AVX pro-
gramming and algorithms. However, this is not that book; SIMD and parallel
algorithms are an advanced subject beyond the scope of this book, so this
chapter settles for introducing a fair number of SSE/AVX instructions and
leaves it at that.

This chapter begins with some prerequisite information. First, it begins
with a discussion of the x86-64 vector architecture and streaming data types.
Then, it discusses how to detect the presence of various vector instructions
(which are not present on all x86-64 CPUs) by using the cpuid instruction.
Because most vector instructions require special memory alignment for data
operands, this chapter also discusses MASM segments.

 11.1 The SSE/AVX Architectures
Let’s begin by taking a quick look at the SSE and AVX features in the x64-86
CPUs. The SSE and AVX instructions have several variants: the original
SSE, plus SSE2, SSE3, SSE3, SSE4 (SSE4.1 and SSE4.2), AVX, AVX2 (AVX
and AVX2 are sometimes called AVX-256), and AVX-512. SSE3 was intro-
duced along with the Pentium 4F (Prescott) CPU, Intel’s first 64-bit CPU.
Therefore, you can assume that all Intel 64-bit CPUs support the SSE3 and
earlier SIMD instructions.

The SSE/AVX architectures have three main generations:

•	 The SSE architecture, which (on 64-bit CPUs) provided sixteen 128-bit
XMM registers supporting integer and floating-point data types

•	 The AVX/AVX2 architecture, which supported sixteen 256-bit YMM
registers (also supporting integer and floating-point data types)

•	 The AVX-512 architecture, which supported up to thirty-two 512-bit
ZMM registers

As a general rule, this chapter sticks to AVX2 and earlier instructions
in its examples. Please see the Intel and AMD CPU manuals for a discussion
of the additional instruction set extensions such as AVX-512. This chapter
does not attempt to describe every SSE or AVX instruction. Most streaming
instructions have very specialized purposes and aren’t particularly useful in
generic applications.

 11.2 Streaming Data Types
The SSE and AVX programming models support two basic data types: sca-
lars and vectors. Scalars hold one single- or double-precision floating-point
value. Vectors hold multiple floating-point or integer values (between 2 and
32 values, depending on the scalar data type of byte, word, dword, qword,

SIMD Instructions 597

single precision, or double precision, and the register and memory size of
128 or 256 bits).

The XMM registers (XMM0 to XMM15) can hold a single 32-bit floating-
point value (a scalar) or four single-precision floating-point values (a vector).
The YMM registers (YMM0 to YMM15) can hold eight single-precision (32-bit)
floating-point values (a vector); see Figure 11-1.

255 224 192 160 128 127 96 64 32 0

Scalar

XMMn (single x 4)

YMMn (single x 8)

Figure 11-1: Packed and scalar single-precision floating-point data type

The XMM registers can hold a single double-precision scalar value or
a vector containing a pair of double-precision values. The YMM registers
can hold a vector containing four double-precision floating-point values, as
shown in Figure 11-2.

Scalar double

XMMn (double x 2)

YMMn (double x 4)

255 192 128 127 64 0

Figure 11-2: Packed and scalar double-precision floating-point type

The XMM registers can hold 16 byte values (YMM registers can hold
32 byte values), allowing the CPU to perform 16 (32) byte-sized computa-
tions with one instruction (Figure 11-3).

255 128 127 0

XMMn (byte x 16)

YMMn (byte x 32)

Figure 11-3: Packed byte data type

The XMM registers can hold eight word values (YMM registers can
hold sixteen word values), allowing the CPU to perform eight (sixteen)
16-bit word-sized integer computations with one instruction (Figure 11-4).

598 Chapter 11

255 128 127 0

XMMn (word x 8)

YMMn (word x 16)

Figure 11-4: Packed word data type

The XMM registers can hold four dword values (YMM registers can
hold eight dword values), allowing the CPU to perform four (eight) 32-bit
dword-sized integer computations with one instruction (Figure 11-5).

255 128 127 0

XMMn (dword x 4)

YMMn (dword x 8)

Figure 11-5: Packed double-word data type

The XMM registers can hold two qword values (YMM registers can
hold four qword values), allowing the CPU to perform two (four) 64-bit
qword computations with one instruction (Figure 11-6).

255 128 127 0

XMMn (qword x 2)

YMMn (qword x 4)

Figure 11-6: Packed quad-word data type

Intel’s documentation calls the vector elements in an XMM and a YMM
register lanes. For example, a 128-bit XMM register has 16 bytes. Bits 0 to 7
are lane 0, bits 8 to 15 are lane 1, bits 16 to 23 are lane 2, . . . , and bits 120 to
127 are lane 15. A 256-bit YMM register has 32 byte-sized lanes, and a 512-bit
ZMM register has 64 byte-sized lanes.

Similarly, a 128-bit XMM register has eight word-sized lanes (lanes 0 to
7). A 256-bit YMM register has sixteen word-sized lanes (lanes 0 to 15). On
AVX-512-capable CPUs, a ZMM register (512 bits) has thirty-two word-sized
lanes, numbered 0 to 31.

An XMM register has four dword-sized lanes (lanes 0 to 3); it also has
four single-precision (32-bit) floating-point lanes (also numbered 0 to 3).
A YMM register has eight dword or single-precision lanes (lanes 0 to 7).
An AVX2 ZMM register has sixteen dword or single-precision-sized lanes
(numbers 0 to 15).

SIMD Instructions 599

XMM registers support two qword-sized lanes (or two double-precision
lanes), numbered 0 to 1. As expected, a YMM register has twice as many
(four lanes, numbered 0 to 3), and an AVX2 ZMM register has four times as
many lanes (0 to 7).

Several SSE/AVX instructions refer to various lanes within these regis-
ters. In particular, the shuffle and unpack instructions allow you to move
data between lanes in SSE and AVX operands. See “The Shuffle and Unpack
Instructions” on page 625 for examples of lane usage.

 11.3 Using cpuid to Differentiate Instruction Sets
Intel introduced the 8086 (and shortly thereafter, the 8088) microproces-
sor in 1978. With almost every succeeding CPU generation, Intel added
new instructions to the instruction set. Until this chapter, this book has
used instructions that are generally available on all x86-64 CPUs (Intel
and AMD). This chapter presents instructions that are available only on
later-model x86-64 CPUs. To allow programmers to determine which CPU
their applications were using so they could dynamically avoid using newer
instructions on older processors, Intel introduced the cpuid instruction.

The cpuid instruction expects a single parameter (called a leaf function)
passed in the EAX register. It returns various pieces of information about
the CPU in different 32-bit registers based on the value passed in EAX. An
application can test the return information to see if certain CPU features
are available.

As Intel introduced new instructions, it changed the behavior of cpuid
to reflect those changes. Specifically, Intel changed the range of values a
program could legally pass in EAX to cpuid; this is known as the highest func-
tion supported. As a result, some 64-bit CPUs accept only values in the range
0h to 05h. The instructions this chapter discusses may require passing val-
ues in the range 0h to 07h. Therefore, the first thing you have to do when
using cpuid is to verify that it accepts EAX = 07h as a valid parameter.

To determine the highest function supported, you load EAX with 0 or
8000_0000h and execute the cpuid instruction (all 64-bit CPUs support these
two function values). The return value is the maximum you can pass to cpuid
in EAX. The Intel and AMD documentation (also see https://en.wikipedia.org/
wiki/CPUID) will list the values cpuid returns for various CPUs; for the pur-
poses of this chapter, we need only verify that the highest function supported
is 01h (which is true for all 64-bit CPUs) or 07h for certain instructions.

In addition to providing the highest function supported, the cpuid instruc-
tion with EAX = 0h (or 8000_0002h) also returns a 12-character vendor ID in
the EBX, ECX, and EDX registers. For x86-64 chips, this will be either of the
following:

•	 GenuineIntel (EBX is 756e_6547h, EDX is 4965_6e69h, and ECX is
6c65_746eh)

•	 AuthenticAMD (EBX is 6874_7541h, EDX is 6974_6E65h, and ECX is
444D_4163h)

https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/CPUID

600 Chapter 11

To determine if the CPU can execute most SSE and AVX instructions,
you must execute cpuid with EAX = 01h and test various bits placed in the ECX
register. For a few of the more advanced features (advanced bit-manipulation
functions and AVX2 instructions), you’ll need to execute cpuid with EAX
= 07h and check the results in the EBX register. The cpuid instruction (with
EAX = 1) returns an interesting SSE/AVX feature flag in the following bits in
ECX, as shown in Table 11-1; with EAX = 07h, it returns the bit manipulation
or AVX2 flag in EBX, as shown in Table 11-2. If the bit is set, the CPU supports
the specific instruction(s).

Table 11-1: Intel cpuid Feature Flags (EAX = 1)

Bit ECX

0 SSE3 support

1 PCLMULQDQ support

9 SSSE3 support

19 CPU supports SSE4.1 instructions

20 CPU supports SSE4.2 instructions

28 Advanced Vector Extensions

Table 11-2: Intel cpuid Extended Feature Flags
(EAX = 7, ECX = 0)

Bit EBX

3 Bit Manipulation Instruction Set 1

5 Advanced Vector Extensions 2 (AVX2)

8 Bit Manipulation Instruction Set 2

Listing 11-1 queries the vendor ID and basic feature flags on a CPU.

; Listing 11-1

; CPUID Demonstration.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 11-1", 0

 .data
maxFeature dword ?
VendorID byte 14 dup (0)

 .code
 externdef printf:proc

SIMD Instructions 601

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Used for debugging:

print proc
 push rax
 push rbx
 push rcx
 push rdx
 push r8
 push r9
 push r10
 push r11

 push rbp
 mov rbp, rsp
 sub rsp, 40
 and rsp, -16

 mov rcx, [rbp + 72] ; Return address
 call printf

 mov rcx, [rbp + 72]
 dec rcx
skipTo0: inc rcx
 cmp byte ptr [rcx], 0
 jne skipTo0
 inc rcx
 mov [rbp + 72], rcx

 leave
 pop r11
 pop r10
 pop r9
 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
print endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rbp
 mov rbp, rsp

602 Chapter 11

 sub rsp, 56 ; Shadow storage

 xor eax, eax
 cpuid
 mov maxFeature, eax
 mov dword ptr VendorID, ebx
 mov dword ptr VendorID[4], edx
 mov dword ptr VendorID[8], ecx

 lea rdx, VendorID
 mov r8d, eax
 call print
 byte "CPUID(0): Vendor ID='%s', "
 byte "max feature=0%xh", nl, 0

; Leaf function 1 is available on all CPUs that support
; CPUID, no need to test for it.

 mov eax, 1
 cpuid
 mov r8d, edx
 mov edx, ecx
 call print
 byte "cpuid(1), ECX=%08x, EDX=%08x", nl, 0

; Most likely, leaf function 7 is supported on all modern CPUs
; (for example, x86-64), but we'll test its availability nonetheless.

 cmp maxFeature, 7
 jb allDone

 mov eax, 7
 xor ecx, ecx
 cpuid
 mov edx, ebx
 mov r8d, ecx
 call print
 byte "cpuid(7), EBX=%08x, ECX=%08x", nl, 0

allDone: leave
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 11-1: cpuid demonstration program

On an old MacBook Pro Retina with an Intel i7-3720QM CPU, running
under Parallels, you get the following output:

C:\>build listing11-1

C:\>echo off
 Assembling: listing11-1.asm
c.cpp

SIMD Instructions 603

C:\>listing11-1
Calling Listing 11-1:
CPUID(0): Vendor ID='GenuineIntel', max feature=0dh
cpuid(1), ECX=ffba2203, EDX=1f8bfbff
cpuid(7), EBX=00000281, ECX=00000000
Listing 11-1 terminated

This CPU supports SSE3 instructions (bit 0 of ECX is 1), SSE4.1 and
SSE4.2 instructions (bits 19 and 20 of ECX are 1), and the AVX instructions
(bit 28 is 1). Those, largely, are the instructions this chapter describes. Most
modern CPUs will support these instructions (the i7-3720QM was released
by Intel in 2012). The processor doesn’t support some of the more interesting
extended features on the Intel instruction set (the extended bit-manipulation
instructions and the AVX2 instruction set). Programs using those instruc-
tions will not execute on this (ancient) MacBook Pro.

Running this on a more recent CPU (an iMac Pro 10-core Intel Xeon
W-2150B) produces the following output:

C:\>listing11-1
Calling Listing 11-1:
CPUID(0): Vendor ID='GenuineIntel', max feature=016h
cpuid(1), ECX=fffa3203, EDX=1f8bfbff
cpuid(7), EBX=d09f47bb, ECX=00000000
Listing 11-1 terminated

As you can see, looking at the extended feature bits, the newer Xeon
CPU does support these additional instructions. The code fragment in
Listing 11-2 provides a quick modification to Listing 11-1 that tests for the
availability of the BMI1 and BMI2 bit-manipulation instruction sets (insert
the following code right before the allDone label in Listing 11-1).

; Test for extended bit manipulation instructions
; (BMI1 and BMI2):

 and ebx, 108h ; Test bits 3 and 8
 cmp ebx, 108h ; Both must be set
 jne Unsupported
 call print
 byte "CPU supports BMI1 & BMI2", nl, 0
 jmp allDone

Unsupported:
 call print
 byte "CPU does not support BMI1 & BMI2 "
 byte "instructions", nl, 0

allDone: leave
 pop rbx
 ret ; Returns to caller
asmMain endp

Listing 11-2: Test for BMI1 and BMI2 instruction sets

604 Chapter 11

Here’s the build command and program output on the Intel
i7-3720QM CPU:

C:\>build listing11-2

C:\>echo off
 Assembling: listing11-2.asm
c.cpp

C:\>listing11-2
Calling Listing 11-2:
CPUID(0): Vendor ID='GenuineIntel', max feature=0dh
cpuid(1), ECX=ffba2203, EDX=1f8bfbff
cpuid(7), EBX=00000281, ECX=00000000
CPU does not support BMI1 & BMI2 instructions
Listing 11-2 terminated

Here’s the same program running on the iMac Pro (Intel Xeon
W-2150B):

C:\>listing11-2
Calling Listing 11-2:
CPUID(0): Vendor ID='GenuineIntel', max feature=016h
cpuid(1), ECX=fffa3203, EDX=1f8bfbff
cpuid(7), EBX=d09f47bb, ECX=00000000
CPU supports BMI1 & BMI2
Listing 11-2 terminated

 11.4 Full-Segment Syntax and Segment Alignment
As you will soon see, SSE and AVX memory data require alignment on 16-,
32-, and even 64-byte boundaries. Although you can use the align directive
to align data (see “MASM Support for Data Alignment” in Chapter 3), it
doesn’t work beyond 16-byte alignment when using the simplified segment
directives presented thus far in this book. If you need alignment beyond
16 bytes, you have to use MASM full-segment declarations.

If you want to create a segment with complete control over segment
attributes, you need to use the segment and ends directives.1 The generic syn-
tax for a segment declaration is as follows:

segname segment readonly alignment 'class'
 statements
segname ends

segname is an identifier. This is the name of the segment (which must
also appear before the closing ends directive). It need not be unique; you can
have several segment declarations that share the same name. MASM will

1. Yes, MASM uses the same directive, ends, for ending both structures and segments.

SIMD Instructions 605

combine segments with the same name when emitting code to the object
file. Avoid the segment names _TEXT, _DATA, _BSS, and _CONST, as MASM uses
these names for the .code, .data, .data?, and .const directives, respectively.

The readonly option is either blank or the MASM-reserved word readonly.
This is a hint to MASM that the segment will contain read-only (constant)
data. If you attempt to (directly) store a value into a variable that you declare
in a read-only segment, MASM will complain that you cannot modify a read-
only segment.

The alignment option is also optional and allows you to specify one of
the following options:

•	 byte

•	 word

•	 dword

•	 para

•	 page

•	 align(n) (n is a constant that must be a power of 2)

The alignment options tell MASM that the first byte emitted for this par-
ticular segment must appear at an address that is a multiple of the alignment
option. The byte, word, and dword reserved words specify 1-, 2-, or 4-byte align-
ments. The para alignment option specifies paragraph alignment (16 bytes).
The page alignment option specifies an address alignment of 256 bytes.
Finally, the align(n) alignment option lets you specify any address alignment
that is a power of 2 (1, 2, 4, 8, 16, 32, and so on).

The default segment alignment, if you don’t explicitly specify one, is
paragraph alignment (16 bytes). This is also the default alignment for the
simplified segment directives (.code, .data, .data?, and .const).

If you have some (SSE/AVX) data objects that must start at an address
that is a multiple of 32 or 64 bytes, then creating a new data segment with
64-byte alignment is what you want. Here’s an example of such a segment:

dseg64 segment align(64)
obj64 oword 0, 1, 2, 3 ; Starts on 64-byte boundary
b byte 0 ; Messes with alignment
 align 32 ; Sets alignment to 32 bytes
obj32 oword 0, 1 ; Starts on 32-byte boundary
dseg64 ends

The optional class field is a string (delimited by apostrophes and single
quotes) that is typically one of the following names: CODE, DATA, or CONST. Note
that MASM and the Microsoft linker will combine segments that have the
same class name even if their segment names are different.

This chapter presents examples of these segment declarations as they
are needed.

606 Chapter 11

 11.5 SSE, AVX, and AVX2 Memory Operand Alignment
SSE and AVX instructions typically allow access to a variety of memory
operand sizes. The so-called scalar instructions, which operate on single
data elements, can access byte-, word-, dword-, and qword-sized memory
operands. In many respects, these types of memory accesses are similar to
memory accesses by the non-SIMD instructions. The SSE, AVX, and AVX2
instruction set extensions also access packed or vector operands in memory.
Unlike with the scalar memory operands, stringent rules limit the access of
packed memory operands. This section discusses those rules.

The SSE instructions can access up to 128 bits of memory (16 bytes)
with a single instruction. Most multi-operand SSE instructions can specify
an XMM register or a 128-bit memory operand as their source (second)
operand. As a general rule, these memory operands must appear on
a 16-byte-aligned address in memory (that is, the LO 4 bits of the memory
address must contain 0s).

N O T E Almost all SSE, AVX, and AVX2 instructions will generate a memory alignment
fault if you attempt to access a 128-bit object at an address that is not 16-byte-
aligned. Always ensure that your SSE packed operands are properly aligned.

Because segments have a default alignment of para (16 bytes), you can
easily ensure that any 16-byte packed data objects are 16-byte-aligned by
using the align directive:

align 16

MASM will report an error if you attempt to use align 16 in a segment
you’ve defined with the byte, word, or dword alignment type. It will work
properly with para, page, or any align(n) option where n is greater than or
equal to 16.

If you are using AVX instructions to access 256-bit (32-byte) memory
operands, you must ensure that those memory operands begin on a
32-byte address boundary. Unfortunately, align 32 won’t work, because the
default segment alignment is para (16-byte) alignment, and the segment’s
alignment must be greater than or equal to the operand field of any align
directives appearing within that segment. Therefore, to be able to define
256-bit variables usable by AVX instructions, you must explicitly define a
(data) segment that is aligned on a (minimum) 32-byte boundary, such as
the following:

avxData segment align(32)
 align 32 ; This is actually redundant here
someData oword 0, 1 ; 256 bits of data
 .
 .
 .
avxData ends

SIMD Instructions 607

Though it’s somewhat redundant to say this, it’s so important it’s worth
repeating:

Almost all AVX/AVX2 instructions will generate an alignment
fault if you attempt to access a 256-bit object at an address that is
not 32-byte-aligned. Always ensure that your AVX packed oper-
ands are properly aligned.

If you are using the AVX2 extended instructions with 512-bit memory oper-
ands, you must ensure that those operands appear on an address in memory
that is a multiple of 64 bytes. As for AVX instructions, you will have to define a
segment that has an alignment greater than or equal to 64 bytes, such as this:

avx2Data segment align(64)
someData oword 0, 1, 2, 3 ; 512 bits of data
 .
 .
 .
avx2Data ends

Forgive the redundancy, but it’s important to remember:

Almost all AVX-512 instructions will generate an alignment fault
if you attempt to access a 512-bit object at an address that is not
64-byte-aligned. Always ensure that your AVX-512 packed oper-
ands are properly aligned.

If you’re using SSE, AVX, and AVX2 data types in the same applica-
tion, you can create a single data segment to hold all these data values by
using a 64-byte alignment option for the single section, instead of a seg-
ment for each data type size. Remember, the segment’s alignment has to
be greater than or equal to the alignment required by the specific data type.
Therefore, a 64-byte alignment will work fine for SSE and AVX/AVX2 vari-
ables, as well as AVX-512 variables:

SIMDData segment align(64)
sseData oword 0 ; 64-byte-aligned is also 16-byte-aligned
 align 32 ; Alignment for AVX data
avxData oword 0, 1 ; 32 bytes of data aligned on 32 bytes
 align 64
avx2Data oword 0, 1, 2, 3 ; 64 bytes of data
 .
 .
 .
SIMDData ends

If you specify an alignment option that is much larger than you need
(such as 256-byte page alignment), you might unnecessarily waste memory.

The align directive works well when your SSE, AVX, and AVX2 data
values are static or global variables. What happens when you want to cre-
ate local variables on the stack or dynamic variables on the heap? Even if
your program adheres to the Microsoft ABI, you’re guaranteed only 16-byte

608 Chapter 11

alignment on the stack upon entry to your program (or to a procedure).
Similarly, depending on your heap management functions, there is no
guarantee that a malloc (or similar) function returns an address that is prop-
erly aligned for SSE, AVX, or AVX2 data objects.

Inside a procedure, you can allocate storage for a 16-, 32-, or 64-byte-
aligned variable by over-allocating the storage, adding the size minus 1 of
the object to the allocated address, and then using the and instruction to
zero out LO bits of the address (4 bits for 16-byte-aligned objects, 5 bits for
32-byte-aligned objects, and 6 bits for 64-byte-aligned objects). Then you
reference the object by using this pointer. The following sample code dem-
onstrates how to do this:

sseproc proc
sseptr equ <[rbp - 8]>
avxptr equ <[rbp - 16]>
avx2ptr equ <[rbp - 24]>
 push rbp
 mov rbp, rsp
 sub rsp, 160

; Load RAX with an address 64 bytes
; above the current stack pointer. A
; 64-byte-aligned address will be somewhere
; between RSP and RSP + 63.

 lea rax, [rsp + 63]

; Mask out the LO 6 bits of RAX. This
; generates an address in RAX that is
; aligned on a 64-byte boundary and is
; between RSP and RSP + 63:

 and rax, -64 ; 0FFFF...FC0h

; Save this 64-byte-aligned address as
; the pointer to the AVX2 data:

 mov avx2ptr, rax

; Add 64 to AVX2's address. This skips
; over AVX2's data. The address is also
; 64-byte-aligned (which means it is
; also 32-byte-aligned). Use this as
; the address of AVX's data:

 add rax, 64
 mov avxptr, rax

; Add 32 to AVX's address. This skips
; over AVX's data. The address is also
; 32-byte-aligned (which means it is
; also 16-byte-aligned). Use this as

SIMD Instructions 609

; the address of SSE's data:

 add rax, 32
 mov sseptr, rax
 .
 . Code that accesses the
 . AVX2, AVX, and SSE data
 . areas using avx2ptr,
 . avxptr, and sseptr

 leave
 ret
sseproc endp

For data you allocate on the heap, you do the same thing: allocate extra
storage (up to twice as many bytes minus 1), add the size of the object minus
1 (15, 31, or 63) to the address, and then mask the newly formed address with
–64, –32, or –16 to produce a 64-, 32-, or 16-byte-aligned object, respectively.

 11.6 SIMD Data Movement Instructions
The x86-64 CPUs provide a variety of data move instructions that copy
data between (SSE/AVX) registers, load registers from memory, and store
register values to memory. The following subsections describe each of these
instructions.

11.6.1 The (v)movd and (v)movq Instructions
For the SSE instruction set, the movd (move dword) and movq (move qword)
instructions copy the value from a 32- or 64-bit general-purpose register or
memory location into the LO dword or qword of an XMM register:2

movd xmmn, reg32/mem32
movq xmmn, reg64/mem64

These instructions zero-extend the value to remaining HO bits in the
XMM register, as shown in Figures 11-7 and 11-8.

255 128 127 0

movss xmmn, mem32

movd xmmn, mem32

0

Figure 11-7: Moving a 32-bit value from memory to an XMM register (with
zero extension)

2. xmmn represents XMM0 through XMM15.

610 Chapter 11

0

0255 128 127

movsd xmmn, mem64

movd xmmn, mem64

Figure 11-8: Moving a 64-bit value from memory to an XMM register (with
zero extension)

The following instructions store the LO 32 or 64 bits of an XMM regis-
ter into a dword or qword memory location or general-purpose register:

movd reg32/mem32, xmmn
movq reg64/mem64, xmmn

The movq instruction also allows you to copy data from the LO qword of
one XMM register to another, but for whatever reason, the movd instruction
does not allow two XMM register operands:

movq xmmn, xmmn

For the AVX instructions, you use the following instructions:3

vmovd xmmn, reg32/mem32
vmovd reg32/mem32, xmmn
vmovq xmmn, reg64/mem64
vmovq reg64/mem64, xmmn

The instructions with the XMM destination operands also zero-extend
their values into the HO bits (up to bit 255, unlike the standard SSE instruc-
tions that do not modify the upper bits of the YMM registers).

Because the movd and movq instructions access 32- and 64-bit values in
memory (rather than 128-, 256-, or 512-bit values), these instructions do
not require their memory operands to be 16-, 32-, or 64-byte-aligned. Of
course, the instructions may execute faster if their operands are dword
(movd) or qword (movq) aligned in memory.

11.6.2 The (v)movaps, (v)movapd, and (v)movdqa Instructions
The movaps (move aligned, packed single), movapd (move aligned, packed double),
and movdqa (move double quad-word aligned) instructions move 16 bytes of data
between memory and an XMM register or between two XMM registers. The
AVX versions (with the v prefix) move 16 or 32 bytes between memory and
an XMM or a YMM register or between two XMM or YMM registers (moves
involving XMM registers zero out the HO bits of the corresponding YMM

3. ymmn represents YMM0 through YMM15.

SIMD Instructions 611

register). The memory locations must be aligned on a 16-byte or 32-byte
boundary (respectively), or the CPU will generate an unaligned access fault.

All three mov* instructions load 16 bytes into an XMM register and are,
in theory, interchangeable. In practice, Intel may optimize the operations
for the type of data they move (single-precision floating-point values, double-
precision floating-point values, or integer values), so it’s always a good idea
to choose the appropriate instruction for the data type you are using (see
“Performance Issues and the SIMD Move Instructions” on page 622 for an
explanation). Likewise, all three vmov* instructions load 16 or 32 bytes into
an XMM or a YMM register and are interchangeable.

These instructions take the following forms:

movaps xmmn, mem128 vmovaps xmmn, mem128 vmovaps ymmn, mem256
movaps mem128, xmmn vmovaps mem128, xmmn vmovaps mem256, ymmn
movaps xmmn, xmmn vmovaps xmmn, xmmn vmovaps ymmn, ymmn
movapd xmmn, mem128 vmovapd xmmn, mem128 vmovapd ymmn, mem256
movapd mem128, xmmn vmovapd mem128, xmmn vmovapd mem256, ymmn
movapd xmmn, xmmn vmovapd xmmn, xmmn vmovapd ymmn, ymmn
movdqa xmmn, mem128 vmovdqa xmmn, mem128 vmovdqa ymmn, mem256
movdqa mem128, xmmn vmovdqa mem128, xmmn vmovdqa mem256, ymmn
movdqa xmmn, xmmn vmovdqa xmmn, xmmn vmovdqa ymmn, ymmn

The mem128 operand should be a vector (array) of four single-precision
floating-point values for the (v)movaps instruction; it should be a vector of
two double-precision floating-point values for the (v)movapd instruction; it
should be a 16-byte value (16 bytes, 8 words, 4 dwords, or 2 qwords) when
using the (v)movdqa instruction. If you cannot guarantee that the operands
are aligned on a 16-byte boundary, use the movups, movupd, or movdqu instruc-
tions, instead (see the next section).

The mem256 operand should be a vector (array) of eight single-precision
floating-point values for the vmovaps instruction; it should be a vector of four
double-precision floating-point values for the vmovapd instruction; it should
be a 32-byte value (32 bytes, 16 words, 8 dwords, or 4 qwords) when using
the vmovdqa instruction. If you cannot guarantee that the operands are
32-byte-aligned, use the vmovups, vmovupd, or vmovdqu instructions instead.

Although the physical machine instructions themselves don’t particu-
larly care about the data type of the memory operands, MASM’s assembly
syntax certainly does care. You will need to use operand type coercion if
the instruction doesn’t match one of the following types:

•	 The movaps instruction allows real4, dword, and oword operands.

•	 The movapd instruction allows real8, qword, and oword operands.

•	 The movdqa instruction allows only oword operands.

•	 The vmovaps instruction allows real4, dword, and ymmword ptr operands
(when using a YMM register).

•	 The vmovapd instruction allows real8, qword, and ymmword ptr operands
(when using a YMM register).

•	 The vmovdqa instruction allows only ymmword ptr operands (when using a
YMM register).

612 Chapter 11

Often you will see memcpy (memory copy) functions use the (v)movapd instruc-
tions for very high-performance operations. See Agner Fog’s website at https://
www.agner.org/optimize/ for more details.

11.6.3 The (v)movups, (v)movupd, and (v)movdqu Instructions
When you cannot guarantee that packed data memory operands lie on a
16- or 32-byte address boundary, you can use the (v)movups (move unaligned
packed single-precision), (v)movupd (move unaligned packed double-precision),
and (v)movdqu (move double quad-word unaligned) instructions to move data
between XMM or YMM registers and memory.

N O T E These instructions typically run slower than their aligned equivalents. Therefore, you
should use the aligned instructions if you are moving data between XMM or YMM
registers or know the memory operands lie on 16-byte-aligned or 32-byte-aligned
addresses.

As for the aligned moves, all the unaligned moves do the same thing:
copying 16 (32) bytes of data to and from memory. The convention for
the various data types is the same as it is for the aligned data movement
instructions.

11.6.4 Performance of Aligned and Unaligned Moves
Listings 11-3 and 11-4 provide sample programs that demonstrate the per-
formance of the mova* and movu* instructions using aligned and unaligned
memory accesses.

; Listing 11-3

; Performance test for packed versus unpacked
; instructions. This program times aligned accesses.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 11-3", 0

dseg segment align(64) 'DATA'

; Aligned data types:

 align 64
alignedData byte 64 dup (0)
dseg ends

 .code
 externdef printf:proc

https://www.agner.org/optimize/
https://www.agner.org/optimize/

SIMD Instructions 613

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Used for debugging:

print proc

; Print code removed for brevity.
; See Listing 11-1 for actual code.

print endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

 call print
 byte "Starting", nl, 0

 mov rcx, 4000000000 ; 4,000,000,000
 lea rdx, alignedData
 mov rbx, 0
rptLp: mov rax, 15
rptLp2: movaps xmm0, xmmword ptr [rdx + rbx * 1]
 movapd xmm0, real8 ptr [rdx + rbx * 1]
 movdqa xmm0, xmmword ptr [rdx + rbx * 1]
 vmovaps ymm0, ymmword ptr [rdx + rbx * 1]
 vmovapd ymm0, ymmword ptr [rdx + rbx * 1]
 vmovdqa ymm0, ymmword ptr [rdx + rbx * 1]
 vmovaps zmm0, zmmword ptr [rdx + rbx * 1]
 vmovapd zmm0, zmmword ptr [rdx + rbx * 1]

 dec rax
 jns rptLp2

 dec rcx
 jnz rptLp

 call print
 byte "Done", nl, 0

allDone: leave
 pop rbx

614 Chapter 11

 ret ; Returns to caller
asmMain endp
 end

Listing 11-3: Aligned memory-access timing code

; Listing 11-4

; Performance test for packed versus unpacked
; instructions. This program times unaligned accesses.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 11-4", 0

dseg segment align(64) 'DATA'

; Aligned data types:

 align 64
alignedData byte 64 dup (0)
dseg ends

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Used for debugging:

print proc

; Print code removed for brevity.
; See Listing 11-1 for actual code.

print endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rbp
 mov rbp, rsp

SIMD Instructions 615

 sub rsp, 56 ; Shadow storage

 call print
 byte "Starting", nl, 0

 mov rcx, 4000000000 ; 4,000,000,000
 lea rdx, alignedData
rptLp: mov rbx, 15
rptLp2:
 movups xmm0, xmmword ptr [rdx + rbx * 1]
 movupd xmm0, real8 ptr [rdx + rbx * 1]
 movdqu xmm0, xmmword ptr [rdx + rbx * 1]
 vmovups ymm0, ymmword ptr [rdx + rbx * 1]
 vmovupd ymm0, ymmword ptr [rdx + rbx * 1]
 vmovdqu ymm0, ymmword ptr [rdx + rbx * 1]
 vmovups zmm0, zmmword ptr [rdx + rbx * 1]
 vmovupd zmm0, zmmword ptr [rdx + rbx * 1]
 dec rbx
 jns rptLp2

 dec rcx
 jnz rptLp

 call print
 byte "Done", nl, 0

allDone: leave
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 11-4: Unaligned memory-access timing code

The code in Listing 11-3 took about 1 minute and 7 seconds to execute
on a 3GHz Xeon W CPU. The code in Listing 11-4 took 1 minute and 55 sec-
onds to execute on the same processor. As you can see, there is sometimes
an advantage to accessing SIMD data on an aligned address boundary.

11.6.5 The (v)movlps and (v)movlpd Instructions
The (v)movl* instructions and (v)movh* instructions (from the next section)
might look like normal move instructions. Their behavior is similar to many
other SSE/AVX move instructions. However, they were designed to support
packing and unpacking floating-point vectors. Specifically, these instructions
allow you to merge two pairs of single-precision or a pair of double-precision
floating-point operands from two different sources into a single XMM register.

The (v)movlps instructions use the following syntax:

movlps xmmdest, mem64
movlps mem64, xmmsrc
vmovlps xmmdest, xmmsrc, mem64
vmovlps mem64, xmmsrc

616 Chapter 11

The movlps xmmdest, mem64 form copies a pair of single-precision floating-
point values into the two LO 32-bit lanes of a destination XMM register, as
shown in Figure 11-9. This instruction leaves the HO 64 bits unchanged.

127 64 63 0

movlps xmmn, xmm/mem64

Figure 11-9: movlps instruction

The movlps mem64, xmmsrc form copies the LO 64 bits (the two LO single-
precision lanes) from the XMM source register to the specified memory
location. Functionally, this is equivalent to the movq or movsd instructions (as it
copies 64 bits to memory), though this instruction might be slightly faster if
the LO 64 bits of the XMM register actually contain two single-precision val-
ues (see “Performance Issues and the SIMD Move Instructions” on page 622
for an explanation).

The vmovlps instruction has three operands: a destination XMM reg-
ister, a source XMM register, and a source (64-bit) memory location. This
instruction copies the two single-precision values from the memory loca-
tion into the LO 64 bits of the destination XMM register. It copies the HO
64 bits of the source register (which also hold two single-precision values)
into the HO 64 bits of the destination register. Figure 11-10 shows the oper-
ation. Note that this instruction merges the pair of operands with a single
instruction.

127 64 3296 0

vmovlps xmmdest, xmmsrc, mem64

XMMsrc

mem64

XMMdest

Figure 11-10: vmovlps instruction

Like movsd, the movlpd (move low packed double) instruction copies the LO
64 bits (a double-precision floating-point value) of the source operand to
the LO 64 bits of the destination operand. The difference is that the movlpd
instruction doesn’t zero-extend the value when moving data from memory
into an XMM register, whereas the movsd instruction will zero-extend the

SIMD Instructions 617

value into the upper 64 bits of the destination XMM register. (Neither the
movsd nor movlpd will zero-extend when copying data between XMM registers;
of course, zero extension doesn’t apply when storing data to memory.)4

11.6.6 The movhps and movhpd Instructions
The movhps and movhpd instructions move a 64-bit value (either two single-
precision floats in the case of movhps, or a single double-precision value in
the case of movhpd) into the HO quad word of a destination XMM register.
Figure 11-11 shows the operation of the movhps instruction; Figure 11-12
shows the movhpd instruction.

127 64 63 0

movhps xmmn, mem64

Figure 11-11: movhps instruction

127 64 63 0

movhpd xmmn, mem64

Figure 11-12: movhpd instruction

The movhps and movhpd instructions can also store the HO quad word of
an XMM register into memory. The allowable syntax is shown here:

movhps xmmn, mem64
movhps mem64, xmmn
movhpd xmmn, mem64
movhpd mem64, xmmn

These instructions do not affect bits 128 to 255 of the YMM registers (if
present on the CPU).

You would normally use a movlps instruction followed by a movhps
instruction to load four single-precision floating-point values into an XMM
register, taking the floating-point values from two different data sources
(similarly, you could use the movlpd and movhpd instructions to load a pair of
double-precision values into a single XMM register from different sources).

4. The vmovlps and vmovlpd instructions will zero-extend to the HO bits of the corresponding
YMM register, regardless of what happens in the XMM register.

618 Chapter 11

Conversely, you could also use this instruction to split a vector result in
half and store the two halves in different data streams. This is probably the
intended purpose of this instruction. Of course, if you can use it for other
purposes, have at it.

MASM (version 14.15.26730.0, at least) seems to require movhps oper-
ands to be a 64-bit data type and does not allow real4 operands.5 Therefore,
you may have to explicitly coerce an array of two real4 values with qword ptr
when using this instruction:

r4m real4 1.0, 2.0, 3.0, 4.0
r8m real8 1.0, 2.0
 .
 .
 .
 movhps xmm0, qword ptr r4m2
 movhpd xmm0, r8m

11.6.7 The vmovhps and vmovhpd Instructions
Although the AVX instruction extensions provide vmovhps and vmovhpd
instructions, they are not a simple extension of the SSE movhps and movhpd
instructions. The syntax for these instructions is as follows:

vmovhps xmmdest, xmmsrc, mem64
vmovhps mem64, xmmsrc
vmovhpd xmmdest, xmmsrc, mem64
vmovhpd mem64, xmmsrc

The instructions that store data into a 64-bit memory location behave
similarly to the movhps and movhpd instructions. The instructions that load
data into an XMM register have two source operands. They load a full 128 bits
(four single-precision values or two double-precision values) into the desti-
nation XMM register. The HO 64 bits come from the memory operand;
the LO 64 bits come from the LO quad word of the source XMM register,
as Figure 11-13 shows. These instructions also zero-extend the value into
the upper 128 bits of the (overlaid) YMM register.

0

255 128

63 0 63 0

127 0

mem64 XMMsrc

Figure 11-13: vmovhpd and vmovhps instructions

5. This is probably a bug. It may be corrected in later versions of MASM.

SIMD Instructions 619

Unlike for the movhps instruction, MASM properly accepts real4 source
operands for the vmovhps instruction:

r4m real4 1.0, 2.0, 3.0, 4.0
r8m real8 1.0, 2.0
 .
 .
 .
 vmovhps xmm0, xmm1, r4m
 vmovhpd xmm0, xmm1, r8m

\

11.6.8 The movlhps and vmovlhps Instructions
The movlhps instruction moves a pair of 32-bit single-precision floating-point
values from the LO qword of the source XMM register into the HO 64 bits
of a destination XMM register. It leaves the LO 64 bits of the destination
register unchanged. If the destination register is on a CPU that supports
256-bit AVX registers, this instruction also leaves the HO 128 bits of the
overlaid YMM register unchanged.

The syntax for these instructions is as follows:

movlhps xmmdest, xmmsrc
vmovlhps xmmdest, xmmsrc1, xmmsrc2

You cannot use this instruction to move data between memory and an
XMM register; it transfers data only between XMM registers. No double-
precision version of this instruction exists.

The vmovlhps instruction is similar to movlhps, with the following
differences:

•	 vmovlhps requires three operands: two source XMM registers and a des-
tination XMM register.

•	 vmovlhps copies the LO quad word of the first source register into the
LO quad word of the destination register.

•	 vmovlhps copies the LO quad word of the second source register into bits
64 to 127 of the destination register.

•	 vmovlhps zero-extends the result into the upper 128 bits of the overlaid
YMM register.

There is no vmovlhpd instruction.

11.6.9 The movhlps and vmovhlps Instructions
The movhlps instruction has the following syntax:

movhlps xmmdest, xmmsrc

620 Chapter 11

The movhlps instruction copies the pair of 32-bit single-precision floating-
point values from the HO qword of the source operand to the LO qword of
the destination register, leaving the HO 64 bits of the destination register
unchanged (this is the converse of movlhps). This instruction copies data only
between XMM registers; it does not allow a memory operand.

The vmovhlps instruction requires three XMM register operands; here is
its syntax:

vmovhlps xmmdest, xmmsrc1, xmmsrc2

This instruction copies the HO 64 bits of the first source register into
the HO 64 bits of the destination register, copies the HO 64 bits of the sec-
ond source register into bits 0 to 63 of the destination register, and finally,
zero-extends the result into the upper bits of the overlaid YMM register.

There are no movhlpd or vmovhlpd instructions.

11.6.10 The (v)movshdup and (v)movsldup Instructions
The movshdup instruction moves the two odd-index single-precision floating-
point values from the source operand (memory or XMM register) and
duplicates each element into the destination XMM register, as shown in
Figure 11-14.

255 224 192 160 128 127 96 64 32 0

movshdup xmmdest, xmmsrc/memsrc

vmovshdup ymmdest, ymmsrc/memsrc

Figure 11-14: movshdup and vmovshdup instructions

This instruction ignores the single-precision floating-point values at
even-lane indexes into the XMM register. The vmovshdup instruction works
the same way but on YMM registers, copying four single-precision values
rather than two (and, of course, zeroing the HO bits). The syntax for these
instructions is shown here:

movshdup xmmdest, mem128/xmmsrc
vmovshdup xmmdest, mem128/xmmsrc
vmovshdup ymmdest, mem256/ymmsrc

The movsldup instruction works just like the movshdup instruction, except
it copies and duplicates the two single-precision values at even indexes in

SIMD Instructions 621

the source XMM register to the destination XMM register. Likewise, the
vmovsldup instruction copies and duplicates the four double-precision values
in the source YMM register at even indexes, as shown in Figure 11-15.

255 224 192 160 128 127 96 64 32 0

movsldup xmmdest, xmmsrc/memsrc

vmovsldup ymmdest, ymmsrc/memsrc

Figure 11-15: movsldup and vmovsldup instructions

The syntax is as follows:

movsldup xmmdest, mem128/xmmsrc
vmovsldup xmmdest, mem128/xmmsrc
vmovsldup ymmdest, mem256/ymmsrc

11.6.11 The (v)movddup Instruction
The movddup instruction copies and duplicates a double-precision value from
the LO 64 bits of an XMM register or a 64-bit memory location into the LO
64 bits of a destination XMM register; then it also duplicates this value into
bits 64 to 127 of that same destination register, as shown in Figure 11-16.

127 63 0

XMMsrc/memsrc

XMMdest

movddup xmmdest, xmmsrc/memsrc

Figure 11-16: movddup instruction behavior

This instruction does not disturb the HO 128 bits of a YMM register
(if applicable). The syntax for this instruction is as follows:

movddup xmmdest, mem64/xmmsrc

The vmovddup instruction operates on an XMM or a YMM destination
register and an XMM or a YMM source register or 128- or 256-bit memory
location. The 128-bit version works just like the movddup instruction except
it zeroes the HO bits of the destination YMM register. The 256-bit version
copies a pair of double-precision values at even indexes (0 and 2) in the

622 Chapter 11

source value to their corresponding indexes in the destination YMM reg-
ister and duplicates those values at the odd indexes in the destination, as
Figure 11-17 shows.

192255 128 64 0

YMMsrc/memsrc

YMMdest

vmovddup ymmdest, ymmsrc/memsrc

Figure 11-17: vmovddup instruction behavior

Here is the syntax for this instruction:

movddup xmmdest, mem64/xmmsrc
vmovddup ymmdest, mem256/ymmsrc

11.6.12 The (v)lddqu Instruction
The (v)lddqu instruction is operationally identical to (v)movdqu. You can some-
times use this instruction to improve performance if the (memory) source
operand is not aligned properly and crosses a cache line boundary in memory.
For more details on this instruction and its performance limitations, refer to
the Intel or AMD documentation (specifically, the optimization manuals).

These instructions always take the following form:

lddqu xmmdest, mem128
vlddqu xmmdest, mem128
vlddqu ymmdest, mem256

11.6.13 Performance Issues and the SIMD Move Instructions
When you look at the SSE/AVX instructions’ semantics at the program-
ming model level, you might question why certain instructions appear in
the instruction set. For example, the movq, movsd, and movlps instructions
can all load 64 bits from a memory location into the LO 64 bits of an
XMM register. Why bother doing this? Why not have a single instruction
that copies the 64 bits from a quad word in memory to the LO 64 bits of
an XMM register (be it a 64-bit integer, a pair of 32-bit integers, a 64-bit
double-precision floating-point value, or a pair of 32-bit single-precision
floating-point values)? The answer lies in the term microarchitecture.

The x86-64 macroarchitecture is the programming model that a software
engineer sees. In the macroarchitecture, an XMM register is a 128-bit
resource that, at any given time, could hold a 128-bit array of bits (or an
integer), a pair of 64-bit integer values, a pair of 64-bit double-precision
floating-point values, a set of four single-precision floating-point values,

SIMD Instructions 623

a set of four double-word integers, eight words, or 16 bytes. All these data
types overlay one another, just like the 8-, 16-, 32-, and 64-bit general-
purpose registers overlay one another (this is known as aliasing). If you
load two double-precision floating-point values into an XMM register and
then modify the (integer) word at bit positions 0 to 15, you’re also chang-
ing those same bits (0 to 15) in the double-precision value in the LO qword
of the XMM register. The semantics of the x86-64 programming model
require this.

At the microarchitectural level, however, there is no requirement that
the CPU use the same physical bits in the CPU for integer, single-precision,
and double-precision values (even when they are aliased to the same reg-
ister). The microarchitecture could set aside a separate set of bits to hold
integers, single-precision, and double-precision values for a single register.
So, for example, when you use the movq instruction to load 64 bits into an
XMM register, that instruction might actually copy the bits into the underly-
ing integer register (without affecting the single-precision or double-precision
subregisters). Likewise, movlps would copy a pair of single-precision values into
the single-precision register, and movsd would copy a double-precision value
into the double-precision register (Figure 11-18). These separate subreg-
isters (integer, single-precision, and double-precision) could be connected
directly to the arithmetic or logical unit that handles their specific data
types, making arithmetic and logical operations on those subregisters more
efficient. As long as the data is sitting in the appropriate subregister,
everything works smoothly.

127 63 0

Single XMM register at macroarchitectural level

Aliased XMM register at microarchitectural level

movq xmmn, src

movlps xmmn, src

movsd xmmn, src

integer

double

real4 real4

Figure 11-18: Register aliasing at the microarchitectural level

However, what happens if you use movq to load a pair of single-precision
floating-point values into an XMM register and then try to perform a
single-precision vector operation on those two values? At the macroarchi-
tectural level, the two single-precision values are sitting in the appropriate
bit positions of the XMM register, so this has to be a legal operation. At the
microarchitectural level, however, those two single-precision floating-point
values are sitting in the integer subregister, not the single-precision subreg-
ister. The underlying microarchitecture has to note that the values are in
the wrong subregister and move them to the appropriate (single-precision)
subregister before performing the single-precision arithmetic or logical
operation. This may introduce a slight delay (while the microarchitecture
moves the data around), which is why you should always pick the appropri-
ate move instructions for your data types.

624 Chapter 11

N O T E There is no guarantee that your programs will run faster by using the appropriate
instructions for your data type, but at least they won’t run slower.

11.6.14 Some Final Comments on the SIMD Move Instructions
The SIMD data movement instructions are a confusing bunch. Their syntax
is inconsistent, many instructions duplicate the actions of other instruc-
tions, and they have some perplexing irregularity issues. Someone new to
the x86-64 instruction set might ask, “Why was the instruction set designed
this way?” Why, indeed?

The answer to that question is historical. The SIMD instructions did
not exist on the earliest x86 CPUs. Intel added the MMX instruction set to
the Pentium-series CPUs. At that time (the early 1990s), current technol-
ogy allowed Intel to add only a few additional instructions, and the MMX
registers were limited to 64 bits in size. Furthermore, software engineers
and computer systems designers were only beginning to explore the multi-
media capabilities of modern computers, so it wasn’t entirely clear which
instructions (and data types) were necessary to support the type of software
we see several decades later. As a result, the earliest SIMD instructions and
data types were limited in scope.

As time passed, CPUs gained additional silicon resources, and software/
systems engineers discovered new uses for computers (and new algorithms
to run on those computers), so Intel (and AMD) responded by adding new
SIMD instructions to support these more modern multimedia applica-
tions. The original MMX instructions, for example, supported only integer
data types, so Intel added floating-point support in the SSE instruction
set, because multimedia applications needed real data types. Then Intel
extended the integer types from 64 bits to 128, 256, and even 512 bits. With
each extension, Intel (and AMD) had to retain the older instruction set
extensions in order to allow preexisting software to run on the new CPUs.

As a result, the newer instruction sets kept piling on new instructions
that did the same work as the older ones (with some additional capabilities).
This is why instructions like movaps and vmovaps have considerable overlap
in their functionality. If the CPU resources had been available earlier (for
example, to put 256-bit YMM registers on the CPU), there would have been
almost no need for the movaps instruction—the vmovaps could have done all
the work.6

In theory, we could create an architecturally elegant variant of the x86-64 by
starting over from scratch and designing a minimal instruction set that handles
all the activities of the current x86-64 without all the kruft and kludges pres-
ent in the existing instruction set. However, such a CPU would lose the primary
advantage of the x86-64: the ability to run decades of software written for the
Intel architecture. The cost of being able to run all this old software is that
assembly language programmers (and compiler writers) have to deal with all
these irregularities in the instruction set.

6. Other than, of course, the issue of zeroing and preserving the HO bits of YMM registers
when operating on 128-bit data sets.

SIMD Instructions 625

 11.7 The Shuffle and Unpack Instructions
The SSE/AVX shuffle and unpack instructions are variants of the move
instructions. In addition to moving data around, these instructions can
also rearrange the data appearing in different lanes of the XMM and YMM
registers.

11.7.1 The (v)pshufb Instructions
The pshufb instruction was the first packed byte shuffle SIMD instruction (it
first appeared with the MMX instruction set). Because of its origin, its syn-
tax and behavior are a bit different from the other shuffle instructions in
the instruction set. The syntax is the following:

pshufb xmmdest, xmm/mem128

The first (destination) operand is an XMM register whose byte lanes
pshufb will shuffle (rearrange). The second operand (either an XMM register
or a 128-bit oword memory location) is an array of 16 byte values holding
indexes that control the shuffle operation. If the second operand is a mem-
ory location, that oword value must be aligned on a 16-byte boundary.

Each byte (lane) in the second operand selects a value for the corre-
sponding byte lane in the first operand, as shown in Figure 11-19.

15 14 13 12 11 10 9 8
Lane

Array of indexes for each of the 16 lanes in XMMdest

XMMdest

XMM/mem128

7 6 5 4 3 2 1 0

Figure 11-19: Lane index correspondence for pshufb instruction

The 16-byte indexes in the second operand each take the form shown
in Figure 11-20.

7 4 3 0

Clear Lane index (0 to15)

Figure 11-20: phsufb byte index

The pshufb instruction ignores bits 4 to 6 in an index byte. Bit 7 is the
clear bit; if this bit contains a 1, the pshufb instruction ignores the lane
index bits and stores a 0 into the corresponding byte in XMMdest. If the
clear bit contains a 0, the pshufb instruction does a shuffle operation.

The pshufb shuffle operation takes place on a lane-by-lane basis. The
instruction first makes a temporary copy of XMMdest. Then for each index
byte (whose HO bit is 0), the pshufb copies the lane specified by the LO
4 bits of the index from the XMMdest lane that matches the index’s lane, as

626 Chapter 11

shown in Figure 11-21. In this example, the index appearing in lane 6 con-
tains the value 00000011b. This selects the value in lane 3 of the temporary
(original XMMdest) value and copies it to lane 6 of XMMdest. The pshufb
instruction repeats this operation for all l6 lanes.

15 14 13 12 11 10 9 8
XMMdest

Lane

XMM/mem128

7 6 5 4

Temp

00000011

3 2 1 0

Figure 11-21: Shuffle operation

The AVX instruction set extensions introduced the vpshufb instruction.
Its syntax is the following:

vpshufb xmmdest, xmmsrc, xmmindex/mem128
vpshufb ymmdest, ymmsrc, ymmindex/mem256

The AVX variant adds a source register (rather than using XMMdest as
both the source and destination registers), and, rather than creating a tem-
porary copy of XMMdest prior to the operation and picking the values from
that copy, the vpshufb instructions select the source bytes from the XMMsrc
register. Other than that, and the fact that these instructions zero the HO
bits of YMMdest, the 128-bit variant operates identically to the SSE pshufb
instruction.

The AVX instruction allows you to specify 256-bit YMM registers in
addition to 128-bit XMM registers.7

11.7.2 The (v)pshufd Instructions
The SSE extensions first introduced the pshufd instruction. The AVX exten-
sions added the vpshufd instruction. These instructions shuffle dwords in
XMM and YMM registers (not double-precision values) similarly to the
(v)pshufb instructions. However, the shuffle index is specified differently
from (v)pshufb. The syntax for the (v)pshufd instructions is as follows:

pshufd xmmdest, xmmsrc/mem128, imm8
vpshufd xmmdest, xmmsrc/mem128, imm8
vpshufd ymmdest, ymmsrc/mem256, imm8

7. The AVX-512 extensions also allow the use of 512-bit ZMM registers for the vshufb
instruction.

SIMD Instructions 627

The first operand (XMMdest or YMMdest) is the destination operand
where the shuffled values will be stored. The second operand is the source
from which the instruction will select the double words to place in the des-
tination register; as usual, if this is a memory operand, you must align it on
the appropriate (16- or 32-byte) boundary. The third operand is an 8-bit
immediate value that specifies the indexes for the double words to select
from the source operand.

For the (v)pshufd instructions with an XMMdest operand, the imm8 oper-
and has the encoding shown in Table 11-3. The value in bits 0 to 1 selects a
particular dword from the source operand to place in dword 0 of the XMMdest
operand. The value in bits 2 to 3 selects a dword from the source operand to
place in dword 1 of the XMMdest operand. The value in bits 4 to 5 selects a
dword from the source operand to place in dword 2 of the XMMdest operand.
Finally, the value in bits 6 to 7 selects a dword from the source operand to
place in dword 3 of the XMMdest operand.

Table 11-3: (v)pshufd imm8 Operand Values

Bit positions Destination lane

0 to 1 0

2 to 3 1

4 to 5 2

6 to 7 3

The difference between the 128-bit pshufd and vpshufd instructions is
that pshufd leaves the HO 128 bits of the underlying YMM register
unchanged and vpshufd zeroes the HO 128 bits of the underlying YMM
register.

The 256-bit variant of vpshufd (when using YMM registers as the source
and destination operands) still uses an 8-bit immediate operand as the index
value. Each 2-bit index value manipulates two dword values in the YMM reg-
isters. Bits 0 to 1 control dwords 0 and 4, bits 2 to 3 control dwords 1 and 5,
bits 4 to 5 control dwords 2 and 6, and bits 6 to 7 control dwords 3 and 7, as
shown in Table 11-4.

Table 11-4: Double-Word Transfers for vpshufd YMMdest, YMMsrc/memsrc, imm8

Index
YMM/memsrc [index]
copied into

YMM/memsrc [index + 4]
copied into

Bits 0 to 1 of imm8 YMMdest[0] YMMdest[4]

Bits 2 to 3 of imm8 YMMdest[1] YMMdest[5]

Bits 4 to 5 of imm8 YMMdest[2] YMMdest[6]

Bits 6 to 7 of imm8 YMMdest[3] YMMdest[7]

The 256-bit version is slightly less flexible as it copies two dwords at a
time, rather than one. It processes the LO 128 bits exactly the same way as

628 Chapter 11

the 128-bit version of the instruction; it also copies the corresponding lanes
in the upper 128 bits of the source to the YMM destination register by using
the same shuffle pattern. Unfortunately, you can’t independently control
the HO and LO halves of the YMM register by using the vpshufd instruction.
If you really need to shuffle dwords independently, you can use vshufb with
appropriate indexes that copy 4 bytes (in place of a single dword).

11.7.3 The (v)pshuflw and (v)pshufhw Instructions
The pshuflw and vpshuflw and the pshufhw and vpshufhw instructions provide
support for 16-bit word shuffles within an XMM or a YMM register. The
syntax for these instructions is the following:

pshuflw xmmdest, xmmsrc/mem128, imm8
pshufhw xmmdest, xmmsrc/mem128, imm8

vpshuflw xmmdest, xmmsrc/mem128, imm8
vpshufhw xmmdest, xmmsrc/mem128, imm8

vpshuflw ymmdest, ymmsrc/mem256, imm8
vpshufhw ymmdest, ymmsrc/mem256, imm8

The 128-bit lw variants copy the HO 64 bits of the source operand
to the same positions in the XMMdest operand. Then they use the index
(imm8) operand to select word lanes 0 to 3 in the LO qword of the XMMsrc/
mem128 operand to move to the LO 4 lanes of the destination operand.
For example, if the LO 2 bits of imm8 are 10b, then the pshuflw instruc-
tion copies lane 2 from the source into lane 0 of the destination operand
(Figure 11-22). Note that pshuflw does not modify the HO 128 bits of the
overlaid YMM register, whereas vpshuflw zeroes those HO bits.

0123

0

128-bit vpshuflw sets HO 128 bits to 0; pshuflw leaves HO 128 bits unmodified.

imm8:
source lane
selection

7:6 5:4 3:2 1:0

255 127 0

Figure 11-22: (v)pshuflw xmm, xmm/mem, imm8 operation

The 256-bit vpshuflw instruction (with a YMM destination register) cop-
ies two pairs of words at a time—one pair in the HO 128 bits and one pair
in the LO 128 bits of the YMM destination register and 256-bit source loca-
tions, as shown in Figure 11-23. The index (imm8) selection is the same for
the LO and HO 128 bits.

SIMD Instructions 629

0123

255

0123

imm8:
source lane
selection

7:6 5:4 3:2 1:0

127 0

7:6 5:4 3:2 1:0

Figure 11-23: vpshuflw ymm, ymm/mem, imm8 operation

The 128-bit hw variants copy the LO 64 bits of the source operand to the
same positions in the destination operand. Then they use the index operand
to select words 4 to 7 (indexed as 0 to 3) in the 128-bit source operand to
move to the HO four word lanes of the destination operand (Figure 11-24).

0123

0

128-bit vpshufhw sets HO 128 bits to 0; pshufhw leaves HO 128 bits unmodified.

imm8:
source lane
selection

7:6 5:4 3:2 1:0

255 127 0

Figure 11-24: (v)pshufhw operation

The 256-bit vpshufhw instruction (with a YMM destination register) cop-
ies two pairs of words at a time—one in the HO 128 bits and one in the LO
128 bits of the YMM destination register and 256-bit source locations, as
shown in Figure 11-25.

0123

7:6 5:4 3:2 1:0

127 0

0123

7:6 5:4 3:2 1:0

255 128

imm8:
source lane
selection

Figure 11-25: vpshufhw operation

630 Chapter 11

11.7.4 The shufps and shufpd Instructions
The shuffle instructions (shufps and shufpd) extract single- or double-precision
values from the source operands and place them in specified positions in
the destination operand. The third operand, an 8-bit immediate value,
selects which values to extract from the source to move into the destination
register. The syntax for these two instructions is as follows:

shufps xmmsrc1/dest, xmmsrc2/mem128, imm8
shufpd xmmsrc1/dest, xmmsrc2/mem128, imm8

For the shufps instruction, the second source operand is an 8-bit imme-
diate value that is actually a four-element array of 2-bit values.

imm8 bits 0 and 1 select a single-precision value from one of the four
lanes in the XMMsrc1/dest operand to store into lane 0 of the destination
operation. Bits 2 and 3 select a single-precision value from one of the four
lanes in the XMMsrc1/dest operand to store into lane 1 of the destination
operation (the destination operand is also XMMsrc1/dest).

imm8 bits 4 and 5 select a single-precision value from one of the four
lanes in the XMMsrc2/memsrc2 operand to store into lane 2 of the destina-
tion operation. Bits 6 and 7 select a single-precision value from one of
the four lanes in the XMMsrc2/memsrc2 operand to store into lane 3 of the
destination operation.

Figure 11-26 shows the operation of the shufps instruction.

0123

0123

3:2 1:0

127

XMMsrc1/dest

XMMsrc1/dest

0

7:6 5:4

XMMsrc2/memsrc2

Figure 11-26: shufps operation

For example, the instruction

shufps xmm0, xmm1, 0E4h ; 0E4h = 11 10 01 00

loads XMM0 with the following single-precision values:

SIMD Instructions 631

•	 XMM0[0 to 31] from XMM0[0 to 32]

•	 XMM0[32 to 63] from XMM0[32 to 63]

•	 XMM0[64 to 95] from XMM1[63 to 95]

•	 XMM0[96 to 127] from XMM1[96 to 127]

If the second operand (XMMsrc2/memsrc2) is the same as the first oper-
and (XMMsrc1/dest), it’s possible to rearrange the four single-precision values
in the XMMdest register (which is probably the source of the instruction
name shuffle).

The shufpd instruction works similarly, shuffling double-precision val-
ues. As there are only two double-precision values in an XMM register, it
takes only a single bit to choose between the values. Likewise, as there are
only two double-precision values in the destination register, the instruction
requires only two (single-bit) array elements to choose the destination. As
a result, the third operand, the imm8 value, is actually just a 2-bit value; the
instruction ignores bits 2 to 7 in the imm8 operand. Bit 0 of the imm8 oper-
and selects either lane 0 and bits 0 to 63 (if it is 0) or lane 1 and bits 64 to
127 (if it is 1) from the XMMsrc1/dest operand to place into lane 0 and bits 0 to
63 of XMMdest. Bit 1 of the imm8 operand selects either lane 0 and bits 0 to
63 (if it is 0) or lane 1 and bits 64 to 127 (if it is 1) from the XMMsrc/mem128
operand to place into lane 1 and bits 64 to 127 of XMMdest. Figure 11-27
shows this operation.

01

01

imm8 bit 0

127
XMMsrc1/dest

XMMsrc1/dest

0

imm8 bit 1

XMMsrc2/mem128

Figure 11-27: shufpd operation

N O T E These instructions do not modify the upper 128 bits of any overlaid YMM register.

632 Chapter 11

11.7.5 The vshufps and vshufpd Instructions
The vshufps and vshufpd instructions are similar to shufps and shufpd. They
allow you to shuffle the values in 128-bit XMM registers or 256-bit YMM
registers.8 The vshufps and vshufpd instructions have four operands: a des-
tination XMM or YMM register, two source operands (src1 must be an
XMM or a YMM register, and src2 can be an XMM or a YMM register or a
128- or 256-bit memory location), and an imm8 operand. Their syntax is the
following:

vshufps xmmdest, xmmsrc1, xmmsrc2/mem128, imm8
vshufpd xmmdest, xmmsrc1, xmmsrc2/mem128, imm8

vshufps ymmdest, ymmsrc1, ymmsrc2/mem256, imm8
vshufpd ymmdest, ymmsrc1, ymmsrc2/mem256, imm8

Whereas the SSE shuffle instructions use the destination register as an
implicit source operand, the AVX shuffle instructions allow you to specify
explicit destination and source operands (they can all be different, or all
the same, or any combination thereof).

For the 256-bit vshufps instructions, the imm8 operand is an array of four
2-bit values (bits 0:1, 2:3, 4:5, and 6:7). These 2-bit values select one of four
single-precision values from the source locations, as described in Table 11-5.

Table 11-5: vshufps Destination Selection

Destination imm8 value

imm8 bits 00 01 10 11

76 54 32 10 Dest[0 to 31] Src1 [0 to 31] Src1 [32 to 63] Src1 [64 to 95] Src1 [96 to 127]

Dest[128 to 159] Src1 [128 to 159] Src1 [160 to 191] Src1 [192 to 223] Src1 [224 to 255]

76 54 32 10 Dest[32 to 63] Src1 [0 to 31] Src1 [32 to 63] Src1 [64 to 95] Src1 [96 to 127]

Dest[160 to 191] Src1 [128 to 159] Src1 [160 to 191] Src1 [192 to 223] Src1 [224 to 255]

76 54 32 10 Dest[64 to 95] Src2 [0 to 31] Src2 [32 to 63] Src2 [64 to 95] Src2 [96 to 127]

Dest[192 to 223] Src2 [128 to 159] Src2 [160 to 191] Src2 [192 to 223] Src2 [224 to 255]

76 54 32 10 Dest[96 to 127] Src2 [0 to 31] Src2 [32 to 63] Src2 [64 to 95] Src2 [96 to 127]

Dest[224 to 255] Src2 [128 to 159] Src2 [160 to 191] Src2 [192 to 223] Src2 [224 to 255]

If both source operands are the same, you can shuffle around the
single-precision values in any order you choose (and if the destination and
both source operands are the same, you can arbitrarily shuffle the dwords
within that register).

8. They also allow you to shuffle values in ZMM registers. However, this book is largely ignor-
ing the AVX-512 instruction set extensions. See the Intel and AMD documentation if you
are interested in using the 512-bit variants of these instructions.

SIMD Instructions 633

The vshufps instruction also allows you to specify XMM and 128-bit
memory operands. In this form, it behaves quite similarly to the shufps
instruction except that you get to specify two different 128-bit source oper-
ands (rather than only one 128-bit source operand), and it zeroes the HO
128 bits of the corresponding YMM register. If the destination operand is
different from the first source operand, this can be useful. If the vshufps’s
first source operand is the same XMM register as the destination operand,
you should use the shufps instruction as its machine encoding is shorter.

The vshufpd instruction is an extension of shufpd to 256 bits (plus the
addition of a second source operand). As there are four double-precision
values present in a 256-bit YMM register, vshufpd needs 4 bits to select the
source indexes (rather than the 2 bits that shufpd requires). Table 11-6
describes how vshufpd copies the data from the source operands to the
destination operand.

Table 11-6: vshufpd Destination Selection

Destination imm8 value

imm8 bits 0 1

7654 3 2 1 0 Dest[0 to 63] Src1[0 to 63] Src1[64 to 127]

7654 3 2 1 0 Dest[64 to 127] Src2[0 to 63] Src2[64 to 127]

7654 3 2 1 0 Dest[128 to 191] Src1[128 to 191] Src1[192 to 255]

7654 3 2 1 0 Dest[192 to 255] Src2[128 to 191] Src2[192 to 255]

Like the vshufps instruction, vshufpd also allows you to specify XMM reg-
isters if you want a three-operand version of shufpd.

11.7.6 The (v)unpcklps, (v)unpckhps, (v)unpcklpd, and (v)unpckhpd
Instructions
The unpack (and merge) instructions are a simplified variant of the shuffle
instructions. These instructions copy single- and double-precision values
from fixed locations in their source operands and insert those values into
fixed locations in the destination operand. They are, essentially, shuffle
instructions without the imm8 operand and with fixed shuffle patterns.

The unpcklps and unpckhps instructions choose half their single-precision
operands from one of two sources, merge these values (interleaving them), and
then store the merged result into the destination operand (which is the same as
the first source operand). The syntax for these two instructions is as follows:

unpcklps xmmdest, xmmsrc/mem128
unpckhps xmmdest, xmmsrc/mem128

The XMMdest operand serves as both the first source operand and the
destination operand. The XMMsrc/mem128 operand is the second source
operand.

634 Chapter 11

The difference between the two is the way they select their source oper-
ands. The unpcklps instruction copies the two LO single-precision values
from the source operand to bit positions 32 to 63 (dword 1) and 96 to 127
(dword 3). It leaves dword 0 in the destination operand alone and copies
the value originally in dword 1 to dword 2 in the destination. Figure 11-28
diagrams this operation.

127 06364
XMMsrc1/dest

unpcklps xmmsrc1/dest, xmmsrc2/mem128

XMMsrc2/mem128

XMMsrc1/dest

Figure 11-28: unpcklps instruction operation

The unpckhps instruction copies the two HO single-precision values from
the two sources to the destination register, as shown in Figure 11-29.

3 4

2
1

XMMdest

unpckhps xmmdest, xmmsrc/mem128

Bubbles denote logical order of operations

XMMsrc/mem128

127 6364 0

Figure 11-29: unpckhps instruction operation

The unpcklpd and unpckhpd instructions do the same thing as unpcklps and
unpckhps except, of course, they operate on double-precision values rather
than single-precision values. Figures 11-30 and 11-31 show the operation of
these two instructions.

XMMdest

unpcklpd xmmdest, xmmsrc/mem128

XMMsrc/mem128

127 6364 0

Figure 11-30: unpcklpd instruction operation

SIMD Instructions 635

1

2

XMMdest

unpckhpd xmmdest, xmmsrc/mem128

XMMsrc/mem128

127 6364 0

Figure 11-31: unpckhpd instruction operation

N O T E These instructions do not modify the upper 128 bits of any overlaid YMM register.

The vunpcklps, vunpckhps, vunpcklpd, and vunpckhpd instructions have the
following syntax:

vunpcklps xmmdest, xmmsrc1, xmmsrc2/mem128
vunpckhps xmmdest, xmmsrc1, xmmsrc2/mem128

vunpcklps ymmdest, ymmsrc1, ymmsrc2/mem256
vunpckhps ymmdest, ymmsrc1, ymmsrc2/mem256

They work similarly to the non-v variants, with a couple of differences:

•	 The AVX variants support using the YMM registers as well as the XMM
registers.

•	 The AVX variants require three operands. The first (destination) and
second (source1) operands must be XMM or YMM registers. The third
(source2) operand can be an XMM or a YMM register or a 128- or
256-bit memory location. The two-operand form is just a special case
of the three-operand form, where the first and second operands specify
the same register name.

•	 The 128-bit variants zero out the HO bits of the YMM register rather
than leaving those bits unchanged.

Of course, the AVX instructions with the YMM registers interleave
twice as many single- or double-precision values. The interleaving extension
happens in the intuitive way, with vunpcklps (Figure 11-32):

•	 The single-precision values in source1, bits 0 to 31, are first written to
bits 0 to 31 of the destination.

•	 The single-precision values in source2, bits 0 to 31, are written to bits 32
to 63 of the destination.

•	 The single-precision values in source1, bits 32 to 63, are written to bits
64 to 95 of the destination.

•	 The single-precision values in source2, bits 32 to 63, are written to bits
96 to 127 of the destination.

636 Chapter 11

•	 The single-precision values in source1, bits 128 to 159, are first written
to bits 128 to 159 of the destination.

•	 The single-precision values in source2, bits 128 to 159, are written to bits
160 to 191 of the destination.

•	 The single-precision values in source1, bits 160 to 191, are written to bits
192 to 223 of the destination.

•	 The single-precision values in source2, bits 160 to 191, are written to bits
224 to 256 of the destination.

YMMdest

vunpcklps ymmdest, ymmsrc1, ymmsrc2/mem256

YMMsrc2/mem256

YMMsrc1

127128191255 192 6364 0

Figure 11-32: vunpcklps instruction operation

The vunpckhps instruction (Figure 11-33) does the following:

•	 The single-precision values in source1, bits 64 to 95, are first written to
bits 0 to 31 of the destination.

•	 The single-precision values in source2, bits 64 to 95, are written to bits
32 to 63 of the destination.

•	 The single-precision values in source1, bits 96 to 127, are written to bits
64 to 95 of the destination.

•	 The single-precision values in source2, bits 96 to 127, are written to bits
96 to 127 of the destination.

127128191255 192 6364 0
YMMdest

vunpckhps ymmdest, ymmsrc1, ymmsrc2/mem256

YMM/memsrc2

YMMsrc1

Figure 11-33: vunpckhps instruction operation

Likewise, vunpcklpd and vunpckhpd move double-precision values.

SIMD Instructions 637

11.7.7 The Integer Unpack Instructions
The punpck* instructions provide a set of integer unpack instructions to
complement the floating-point variants. These instructions appear in
Table 11-7.

Table 11-7: Integer Unpack Instructions

Instruction Description

punpcklbw Unpacks low bytes to words

punpckhbw Unpacks high bytes to words

punpcklwd Unpacks low words to dwords

punpckhwd Unpacks high words to dwords

punpckldq Unpacks low dwords to qwords

punpckhdq Unpacks high dwords to qwords

punpcklqdq Unpacks low qwords to owords (double qwords)

punpckhqdq Unpacks high qwords to owords (double qwords)

11.7.7.1 The punpck* Instructions

The punpck* instructions extract half the bytes, words, dwords, or qwords
from two different sources and merge these values into a destination SSE
register. The syntax for these instructions is shown here:

punpcklbw xmmdest, xmmsrc
punpcklbw xmmdest, memsrc
punpckhbw xmmdest, xmmsrc
punpckhbw xmmdest, memsrc
punpcklwd xmmdest, xmmsrc
punpcklwd xmmdest, memsrc
punpckhwd xmmdest, xmmsrc
punpckhwd xmmdest, memsrc
punpckldq xmmdest, xmmsrc
punpckldq xmmdest, memsrc
punpckhdq xmmdest, xmmsrc
punpckhdq xmmdest, memsrc
punpcklqdq xmmdest, xmmsrc
punpcklqdq xmmdest, memsrc
punpckhqdq xmmdest, xmmsrc
punpckhqdq xmmdest, memsrc

Figures 11- 34 through 11-41 show the data transfers for each of these
instructions.

638 Chapter 11

XMMdest

punpcklbw xmmdest/src1, xmm/memsrc2

XMMsrc1

XMM/memsrc2

127 0

Figure 11-34: punpcklbw instruction operation

XMMdest

punpckhbw xmmdest/src1, xmm/memsrc2

XMM/memsrc2

XMMsrc1127 0

Figure 11-35: punpckhbw operation

XMMdest

punpcklwd xmmdest/src1, xmm/memsrc2

XMMsrc1

XMM/memsrc2

127 0

Figure 11-36: punpcklwd operation

SIMD Instructions 639

XMMdest

punpckhwd xmmdest/src1, xmm/memsrc2

XMM/memsrc2

XMMsrc1

127 0

Figure 11-37: punpckhwd operation

XMMdest

punpckldq xmmdest/src1, xmm/memsrc2

XMMsrc1
0

XMM/memsrc2

127

Figure 11-38: punpckldq operation

XMMdest

punpckhdq xmmdest/Src1, xmm/memsrc2

XMM/memsrc2
0

XMMsrc1

127

Figure 11-39: punpckhdq operation

640 Chapter 11

XMMdest

punpcklqdq xmmdest/src1, xmm/memsrc2

XMMsrc1

0

XMM/memsrc2

127

Figure 11-40: punpcklqdq operation

XMMdest

punpckhqdq xmmdest/src1, xmm/memsrc2

XMM/memsrc2

0

XMMsrc1

127

Figure 11-41: punpckhqdq operation

N O T E These instructions do not modify the upper 128 bits of any overlaid YMM register.

11.7.7.2 The vpunpck* SSE Instructions

The AVX vpunpck* instructions provide a set of AVX integer unpack instructions
to complement the SSE variants. These instructions appear in Table 11-8.

Table 11-8: AVX Integer Unpack Instructions

Instruction Description

vpunpcklbw Unpacks low bytes to words

vpunpckhbw Unpacks high bytes to words

vpunpcklwd Unpacks low words to dwords

vpunpckhwd Unpacks high words to dwords

vpunpckldq Unpacks low dwords to qwords

SIMD Instructions 641

Instruction Description

vpunpckhdq Unpacks high dwords to qwords

vpunpcklqdq Unpacks low qwords to owords (double qwords)

vpunpckhqdq Unpacks high qwords to owords (double qwords)

The vpunpck* instructions extract half the bytes, words, dwords, or qwords
from two different sources and merge these values into a destination AVX or
SSE register. Here is the syntax for the SSE forms of these instructions:

vpunpcklbw xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpckhbw xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpcklwd xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpckhwd xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpckldq xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpckhdq xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpcklqdq xmmdest, xmmsrc1, xmmsrc2/mem128
vpunpckhqdq xmmdest, xmmsrc1, xmmsrc2/mem128

Functionally, the only difference between these AVX instructions (vunpck*)
and the SSE (unpck*) instructions is that the SSE variants leave the upper bits
of the YMM AVX registers (bits 128 to 255) unchanged, whereas the AVX
variants zero-extend the result to 256 bits. See Figures 11-34 through 11-41
for a description of the operation of these instructions.

11.7.7.3 The vpunpck* AVX Instructions

The AVX vunpck* instructions also support the use of the AVX YMM regis-
ters, in which case the unpack and merge operation extends from 128 bits
to 256 bits. The syntax for these instructions is as follows:

vpunpcklbw ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpckhbw ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpcklwd ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpckhwd ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpckldq ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpckhdq ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpcklqdq ymmdest, ymmsrc1, ymmsrc2/mem256
vpunpckhqdq ymmdest, ymmsrc1, ymmsrc2/mem256

11.7.8 The (v)pextrb, (v)pextrw, (v)pextrd, and (v)pextrq Instructions
The (v)pextrb, (v)pextrw, (v)pextrd, and (v)pextrq instructions extract a byte,
word, dword, or qword from a 128-bit XMM register and copy this data to a
general-purpose register or memory location. The syntax for these instruc-
tions is the following:

pextrb reg32, xmmsrc, imm8 ; imm8 = 0 to 15
pextrb reg64, xmmsrc, imm8 ; imm8 = 0 to 15
pextrb mem8, xmmsrc, imm8 ; imm8 = 0 to 15

642 Chapter 11

vpextrb reg32, xmmsrc, imm8 ; imm8 = 0 to 15
vpextrb reg64, xmmsrc, imm8 ; imm8 = 0 to 15
vpextrb mem8, xmmsrc, imm8 ; imm8 = 0 to 15

pextrw reg32, xmmsrc, imm8 ; imm8 = 0 to 7
pextrw reg64, xmmsrc, imm8 ; imm8 = 0 to 7
pextrw mem16, xmmsrc, imm8 ; imm8 = 0 to 7
vpextrw reg32, xmmsrc, imm8 ; imm8 = 0 to 7
vpextrw reg64, xmmsrc, imm8 ; imm8 = 0 to 7
vpextrw mem16, xmmsrc, imm8 ; imm8 = 0 to 7

pextrd reg32, xmmsrc, imm8 ; imm8 = 0 to 3
pextrd mem32, xmmsrc, imm8 ; imm8 = 0 to 3
vpextrd mem64, xmmsrc, imm8 ; imm8 = 0 to 3
vpextrd reg32, xmmsrc, imm8 ; imm8 = 0 to 3
vpextrd reg64, xmmsrc, imm8 ; imm8 = 0 to 3
vpextrd mem32, xmmsrc, imm8 ; imm8 = 0 to 3

pextrq reg64, xmmsrc, imm8 ; imm8 = 0 to 1
pextrq mem64, xmmsrc, imm8 ; imm8 = 0 to 1
vpextrq reg64, xmmsrc, imm8 ; imm8 = 0 to 1
vpextrq mem64, xmmsrc, imm8 ; imm8 = 0 to 1

The byte and word instructions expect a 32- or 64-bit general-purpose reg-
ister as their destination (first operand) or a memory location that is the same
size as the instruction (that is, pextrb expects a byte-sized memory operand,
pextrw expects a word-sized operand, and so on). The source (second) operand
is a 128-bit XMM register. The index (third) operand is an 8-bit immediate
value that specifies an index (lane number). These instructions fetch the byte,
word, dword, or qword in the lane specified by the 8-bit immediate value and
copy that value into the destination operand. The double-word and quad-word
variants require a 32-bit or 64-bit general-purpose register, respectively. If the
destination operand is a 32- or 64-bit general-purpose register, the instruction
zero-extends the value to 32 or 64 bits, if necessary.

N O T E These instructions do not support extracting data from the upper 128 bits of a YMM
register.

11.7.9 The (v)pinsrb, (v)pinsrw, (v)pinsrd, and (v)pinsrq Instructions
The (v)pinsr{b,w,d,q} instructions take a byte, word, dword, or qword from
a general-purpose register or memory location and store that data to a lane
of an XMM register. The syntax for these instructions is the following:9

pinsrb xmmdest, reg32, imm8 ; imm8 = 0 to 15
pinsrb xmmdest, mem8, imm8 ; imm8 = 0 to 15
vpinsrb xmmdest, xmmsrc2, reg32, imm8 ; imm8 = 0 to 15
vpinsrb xmmdest, xmmsrc2, mem8, imm8 ; imm8 = 0 to 15

9. Intel and AMD’s documentation swap the second and third operands. This book uses the
Intel syntax.

SIMD Instructions 643

pinsrw xmmdest, reg32, imm8 ; imm8 = 0 to 7
pinsrw xmmdest, mem16, imm8 ; imm8 = 0 to 7
vpinsrw xmmdest, xmmsrc2, reg32, imm8 ; imm8 = 0 to 7
vpinsrw xmmdest, xmmsrc2, mem16, imm8 ; imm8 = 0 to 7

pinsrd xmmdest, reg32, imm8 ; imm8 = 0 to 3
pinsrd xmmdest, mem32, imm8 ; imm8 = 0 to 3
vpinsrd xmmdest, xmmsrc2, reg32, imm8 ; imm8 = 0 to 3
vpinsrd xmmdest, xmmsrc2, mem32, imm8 ; imm8 = 0 to 3

pinsrq xmmdest, reg64, imm8 ; imm8 = 0 to 1
pinsrq xmmdest, xmmsrc2, mem64, imm8 ; imm8 = 0 to 1
vpinsrq xmmdest, xmmsrc2, reg64, imm8 ; imm8 = 0 to 1
vpinsrq xmmdest, xmmsrc2, mem64, imm8 ; imm8 = 0 to 1

The destination (first) operand is a 128-bit XMM register. The pinsr*
instructions expect a memory location or a 32-bit general-purpose register
as their source (second) operand (except the pinsrq instructions, which
require a 64-bit register). The index (third) operand is an 8-bit immediate
value that specifies an index (lane number).

These instructions fetch a byte, word, dword, or qword from the general-
purpose register or memory location and copy that to the lane in the XMM
register specified by the 8-bit immediate value. The pinsr{b,w,d,q} instructions
leave any HO bits in the underlying YMM register unchanged (if applicable).

The vpinsr{b,w,d,q} instructions copy the data from the XMM source
register into the destination register and then copy the byte, word, dword,
or quad word to the specified location in the destination register. These
instructions zero-extend the value throughout the HO bits of the underly-
ing YMM register.

11.7.10 The (v)extractps and (v)insertps Instructions
The extractps and vextractps instructions are functionally equivalent to
pextrd and vpextrd. They extract a 32-bit (single-precision floating-point)
value from an XMM register and move it into a 32-bit general-purpose
register or a 32-bit memory location. The syntax for the (v)extractps instruc-
tions is shown here:

extractps reg32, xmmsrc, imm8
extractps mem32, xmmsrc, imm8
vextractps reg32, xmmsrc, imm8
vextractps mem32, xmmsrc, imm8

The insertps and vinsertps instructions insert a 32-bit floating-point
value into an XMM register and, optionally, zero out other lanes in the
XMM register. The syntax for these instructions is as follows:

insertps xmmdest, xmmsrc, imm8
insertps xmmdest, mem32, imm8
vinsertps xmmdest, xmmsrc1, xmmsrc2, imm8
vinsertps xmmdest, xmmsrc1, mem32, imm8

644 Chapter 11

For the insertps and vinsertps instructions, the imm8 operand has the
fields listed in Table 11-9.

Table 11-9: imm8 Bit Fields for insertps and vinsertps Instructions

Bit(s) Meaning

6 to 7 (Only if the source operand is an XMM register): Selects the 32-bit lane from
the source XMM register (0, 1, 2, or 3). If the source operand is a 32-bit
memory location, the instruction ignores this field and uses the full 32 bits
from memory.

4 to 5 Specifies the lane in the destination XMM register in which to store the single-
precision value.

3 If set, zeroes lane 3 of XMMdest.

2 If set, zeroes lane 2 of XMMdest.

1 If set, zeroes lane 1 of XMMdest.

0 If set, zeroes lane 0 of XMMdest.

On CPUs with the AVX extensions, insertps does not modify the upper
bits of the YMM registers; vinsertps zeroes the upper bits.

The vinsertps instruction first copies the XMMsrc1 register to XMMdest
before performing the insertion operation. The HO bits of the correspond-
ing YMM register are set to 0.

The x86-64 does not provide (v)extractpd or (v)insertpd instructions.

 11.8 SIMD Arithmetic and Logical Operations
The SSE and AVX instruction set extensions provide a variety of scalar and
vector arithmetic and logical operations.

“SSE Floating-Point Arithmetic” in Chapter 6 has already covered
floating-point arithmetic using the scalar SSE instruction set, so this section
does not repeat that discussion. Instead, this section covers the vector (or
packed) arithmetic and logical instructions.

The vector instructions perform multiple operations in parallel on the
different data lanes in an SSE or AVX register. Given two source operands,
a typical SSE instruction will calculate two double-precision floating-point
results, two quad-word integer calculations, four single-precision floating-
point operations, four double-word integer calculations, eight word integer
calculations, or sixteen byte calculations, simultaneously. The AVX registers
(YMM) double the number of lanes and therefore double the number of
concurrent calculations.

Figure 11-42 shows how the SSE and AVX instructions perform concur-
rent calculations; a value is taken from the same lane in two source locations,
the calculation is performed, and the instruction stores the result to the same
lane in the destination location. This process happens simultaneously for
each lane in the source and destination operands. For example, if a pair of

SIMD Instructions 645

XMM registers contains four single-precision floating-point values, a SIMD
packed floating-point addition instruction would add the single-precision
values in the corresponding lanes of the source operands and store the
single-precision sums into the corresponding lanes of the destination XMM
register.

Destination operand

Source 1 operand
...

...

...

Lane 0HO lane

Source 2 operand

op op op op

Figure 11-42: SIMD concurrent arithmetic and logical operations

Certain operations—for example, logical AND, ANDN (and not), OR,
and XOR—don’t have to be broken into lanes, because those operations
perform the same result regardless of the instruction size. The lane size is a
single bit. Therefore, the corresponding SSE/AVX instructions operate on
their entire operands without regard for a lane size.

 11.9 The SIMD Logical (Bitwise) Instructions
The SSE and AVX instruction set extensions provide the logical operations
shown in Table 11-10 (using C/C++ bitwise operator syntax).

Table 11-10: SSE/AVX Logical Instructions

Operation Description

andpd dest = dest and source (128-bit operands)

vandpd dest = source1 and source2 (128-bit or 256-bit operands)

andnpd dest = dest and ~source (128-bit operands)

vandnpd dest = source1 and ~source2 (128-bit or 256-bit operands)

orpd dest = dest | source (128-bit operands)

vorpd dest = source1 | source2 (128-bit or 256-bit operands)

xorpd dest = dest ^ source (128-bit operands)

vxorpd dest = source1 ^ source2 (128-bit or 256-bit operands)

646 Chapter 11

The syntax for these instructions is the following:

andpd xmmdest, xmmsrc/mem128
vandpd xmmdest, xmmsrc1, xmmsrc2/mem128
vandpd ymmdest, ymmsrc1, ymmsrc2/mem256

andnpd xmmdest, xmmsrc/mem128
vandnpd xmmdest, xmmsrc1, xmmsrc2/mem128
vandnpd ymmdest, ymmsrc1, ymmsrc2/mem256

orpd xmmdest, xmmsrc/mem128
vorpd xmmdest, xmmsrc1, xmmsrc2/mem128
vorpd ymmdest, ymmsrc1, ymmsrc2/mem256

xorpd xmmdest, xmmsrc/mem128
vxorpd xmmdest, xmmsrc1, xmmsrc2/mem128
vxorpd ymmdest, ymmsrc1, ymmsrc2/mem256

The SSE instructions (without the v prefix) leave the HO bits of the
underlying YMM register unchanged (if applicable). The AVX instructions
(with the v prefix) that have 128-bit operands will zero-extend their result
into the HO bits of the YMM register.

If the (second) source operand is a memory location, it must be aligned
on an appropriate boundary (for example, 16 bytes for mem128 values and
32 bytes for mem256 values). Failure to do so will result in a runtime mem-
ory alignment fault.

11.9.1 The (v)ptest Instructions
The ptest instruction (packed test) is similar to the standard integer test
instruction. The ptest instruction performs a logical AND between the two
operands and sets the zero flag if the result is 0. The ptest instruction sets
the carry flag if the logical AND of the second operand with the inverted
bits of the first operand produces 0. The ptest instruction supports the fol-
lowing syntax:

ptest xmmsrc1, xmmsrc2/mem128
vptest xmmsrc1, xmmsrc2/mem128
vptest ymmsrc1, ymmsrc2/mem256

N O T E The ptest instruction is available only on CPUs that support the SSE4.1 instruction
set (and later) extensions; vptest requires AVX support. The 128-bit SSE (ptest) and
AVX (vptest) instructions do exactly the same thing, but the SSE encoding is more
efficient.

11.9.2 The Byte Shift Instructions
The SSE and AVX instruction set extensions also support a set of logical
and arithmetic shift instructions. The first two to consider are pslldq and
psrldq. Although they begin with a p, suggesting they are packed (vector)

SIMD Instructions 647

instructions, these instructions really are just 128-bit logical shift-left and
shift-right instructions. Their syntax is as follows:

pslldq xmmdest, imm8
vpslldq xmmdest, xmmsrc, imm8
vpslldq ymmdest, ymmsrc, imm8
psrldq xmmdest, imm8
vpsrldq xmmdest, xmmsrc, imm8
vpsrldq ymmdest, ymmsrc, imm8

The pslldq instruction shifts its destination XMM register to the left by
the number of bytes specified by the imm8 operand. This instruction shifts 0s
into the vacated LO bytes.

The vpslldq instruction takes the value in the source register (XMM or
YMM), shifts that value to the left by imm8 bytes, and then stores the result
into the destination register. For the 128-bit variant, this instruction zero-
extends the result into bits 128 to 255 of the underlying YMM register (on
AVX-capable CPUs).

The psrldq and vpsrldq instructions operate similarly to (v)pslldq except,
of course, they shift their operands to the right rather than to the left. These
are logical shift-right operations, so they shift 0s into the HO bytes of their
operand, and bits shifted out of bit 0 are lost.

The pslldq and psrldq instructions shift bytes rather than bits. For example,
many SSE instructions produce byte masks 0 or 0FFh, representing Boolean
results. These instructions shift the equivalent of a bit in one of these byte
masks by shifting whole bytes at a time.

11.9.3 The Bit Shift Instructions
The SSE/AVX instruction set extensions also provide vector bit shift operations
that work on two or more integer lanes, concurrently. These instructions pro-
vide word, dword, and qword variants of the logical shift-left, logical shift-right,
and arithmetic shift-right operations, using the syntax

shift xmmdest, imm8
shift xmmdest, xmmsrc/mem128
vshift xmmdest, xmmsrc, imm8
vshift xmmdest, xmmsrc, mem128
vshift ymmdest, ymmsrc, imm8
vshift ymmdest, ymmsrc, xmm/mem128

where shift = psllw, pslld, psllq, psrlw, psrld, psrlq, psraw, or psrad, and vshift
= vpsllw, vpslld, vpsllq, vpsrlw, vpsrld, vpsrlq, vpsraw, vpsrad, or vpsraq.

The (v)psl* instructions shift their operands to the left; the (v)psr* instruc-
tions shift their operands to the right. The (v)psll* and (v)psrl* instructions
are logical shift instructions and shift 0s into the bits vacated by the shift. Any
bits shifted out of the operand are lost. The (v)psra* instructions are arithmetic
shift-right instructions. They replicate the HO bit in each lane when shifting
that lane’s bits to the right; all bits shifted out of the LO bit are lost.

648 Chapter 11

The SSE two-operand instructions treat their first operand as both the
source and destination operand. The second operand specifies the number of
bits to shift (which is either an 8-bit immediate constant or a value held in an
XMM register or a 128-bit memory location). Regardless of the shift count’s
size, only the LO 4, 5, or 6 bits of the count are meaningful (depending on the
lane size).

The AVX three-operand instructions specify a separate source and desti-
nation register for the shift operation. These instructions take the value from
the source register, shift it the specified number of bits, and store the shifted
result into the destination register. The source register remains unmodified
(unless, of course, the instruction specifies the same register for the source
and destination operands). For the AVX instructions, the source and destina-
tion registers can be XMM (128-bit) or YMM (256-bit) registers. The third
operand is either an 8-bit immediate constant, an XMM register, or a 128-bit
memory location. The third operand specifies the bit shift count (the same as
the SSE instructions). You specify an XMM register for the count even when
the source and destination registers are 256-bit YMM registers.

The w suffix instructions shift 16-bit operands (eight lanes for 128-bit
destination operands, sixteen lanes for 256-bit destinations). The d suffix
instructions shift 32-bit dword operands (four lanes for 128-bit destina-
tion operands, eight lanes for 256-bit destination operands). The q suffix
instructions shift 64-bit operands (two lanes for 128-bit operands, four
lanes for 256-bit operands).

 11.10 The SIMD Integer Arithmetic Instructions
The SSE and AVX instruction set extensions deal mainly with floating-point
calculations. They do, however, include a set of signed and unsigned integer
arithmetic operations. This section describes the SSE/AVX integer arithme-
tic instructions.

11.10.1 SIMD Integer Addition
The SIMD integer addition instructions appear in Table 11-11. These
instructions do not affect any flags and thus do not indicate when an overflow
(signed or unsigned) occurs during the execution of these instructions. The
program itself must ensure that the source operands are all within the appro-
priate range before performing an addition. If carry occurs during an addi-
tion, the carry is lost.

Table 11-11: SIMD Integer Addition Instructions

Instruction Operands Description

paddb xmmdest, xmm/mem128 16-lane byte addition

vpaddb xmmdest, xmmsrc1, xmmsrc2/mem128 16-lane byte addition

vpaddb ymmdest, ymmsrc1, ymmsrc2/mem256 32-lane byte addition

paddw xmmdest, xmm/mem128 8-lane word addition

vpaddw xmmdest, xmmsrc1, xmmsrc2/mem128 8-lane word addition

SIMD Instructions 649

Instruction Operands Description

vpaddw ymmdest, ymmsrc1, ymmsrc2/mem256 16-lane word addition

paddd xmmdest, xmm/mem128 4-lane dword addition

vpaddd xmmdest, xmmsrc1, xmmsrc2/mem128 4-lane dword addition

vpaddd ymmdest, ymmsrc1, ymmsrc2/mem256 8-lane dword addition

paddq xmmdest, xmm/mem128 2-lane qword addition

vpaddq xmmdest, xmmsrc1, xmmsrc2/mem128 2-lane qword addition

vpaddq ymmdest, ymmsrc1, ymmsrc2/mem256 4-lane qword addition

These addition instructions are known as vertical additions because if we
stack the two source operands on top of each other (on a printed page), the
lane additions occur vertically (one source lane is directly above the second
source lane for the corresponding addition operation).

The packed additions ignore any overflow from the addition operation,
keeping only the LO byte, word, dword, or qword of each addition. As long
as overflow is never possible, this is not an issue. However, for certain algo-
rithms (especially audio and video, which commonly use packed addition),
truncating away the overflow can produce bizarre results.

A cleaner solution is to use saturation arithmetic. For unsigned addition,
saturation arithmetic clips (or saturates) an overflow to the largest possible
value that the instruction’s size can handle. For example, if the addition of
two byte values exceeds 0FFh, saturation arithmetic produces 0FFh—the
largest possible unsigned 8-bit value (likewise, saturation subtraction would
produce 0 if underflow occurs). For signed saturation arithmetic, clipping
occurs at the largest positive and smallest negative values (for example,
7Fh/+127 for positive values and 80h/–128 for negative values).

The x86 SIMD instructions provide both signed and unsigned saturation
arithmetic, though the operations are limited to 8- and 16-bit quantities.10
The instructions appear in Table 11-12.

Table 11-12: SIMD Integer Saturation Addition Instructions

Instruction Operands Description

paddsb xmmdest, xmm/mem128 16-lane byte signed saturation addition

vpaddsb xmmdest, xmmsrc1, xmmsrc2/mem128 16-lane byte signed saturation addition

vpaddsb ymmdest, ymmsrc1, ymmsrc2/mem256 32-lane byte signed saturation addition

paddsw xmmdest, xmm/mem128 8-lane word signed saturation addition

vpaddsw xmmdest, xmmsrc1, xmmsrc2/mem128 8-lane word signed saturation addition

vpaddsw ymmdest, ymmsrc1, ymmsrc2/mem256 16-lane word signed saturation addition

paddusb xmmdest, xmm/mem128 16-lane byte unsigned saturation addition

10. 8-bit addition is generally sufficient for video, with 16-bit addition certainly sufficient for
high-end video encoding. 16-bit saturation is suitable for normal audio, though high-end
audio requires 24-bit arithmetic.

(continued)

650 Chapter 11

Instruction Operands Description

vpaddusb xmmdest, xmmsrc1, xmmsrc2/mem128 16-lane byte unsigned saturation addition

vpaddusb ymmdest, ymmsrc1, ymmsrc2/mem256 32-lane byte unsigned saturation addition

paddusw xmmdest, xmm/mem128 8-lane word unsigned saturation addition

vpaddusw xmmdest, xmmsrc1, xmmsrc2/mem128 8-lane word unsigned saturation addition

vpaddusw ymmdest, ymmsrc1, ymmsrc2/mem256 16-lane word unsigned saturation
addition

As usual, both padd* and vpadd* instructions accept 128-bit XMM regis-
ters (sixteen 8-bit additions or eight 16-bit additions). The padd* instructions
leave the HO bits of any corresponding YMM destination undisturbed;
the vpadd* variants clear the HO bits. Also note that the padd* instructions
have only two operands (the destination register is also a source), whereas
the vpadd* instructions have two source operands and a single destination
operand. The vpadd* instructions with the YMM register provide double the
number of parallel additions.

11.10.2 Horizontal Additions
The SSE/AVX instruction sets also support three horizontal addition instruc-
tions, listed in Table 11-13.

Table 11-13: Horizontal Addition Instructions

Instruction Description

(v)phaddw 16-bit (word) horizontal add

(v)phaddd 32-bit (dword) horizontal add

(v)phaddsw 16-bit (word) horizontal add and saturate

The horizontal addition instructions add adjacent words or dwords in
their two source operands and store the sum of the result into a destination
lane, as shown in Figure 11-43.

Destination

...

... ...

... ...

+++ +

XMM/memsrc2XMMdest/src1

Figure 11-43: Horizontal addition operation

Table 11-12: SIMD Integer Saturation Addition Instructions (continued)

SIMD Instructions 651

The phaddw instruction has the following syntax:

phaddw xmmdest, xmmsrc/mem128

It computes the following:

temp[0 to 15] = xmmdest[0 to 15] + xmmdest[16 to 31]
temp[16 to 31] = xmmdest[32 to 47] + xmmdest[48 to 63]
temp[32 to 47] = xmmdest[64 to 79] + xmmdest[80 to 95]
temp[48 to 63] = xmmdest[96 to 111] + xmmdest[112 to 127]
temp[64 to 79] = xmmsrc/mem128[0 to 15] + xmmsrc/mem128[16 to 31]
temp[80 to 95] = xmmsrc/mem128[32 to 47] + xmmsrc/mem128[48 to 63]
temp[96 to 111] = xmmsrc/mem128[64 to 79] + xmmsrc/mem128[80 to 95]
temp[112 to 127] = xmmsrc/mem128[96 to 111] + xmmsrc/mem128[112 to 127]
xmmdest = temp

As is the case with most SSE instructions, phaddw does not affect the HO
bits of the corresponding YMM destination register, only the LO 128 bits.

The 128-bit vphaddw instruction has the following syntax:

vphaddw xmmdest, xmmsrc1, xmmsrc2/mem128

It computes the following:

xmmdest[0 to 15] = xmmsrc1[0 to 15] + xmmsrc1[16 to 31]
xmmdest[16 to 31] = xmmsrc1[32 to 47] + xmmsrc1[48 to 63]
xmmdest[32 to 47] = xmmsrc1[64 to 79] + xmmsrc1[80 to 95]
xmmdest[48 to 63] = xmmsrc1[96 to 111] + xmmsrc1[112 to 127]
xmmdest[64 to 79] = xmmsrc2/mem128[0 to 15] + xmmsrc2/mem128[16 to 31]
xmmdest[80 to 95] = xmmsrc2/mem128[32 to 47] + xmmsrc2/mem128[48 to 63]
xmmdest[96 to 111] = xmmsrc2/mem128[64 to 79] + xmmsrc2/mem128[80 to 95]
xmmdest[111 to 127] = xmmsrc2/mem128[96 to 111] + xmmsrc2/mem128[112 to 127]

The vphaddw instruction zeroes out the HO 128 bits of the correspond-
ing YMM destination register.

The 256-bit vphaddw instruction has the following syntax:

vphaddw ymmdest, ymmsrc1, ymmsrc2/mem256

vphaddw does not simply extend the 128-bit version in the intuitive way.
Instead, it mixes up computations as follows (where SRC1 is YMMsrc1 and SRC2
is YMMsrc2/mem256):

ymmdest[0 to 15] = SRC1[16 to 31] + SRC1[0 to 15]
ymmdest[16 to 31] = SRC1[48 to 63] + SRC1[32 to 47]
ymmdest[32 to 47] = SRC1[80 to 95] + SRC1[64 to 79]
ymmdest[48 to 63] = SRC1[112 to 127] + SRC1[96 to 111]
ymmdest[64 to 79] = SRC2[16 to 31] + SRC2[0 to 15]
ymmdest[80 to 95] = SRC2[48 to 63] + SRC2[32 to 47]
ymmdest[96 to 111] = SRC2[80 to 95] + SRC2[64 to 79]
ymmdest[112 to 127] = SRC2[112 to 127] + SRC2[96 to 111]
ymmdest[128 to 143] = SRC1[144 to 159] + SRC1[128 to 143]
ymmdest[144 to 159] = SRC1[176 to 191] + SRC1[160 to 175]

652 Chapter 11

ymmdest[160 to 175] = SRC1[208 to 223] + SRC1[192 to 207]
ymmdest[176 to 191] = SRC1[240 to 255] + SRC1[224 to 239]
ymmdest[192 to 207] = SRC2[144 to 159] + SRC2[128 to 143]
ymmdest[208 to 223] = SRC2[176 to 191] + SRC2[160 to 175]
ymmdest[224 to 239] = SRC2[208 to 223] + SRC2[192 to 207]
ymmdest[240 to 255] = SRC2[240 to 255] + SRC2[224 to 239]

11.10.3 Double-Word–Sized Horizontal Additions
The phaddd instruction has the following syntax:

phaddd xmmdest, xmmsrc/mem128

It computes the following:

temp[0 to 31] = xmmdest[0 to 31] + xmmdest[32 to 63]
temp[32 to 63] = xmmdest[64 to 95] + xmmdest[96 to 127]
temp[64 to 95] = xmmsrc/mem128[0 to 31] + xmmsrc/mem128[32 to 63]
temp[96 to 127] = xmmsrc/mem128[64 to 95] + xmmsrc/mem128[96 to 127]
xmmdest = temp

The 128-bit vphaddd instruction has this syntax:

vphaddd xmmdest, xmmsrc1, xmmsrc2/mem128

It computes the following:

xmmdest[0 to 31] = xmmsrc1[0 to 31] + xmmsrc1[32 to 63]
xmmdest[32 to 63] = xmmsrc1[64 to 95] + xmmsrc1[96 to 127]
xmmdest[64 to 95] = xmmsrc2/mem128[0 to 31] + xmmsrc2/mem128[32 to 63]
xmmdest[96 to 127] = xmmsrc2/mem128[64 to 95] + xmmsrc2/mem128[96 to 127]
(ymmdest[128 to 255] = 0)

Like vphaddw, the 256-bit vphaddd instruction has the following syntax:

vphaddd ymmdest, ymmsrc1, ymmsrc2/mem256

It calculates the following:

ymmdest[0 to 31] = ymmsrc1[32 to 63] + ymmsrc1[0 to 31]
ymmdest[32 to 63] = ymmsrc1[96 to 127] + ymmsrc1[64 to 95]
ymmdest[64 to 95] = ymmsrc2/mem128[32 to 63] + ymmsrc2/mem128[0 to 31]
ymmdest[96 to 127] = ymmsrc2/mem128[96 to 127] + ymmsrc2/mem128[64 to 95]
ymmdest[128 to 159] = ymmsrc1[160 to 191] + ymmsrc1[128 to 159]
ymmdest[160 to 191] = ymmsrc1[224 to 255] + ymmsrc1[192 to 223]
ymmdest[192 to 223] = ymmsrc2/mem128[160 to 191] + ymmsrc2/mem128[128 to 159]
ymmdest[224 to 255] = ymmsrc2/mem128[224 to 255] + ymmsrc2/mem128[192 to 223]

If an overflow occurs during the horizontal addition, (v)phaddw and
(v)phaddd simply ignore the overflow and store the LO 16 or 32 bits of the
result into the destination location.

SIMD Instructions 653

The (v)phaddsw instructions take the following forms:

phaddsw xmmdest, xmmsrc/mem128
vphaddsw xmmdest, xmmsrc1, xmmsrc2/mem128
vphaddsw ymmdest, ymmsrc1, ymmsrc2/mem256

The (v)phaddsw instruction (horizontal signed integer add with saturate, word)
is a slightly different form of (v)phaddw: rather than storing only the LO bits
into the result in the destination lane, this instruction saturates the result.
Saturation means that any (positive) overflow results in the value 7FFFh,
regardless of the actual result. Likewise, any negative underflow results in the
value 8000h.

Saturation arithmetic works well for audio and video processing. If you
were using standard (wraparound/modulo) addition when adding two sound
samples together, the result would be horrible clicking sounds. Saturation,
on the other hand, simply produces a clipped audio signal. While this is not
ideal, it sounds considerably better than the results from modulo arithmetic.
Similarly, for video processing, saturation produces a washed-out (white) color
versus the bizarre colors that result from modulo arithmetic.

Sadly, there is no horizontal add with saturation for double-word oper-
ands (for example, to handle 24-bit audio).

11.10.4 SIMD Integer Subtraction
The SIMD integer subtraction instructions appear in Table 11-14. As for the
SIMD addition instructions, they do not affect any flags; any carry, borrow,
overflow, or underflow information is lost. These instructions subtract the
second source operand from the first source operand (which is also the des-
tination operand for the SSE-only instructions) and store the result into
the destination operand.

Table 11-14: SIMD Integer Subtraction Instructions

Instruction Operands Description

psubb xmmdest, xmm/mem128 16-lane byte subtraction

vpsubb xmmdest, xmmsrc, xmm/mem128 16-lane byte subtraction

vpsubb ymmdest, ymmsrc, ymm/mem256 32-lane byte subtraction

psubw xmmdest, xmm/mem128 8-lane word subtraction

vpsubw xmmdest, xmmsrc, xmm/mem128 8-lane word subtraction

vpsubw ymmdest, ymmsrc, ymm/mem256 16-lane word subtraction

psubd xmmdest, xmm/mem128 4-lane dword subtraction

vpsubd xmmdest, xmmsrc, xmm/mem128 4-lane dword subtraction

vpsubd ymmdest, ymmsrc, ymm/mem256 8-lane dword subtraction

psubq xmmdest, xmm/mem128 2-lane qword subtraction

vpsubq xmmdest, xmmsrc, xmm/mem128 2-lane qword subtraction

vpsubq ymmdest, ymmsrc, ymm/mem256 4-lane qword subtraction

654 Chapter 11

The (v)phsubw, (v)phsubd, and (v)phsubsw horizontal subtraction instruc-
tions work just like the horizontal addition instructions, except (of course)
they compute the difference of the two source operands rather than the
sum. See the previous sections for details on the horizontal addition
instructions.

Likewise, there is a set of signed and unsigned byte and word saturating
subtraction instructions (see Table 11-15). For the signed instructions, the
byte-sized instructions saturate positive overflow to 7Fh (+127) and nega-
tive underflow to 80h (–128). The word-sized instructions saturate to 7FFFh
(+32,767) and 8000h (–32,768). The unsigned saturation instructions satu-
rate to 0FFFFh (+65,535) and 0.

Table 11-15: SIMD Integer Saturating Subtraction Instructions

Instruction Operands Description

psubsb xmmdest, xmm/mem128 16-lane byte signed saturation subtraction

vpsubsb xmmdest, xmmsrc, xmm/mem128 16-lane byte signed saturation subtraction

vpsubsb ymmdest, ymmsrc, ymm/mem256 32-lane byte signed saturation subtraction

psubsw xmmdest, xmm/mem128 8-lane word signed saturation subtraction

vpsubsw xmmdest, xmmsrc, xmm/mem128 8-lane word signed saturation subtraction

vpsubsw ymmdest, ymmsrc, ymm/mem256 16-lane word signed saturation subtraction

psubusb xmmdest, xmm/mem128 16-lane byte unsigned saturation subtraction

vpsubusb xmmdest, xmmsrc, xmm/mem128 16-lane byte unsigned saturation subtraction

vpsubusb ymmdest, ymmsrc, ymm/mem256 32-lane byte unsigned saturation subtraction

psubusw xmmdest, xmm/mem128 8-lane word unsigned saturation subtraction

vpsubusw xmmdest, xmmsrc, xmm/mem128 8-lane word unsigned saturation subtraction

vpsubusw ymmdest, ymmsrc, ymm/mem256 16-lane word unsigned saturation subtraction

11.10.5 SIMD Integer Multiplication
The SSE/AVX instruction set extensions somewhat support multiplication.
Lane-by-lane multiplication requires that the result of an operation on
two n-bit values fits in n bits, but n × n multiplication can produce a 2×n-
bit result. So a lane-by-lane multiplication operation creates problems as
overflow is lost. The basic packed integer multiplication multiplies a pair
of lanes and stores the LO bits of the result in the destination lane. For
extended arithmetic, packed integer multiplication instructions produce
the HO bits of the result.

The instructions in Table 11-16 handle 16-bit multiplication operations.
The (v)pmullw instruction multiplies the 16-bit values appearing in the lanes
of the source operand and stores the LO word of the result into the cor-
responding destination lane. This instruction is applicable to both signed
and unsigned values. The (v)pmulhw instruction computes the product of

SIMD Instructions 655

two signed word values and stores the HO word of the result into the destina-
tion lanes. For unsigned operands, (v)pmulhuw performs the same task. By
executing both (v)pmullw and (v)pmulh(u)w with the same operands, you can
compute the full 32-bit result of a 16×16-bit multiplication. (You can use the
punpck* instructions to merge the results into 32-bit integers.)

Table 11-16: SIMD 16-Bit Packed Integer Multiplication Instructions

Instruction Operands Description

pmullw xmmdest, xmm/mem128 8-lane word multiplication, producing the LO
word of the product

vpmullw xmmdest, xmmsrc, xmm/mem128 8-lane word multiplication, producing the LO
word of the product

vpmullw ymmdest, ymmsrc, ymm/mem256 16-lane word multiplication, producing the LO
word of the product

pmulhuw xmmdest, xmm/mem128 8-lane word unsigned multiplication, produc-
ing the HO word of the product

vpmulhuw xmmdest, xmmsrc, xmm/mem128 8-lane word unsigned multiplication, produc-
ing the HO word of the product

vpmulhuw ymmdest, ymmsrc, ymm/mem256 16-lane word unsigned multiplication, produc-
ing the HO word of the product

pmulhw xmmdest, xmm/mem128 8-lane word signed multiplication, producing
the HO word of the product

vpmulhw xmmdest, xmmsrc, xmm/mem128 8-lane word signed multiplication, producing
the HO word of the product

vpmulhw ymmdest, ymmsrc, ymm/mem256 16-lane word signed multiplication, producing
the HO word of the product

Table 11-17 lists the 32- and 64-bit versions of the packed multiplication
instructions. There are no (v)pmulhd or (v)pmulhq instructions; see (v)pmuludq
and (v)pmuldq to handle 32- and 64-bit packed multiplication.

Table 11-17: SIMD 32- and 64-Bit Packed Integer Multiplication Instructions

Instruction Operands Description

pmulld xmmdest, xmm/mem128 4-lane dword multiplication, producing the LO
dword of the product

vpmulld xmmdest, xmmsrc, xmm/mem128 4-lane dword multiplication, producing the LO
dword of the product

vpmulld ymmdest, ymmsrc, ymm/mem256 8-lane dword multiplication, producing the LO
dword of the product

vpmullq xmmdest, xmmsrc, xmm/mem128 2-lane qword multiplication, producing the LO
qword of the product

vpmullq ymmdest, ymmsrc, ymm/mem256 4-lane qword multiplication, producing the
LO qword of the product (available on only
AVX-512 CPUs)

656 Chapter 11

At some point along the way, Intel introduced (v)pmuldq and (v)pmuludq
to perform signed and unsigned 32×32-bit multiplications, producing a
64-bit result. The syntax for these instructions is as follows:

pmuldq xmmdest, xmm/mem128
vpmuldq xmmdest, xmmsrc1, xmm/mem128
vpmuldq ymmdest, ymmsrc1, ymm/mem256

pmuludq xmmdest, xmm/mem128
vpmuludq xmmdest, xmmsrc1, xmm/mem128
vpmuludq ymmdest, ymmsrc1, ymm/mem256

The 128-bit variants multiply the double words appearing in lanes 0 and
2 and store the 64-bit results into qword lanes 0 and 1 (dword lanes 0 and 1
and 2 and 3). On CPUs with AVX registers,11 pmuldq and pmuludq do not affect
the HO 128 bits of the YMM register. The vpmuldq and vpmuludq instructions
zero-extend the result to 256 bits. The 256-bit variants multiply the double
words appearing in lanes 0, 2, 4, and 6, producing 64-bit results that they
store in qword lanes 0, 1, 2, and 3 (dword lanes 0 and 1, 2 and 3, 4 and 5,
and 6 and 7).

The pclmulqdq instruction provides the ability to multiply two qword val-
ues, producing a 128-bit result. Here is the syntax for this instruction:

pclmulqdq xmmdest, xmm/mem128, imm8
vpclmulqdq xmmdest, xmmsrc1, xmmsrc2/mem128, imm8

These instructions multiply a pair of qword values found in XMMdest and
XMMsrc and leave the 128-bit result in XMMdest. The imm8 operand specifies
which qwords to use as the source operands. Table 11-18 lists the possible com-
binations for pclmulqdq. Table 11-19 lists the combinations for vpclmulqdq.

Table 11-18: imm8 Operand Values for pclmulqdq Instruction

imm8 Result

00h XMMdest = XMMdest[0 to 63] * XMM/mem128[0 to 63]

01h XMMdest = XMMdest[64 to 127] * XMM/mem128[0 to 63]

10h XMMdest = XMMdest[0 to 63] * XMM/mem128[64 to 127]

11h XMMdest = XMMdest[64 to 127] * XMM/mem128[64 to 127]

Table 11-19: imm8 Operand Values for vpclmulqdq Instruction

imm8 Result

00h XMMdest = XMMsrc1[0 to 63] * XMMsrc2/mem128[0 to 63]

01h XMMdest = XMMsrc1[64 to 127] * XMMsrc2/mem128[0 to 63]

10h XMMdest = XMMsrc1[0 to 63] * XMMsrc2/mem128[64 to 127]

11h XMMdest = XMMsrc1[64 to 127] * XMMsrc2/mem128[64 to 127]

11. Where the SSE4_1 feature flag for the legacy 128-bit version is set. See the Intel documenta-
tion for full details.

SIMD Instructions 657

As usual, pclmulqdq leaves the HO 128 bits of the corresponding YMM
destination register unchanged, while vpcmulqdq zeroes those bits.

11.10.6 SIMD Integer Averages
The (v)pavgb and (v)pavgw instructions compute the average of two sets of
bytes or words. These instructions sum the value in the byte or word lanes
of their source and destination operands, divide the result by 2, round the
results, and leave the averaged results sitting in the destination operand
lanes. The syntax for these instructions is shown here:

pavgb xmmdest, xmm/mem128
vpavgb xmmdest, xmmsrc1, xmmsrc2/mem128
vpavgb ymmdest, ymmsrc1, ymmsrc2/mem256
pavgw xmmdest, xmm/mem128
vpavgw xmmdest, xmmsrc1, xmmsrc2/mem128
vpavgw ymmdest, ymmsrc1, ymmsrc2/mem256

The 128-bit pavgb and vpavgb instructions compute 16 byte-sized aver-
ages (for the 16 lanes in the source and destination operands). The 256-bit
variant of the vpavgb instruction computes 32 byte-sized averages.

The 128-bit pavgw and vpavgw instructions compute eight word-sized aver-
ages (for the eight lanes in the source and destination operands). The 256-bit
variant of the vpavgw instruction computes 16 byte-sized averages.

The vpavgb and vpavgw instructions compute the average of the first
XMM or YMM source operand and the second XMM, YMM, or mem source
operand, storing the average in the destination XMM or YMM register.

Unfortunately, there are no (v)pavgd or (v)pavgq instructions. No doubt,
these instructions were originally intended for mixing 8- and 16-bit audio
or video streams (or photo manipulation), and the x86-64 CPU designers
never felt the need to extend this beyond 16 bits (even though 24-bit audio
is common among professional audio engineers).

11.10.7 SIMD Integer Minimum and Maximum
The SSE4.1 instruction set extensions added eight packed integer minimum
and maximum instructions, as shown in Table 11-20. These instructions scan
the lanes of a pair of 128- or 256-bit operands and copy the maximum or
minimum value from that lane to the same lane in the destination operand.

Table 11-20: SIMD Minimum and Maximum Instructions

Instruction Description

(v)pmaxsb Destination byte lanes set to the maximum value of the two signed byte
values found in the corresponding source lanes.

(v)pmaxsw Destination word lanes set to the maximum value of the two signed word
values found in the corresponding source lanes.

(continued)

658 Chapter 11

Instruction Description

(v)pmaxsd Destination dword lanes set to the maximum value of the two signed
dword values found in the corresponding source lanes.

vpmaxsq Destination qword lanes set to the maximum value of the two signed
qword values found in the corresponding source lanes. (AVX-512
required for this instruction.)

(v)pmaxub Destination byte lanes set to the maximum value of the two unsigned byte
values found in the corresponding source lanes.

(v)pmaxuw Destination word lanes set to the maximum value of the two unsigned
word values found in the corresponding source lanes.

(v)pmaxud Destination dword lanes set to the maximum value of the two unsigned
dword values found in the corresponding source lanes.

vpmaxuq Destination qword lanes set to the maximum value of the two unsigned
qword values found in the corresponding source lanes. (AVX-512
required for this instruction.)

(v)pminsb Destination byte lanes set to the minimum value of the two signed byte
values found in the corresponding source lanes.

(v)pminsw Destination word lanes set to the minimum value of the two signed word
values found in the corresponding source lanes.

(v)pminsd Destination dword lanes set to the minimum value of the two signed
dword values found in the corresponding source lanes.

vpminsq Destination qword lanes set to the minimum value of the two signed
qword values found in the corresponding source lanes. (AVX-512-
required for this instruction.)

(v)pminub Destination byte lanes set to the minimum value of the two unsigned byte
values found in the corresponding source lanes.

(v)pminuw Destination word lanes set to the minimum value of the two unsigned
word values found in the corresponding source lanes.

(v)pminud Destination dword lanes set to the minimum value of the two unsigned
dword values found in the corresponding source lanes.

vpminuq Destination qword lanes set to the minimum value of the two unsigned
qword values found in the corresponding source lanes. (AVX-512
required for this instruction.)

The generic syntax for these instructions is as follows:12

pmxxyz xmmdest, xmmsrc/mem128
vpmxxyz xmmdest, xmmsrc1, xmmsrc2/mem128
vpmxxyz ymmdest, ymmsrc1, ymmsrc2/mem256

The SSE instructions compute the minimum or maximum of the
corresponding lanes in the source and destination operands and store the
minimum or maximum result into the corresponding lanes in the destination
register. The AVX instructions compute the minimum or maximum of the

12. xx = ax or in, y = s or u, and z = b, w, d, or q.

Table 11-20: SIMD Minimum and Maximum Instructions (continued)

SIMD Instructions 659

values in the same lanes of the two source operands and store the minimum
or maximum result into the corresponding lanes of the destination register.

11.10.8 SIMD Integer Absolute Value
The SSE/AVX instruction set extensions provide three sets of instructions
for computing the absolute values of signed byte, word, and double-word
integers: (v)pabsb, (v)pabsw, and (v)pabsd.13 The syntax for these instructions
is the following:

pabsb xmmdest, xmmsrc/mem128
vpabsb xmmdest, xmmsrc/mem128
vpabsb ymmdest, ymmsrc/mem256

pabsw xmmdest, xmmsrc/mem128
vpabsw xmmdest, xmmsrc/mem128
vpabsw ymmdest, ymmsrc/mem256

pabsd xmmdest, xmmsrc/mem128
vpabsd xmmdest, xmmsrc/mem128
vpabsd ymmdest, ymmsrc/mem256

When operating on a system that supports AVX registers, the SSE
pabsb, pabsw, and pabsd instructions leave the upper bits of the YMM registers
unmodified. The 128-bit versions of the AVX instructions (vpabsb, vpabsw,
and vpabsd) zero-extend the result through the upper bits.

11.10.9 SIMD Integer Sign Adjustment Instructions
The (v)psignb, (v)psignw, and (v)psignd instructions apply the sign found in a
source lane to the corresponding destination lane. The algorithm works as
follows:

if source lane value is less than zero then
 negate the corresponding destination lane
else if source lane value is equal to zero
 set the corresponding destination lane to zero
else
 leave the corresponding destination lane unchanged

The syntax for these instructions is the following:

psignb xmmdest, xmmsrc/mem128
vpsignb xmmdest, xmmsrc1, xmmsrc2/mem128
vpsignb ymmdest, ymmsrc1, ymmsrc2/mem256

psignw xmmdest, xmmsrc/mem128
vpsignw xmmdest, xmmsrc1, xmmsrc2/mem128
vpsignw ymmdest, ymmsrc1, ymmsrc2/mem256

13. The AVX-512 instruction set actually includes a fourth set of absolute value instructions
(vpvasq); see the Intel documentation for more details.

660 Chapter 11

psignd xmmdest, xmmsrc/mem128
vpsignd xmmdest, xmmsrc1, xmmsrc2/mem128
vpsignd ymmdest, ymmsrc1, ymmsrc2/mem256

As usual, the 128-bit SSE instructions leave the upper bits of the YMM
register unchanged (if applicable), and the 128-bit AVX instructions zero-
extend the result into the upper bits of the YMM register.

11.10.10 SIMD Integer Comparison Instructions
The (v)pcmpeqb, (v)pcmpeqw, (v)pcmpeqd, (v)pcmpeqq, (v)pcmpgtb, (v)pcmpgtw,
(v)pcmpgtd, and (v)pcmpgtq instructions provide packed signed integer com-
parisons. These instructions compare corresponding bytes, word, dwords,
or qwords (depending on the instruction suffix) in the various lanes of their
operands.14 They store the result of the comparison instruction in the corre-
sponding destination lanes.

11.10.10.1 SSE Compare-for-Equality Instructions

The syntax for the SSE compare-for-equality instructions (pcmpeq*) is shown here:

pcmpeqb xmmdest, xmmsrc/mem128 ; Compares 16 bytes
pcmpeqw xmmdest, xmmsrc/mem128 ; Compares 8 words
pcmpeqd xmmdest, xmmsrc/mem128 ; Compares 4 dwords
pcmpeqq xmmdest, xmmsrc/mem128 ; Compares 2 qwords

These instructions compute

xmmdest[lane] = xmmdest[lane] == xmmsrc/mem128[lane]

where lane varies from 0 to 15 for pcmpeqb, 0 to 7 for pcmpeqw, 0 to 3 for pcmpeqd,
and 0 to 1 for pcmpeqq. The == operator produces a value of all 1 bits if the two
values in the same lane are equal; it produces all 0 bits if the values are not
equal.

11.10.10.2 SSE Compare-for-Greater-Than Instructions

The following is the syntax for the SSE compare-for-greater-than instructions
(pcmpgt*):

pcmpgtb xmmdest, xmmsrc/mem128 ; Compares 16 bytes
pcmpgtw xmmdest, xmmsrc/mem128 ; Compares 8 words
pcmpgtd xmmdest, xmmsrc/mem128 ; Compares 4 dwords
pcmpgtq xmmdest, xmmsrc/mem128 ; Compares 2 qwords

These instructions compute

xmmdest[lane] = xmmdest[lane] > xmmsrc/mem128[lane]

14. Qword comparisons are available only on CPUs that support the SSE4.1 instruction set
extensions.

SIMD Instructions 661

where lane is the same as for the compare-for-equality instructions, and
the > operator produces a value of all 1 bits if the signed integer in the
XMMdest lane is greater than the signed value in the corresponding
XMMsrc/MEM128 lane.

On AVX-capable CPUs, the SSE packed integer comparisons preserve
the value in the upper bits of the underlying YMM register.

11.10.10.3 AVX Comparison Instructions

The 128-bit variants of these instructions have the following syntax:

vpcmpeqb xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 16 bytes
vpcmpeqw xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 8 words
vpcmpeqd xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 4 dwords
vpcmpeqq xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 2 qwords

vpcmpgtb xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 16 bytes
vpcmpgtw xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 8 words
vpcmpgtd xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 4 dwords
vpcmpgtq xmmdest, xmmsrc1, xmmsrc2/mem128 ; Compares 2 qwords

These instructions compute as follows:

xmmdest[lane] = xmmsrc1[lane] == xmmsrc2/mem128[lane]
xmmdest[lane] = xmmsrc1[lane] > xmmsrc2/mem128[lane]

These AVX instructions write 0s to the upper bits of the underlying
YMM register.

The 256-bit variants of these instructions have the following syntax:

vpcmpeqb ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 32 bytes
vpcmpeqw ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 16 words
vpcmpeqd ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 8 dwords
vpcmpeqq ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 4 qwords

vpcmpgtb ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 32 bytes
vpcmpgtw ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 16 words
vpcmpgtd ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 8 dwords
vpcmpgtq ymmdest, ymmsrc1, ymmsrc2/mem256 ; Compares 4 qwords

These instructions compute as follows:

ymmdest[lane] = ymmsrc1[lane] == ymmsrc2/mem256[lane]
ymmdest[lane] = ymmsrc1[lane] > ymmsrc2/mem256[lane]

Of course, the principal difference between the 256- and the 128-bit
instructions is that the 256-bit variants support twice as many byte (32),
word (16), dword (8), and qword (4) signed-integer lanes.

662 Chapter 11

11.10.10.4 Compare-for-Less-Than Instructions

There are no packed compare-for-less-than instructions. You can synthesize a
less-than comparison by reversing the operands and using a greater-than
comparison. That is, if x < y, then it is also true that y > x. If both packed
operands are sitting in XMM or YMM registers, swapping the registers is
relatively easy (especially when using the three-operand AVX instructions).
If the second operand is a memory operand, you must first load that oper-
and into a register so you can reverse the operands (a memory operand
must always be the second operand).

11.10.10.5 Using Packed Comparison Results

The question remains of what to do with the result you obtain from a packed
comparison. SSE/AVX packed signed integer comparisons do not affect
condition code flags (because they compare multiple values and only one
of those comparisons could be moved into the flags). Instead, the packed
comparisons simply produce Boolean results. You can use these results with
the packed AND instructions (pand, vpand, pandn, and vpandn), the packed
OR instructions (por and vpor), or the packed XOR instructions (pxor and
vpxor) to mask or otherwise modify other packed data values. Of course, you
could also extract the individual lane values and test them (via a conditional
jump). The following section describes a straightforward way to achieve this.

11.10.10.6 The (v)pmovmskb Instructions

The (v)pmovmskb instruction extracts the HO bit from all the bytes in an
XMM or YMM register and stores the 16 or 32 bits (respectively) into a
general-purpose register. These instructions set all HO bits of the general-
purpose register to 0 (beyond those needed to hold the mask bits). The
syntax is

pmovmskb reg, xmmsrc
vpmovmskb reg, xmmsrc
vpmovmskb reg, ymmsrc

where reg is any 32-bit or 64-bit general-purpose integer register. The
semantics for the pmovmskb and vpmovmskb instructions with an XMM source
register are the same, but the encoding of pmovmskb is more efficient.

The (v)pmovmskb instruction copies the sign bits from each of the byte lanes
into the corresponding bit position of the general-purpose register. It copies
bit 7 from the XMM register (the sign bit for lane 0) into bit 0 of the destina-
tion register; it copies bit 15 from the XMM register (the sign bit for lane 1)
into bit 1 of the destination register; it copies bit 23 from the XMM register
(the sign bit for lane 2) into bit 2 of the destination register; and so on.

The 128-bit instructions fill only bits 0 through 15 of the destination reg-
ister (zeroing out all other bits). The 256-bit form of the vpmovmskb instruction
fills bits 0 through 31 of the destination register (zeroing out HO bits if you
specify a 64-bit register).

SIMD Instructions 663

You can use the pmovmskb instruction to extract a single bit from each
byte lane in an XMM or a YMM register after a (v)pcmpeqb or (v)pcmpgtb
instruction. Consider the following code sequence:

pcmpeqb xmm0, xmm1
pmovmskb eax, xmm0

After the execution of these two instructions, EAX bit 0 will be 1 or 0
if byte 0 of XMM0 was equal, or not equal, to byte 0 of XMM1, respectively.
Likewise, EAX bit 1 will contain the result of comparing byte 1 of XMM0 to
XMM1, and so on for each of the following bytes (up to bit 15, which com-
pares 16-byte values in XMM0 and XMM1).

Unfortunately, there are no pmovmskw, pmovmskd, and pmovmsq instructions.
You can achieve the same result as pmovmskw by using the following code
sequence:

pcmpeqw xmm0, xmm1
pmovmskb eax, xmm0
mov cl, 0 ; Put result here
shr ax, 1 ; Shift out lane 7 result
rcl cl, 1 ; Shift bit into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 6 result
rcl cl, 1 ; Shift lane 6 result into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 5 result
rcl cl, 1 ; Shift lane 5 result into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 4 result
rcl cl, 1 ; Shift lane 4 result into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 3 result
rcl cl, 1 ; Shift lane 3 result into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 2 result
rcl cl, 1 ; Shift lane 2 result into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 1 result
rcl cl, 1 ; Shift lane 1 result into CL
shr ax, 1 ; Ignore this bit
shr ax, 1 ; Shift out lane 0 result
rcl cl, 1 ; Shift lane 0 result into CL

Because pcmpeqw produces a sequence of words (which contain either
0000h or 0FFFFh) and pmovmskb expects byte values, pmovmskb produces twice
as many results as we expect, and every odd-numbered bit that pmovmskb
produces is a duplicate of the preceding even-numbered bit (because the
inputs are either 0000h or 0FFFFh). This code grabs every odd-numbered bit
(starting with bit 15 and working down) and skips over the even-numbered
bits. While this code is easy enough to follow, it is rather long and slow. If

664 Chapter 11

you’re willing to live with an 8-bit result for which the lane numbers don’t
match the bit numbers, you can use more efficient code:

pcmpeqw xmm0, xmm1
pmovmskb eax, xmm0
shr al, 1 ; Move odd bits to even positions
and al, 55h ; Zero out the odd bits, keep even bits
and ah, 0aah ; Zero out the even bits, keep odd bits
or al, ah ; Merge the two sets of bits

This interleaves the lanes in the bit positions as shown in Figure 11-44.
Usually, it’s easy enough to work around this rearrangement in the soft-
ware. Of course, you can also use a 256-entry lookup table (see Chapter 10)
to rearrange the bits however you desire. Of course, if you’re just going to
test the individual bits rather than use them as some sort of mask, you can
directly test the bits that pmovmskb leaves in EAX; you don’t have to coalesce
them into a single byte.

7 3 6 2 5 1 4 0

7 6 5 4 3 2 1 0

–or–

Result from word
comparison of lanes

shr al, 1
and al, 055h

and ah, 0AAh

or al, ah

AH AL

15 8 7 0
Result from pmovmskb after pcmpeqw

Figure 11-44: Merging bits from pcmpeqw

When using the double-word or quad-word packed comparisons, you
could also use a scheme such as the one provided here for pcmpeqw. However,
the floating-point mask move instructions (see “The (v)movmskps,
(v)movmskpd Instructions” on page 676) do the job more efficiently by
breaking the rule about using SIMD instructions that are appropriate for
the data type.

11.10.11 Integer Conversions
The SSE and AVX instruction set extensions provide various instructions
that convert integer values from one form to another. There are zero- and
sign-extension instructions that convert from a smaller value to a larger
one. Other instructions convert larger values to smaller ones. This section
covers these instructions.

SIMD Instructions 665

11.10.11.1 Packed Zero-Extension Instructions

The move with zero-extension instructions perform the conversions appearing
in Table 11-21.

Table 11-21: SSE4.1 and AVX Packed Zero-Extension Instructions

Syntax Description

pmovzxbw xmmdest, xmmsrc/mem64 Zero-extends a set of eight byte values in the LO 8
bytes of XMMsrc/mem64 to word values in XMMdest.

pmovzxbd xmmdest, xmmsrc/mem32 Zero-extends a set of four byte values in the LO 4
bytes of XMMsrc/mem32 to dword values in XMMdest.

pmovzxbq xmmdest, xmmsrc/mem16 Zero-extends a set of two byte values in the LO 2
bytes of XMMsrc/mem16 to qword values in XMMdest.

pmovzxwd xmmdest, xmmsrc/mem64 Zero-extends a set of four word values in the LO 8
bytes of XMMsrc/mem64 to dword values in XMMdest.

pmovzxwq xmmdest, xmmsrc/mem32 Zero-extends a set of two word values in the LO 4
bytes of XMMsrc/mem32 to qword values in XMMdest.

pmovzxdq xmmdest, xmmsrc/mem64 Zero-extends a set of two dword values in the LO 8
bytes of XMMsrc/mem64 to qword values in XMMdest.

A set of comparable AVX instructions also exists (same syntax, but with
a v prefix on the instruction mnemonics). The difference, as usual, is that
the SSE instructions leave the upper bits of the YMM register unchanged,
whereas the AVX instructions store 0s into the upper bits of the YMM
registers.

The AVX2 instruction set extensions double the number of lanes by
allowing the use of the YMM registers. They take similar operands to the
SSE/AVX instructions (substituting YMM for the destination register and
doubling the size of the memory locations) and process twice the number
of lanes to produce sixteen words, eight dwords, or four qwords in a YMM
destination register. See Table 11-22 for details.

Table 11-22: AVX2 Packed Zero-Extension Instructions

Syntax Description

vpmovzxbw ymmdest, xmmsrc/mem128 Zero-extends a set of sixteen byte values in the LO 16
bytes of XMMsrc/mem128 to word values in YMMdest.

vpmovzxbd ymmdest, xmmsrc/mem64 Zero-extends a set of eight byte values in the LO 8
bytes of XMMsrc/mem64 to dword values in YMMdest.

vpmovzxbq ymmdest, xmmsrc/mem32 Zero-extends a set of four byte values in the LO 4
bytes of XMMsrc/mem32 to qword values in YMMdest.

vpmovzxwd ymmdest, xmmsrc/mem128 Zero-extends a set of eight word values in the LO 16
bytes of XMMsrc/mem128 to dword values in YMMdest.

vpmovzxwq ymmdest, xmmsrc/mem64 Zero-extends a set of four word values in the LO 8
bytes of XMMsrc/mem64 to qword values in YMMdest.

vpmovzxdq ymmdest, xmmsrc/mem128 Zero-extends a set of four dword values in the LO 16
bytes of XMMsrc/mem128 to qword values in YMMdest.

666 Chapter 11

11.10.11.2 Packed Sign-Extension Instructions

The SSE/AVX/AVX2 instruction set extensions provide a comparable set of
instructions that sign-extend byte, word, and dword values. Table 11-23 lists
the SSE packed sign-extension instructions.

Table 11-23: SSE Packed Sign-Extension Instructions

Syntax Description

pmovsxbw xmmdest, xmmsrc/mem64 Sign-extends a set of eight byte values in the LO 8
bytes of XMMsrc/mem64 to word values in XMMdest.

pmovsxbd xmmdest, xmmsrc/mem32 Sign-extends a set of four byte values in the LO 4
bytes of XMMsrc/mem32 to dword values in XMMdest.

pmovsxbq xmmdest, xmmsrc/mem16 Sign-extends a set of two byte values in the LO 2 bytes
of XMMsrc/mem16 to qword values in XMMdest.

pmovsxwd xmmdest, xmmsrc/mem64 Sign-extends a set of four word values in the LO 8
bytes of XMMsrc/mem64 to dword values in XMMdest.

pmovsxwq xmmdest, xmmsrc/mem32 Sign-extends a set of two word values in the LO 4
bytes of XMMsrc/mem32 to qword values in XMMdest.

pmovsxdq xmmdest, xmmsrc/mem64 Sign-extends a set of two dword values in the LO 8
bytes of XMMsrc/mem64 to qword values in XMMdest.

A set of corresponding AVX instructions also exists (whose mnemon-
ics have the v prefix). As usual, the difference between the SSE and AVX
instructions is that the SSE instructions leave the upper bits of the YMM
register unchanged (if applicable), and the AVX instructions store 0s into
those upper bits.

AVX2-capable processors also allow a YMMdest destination register,
which doubles the number of (output) values the instruction can handle;
see Table 11-24.

Table 11-24: AVX Packed Sign-Extension Instructions

Syntax Description

vpmovsxbw ymmdest, xmmsrc/mem128 Sign-extends a set of sixteen byte values in the LO 16
bytes of XMMsrc/mem128 to word values in YMMdest.

vpmovsxbd ymmdest, xmmsrc/mem64 Sign-extends a set of eight byte values in the LO 8
bytes of XMMsrc/mem64 to dword values in YMMdest.

vpmovsxbq ymmdest, xmmsrc/mem32 Sign-extends a set of four byte values in the LO 4
bytes of XMMsrc/mem32 to qword values in YMMdest.

vpmovsxwd ymmdest, xmmsrc/mem128 Sign-extends a set of eight word values in the LO 16
bytes of XMMsrc/mem128 to dword values in YMMdest.

vpmovsxwq ymmdest, xmmsrc/mem64 Sign-extends a set of four word values in the LO 8
bytes of XMMsrc/mem64 to qword values in YMMdest.

vpmovsxdq ymmdest, xmmsrc/mem128 Sign-extends a set of four dword values in the LO 16
bytes of XMMsrc/mem128 to qword values in YMMdest.

SIMD Instructions 667

11.10.11.3 Packed Sign Extension with Saturation

In addition to converting smaller signed or unsigned values to a larger
format, the SSE/AVX/AVX2-capable CPUs have the ability to convert large
values to smaller values via saturation; see Table 11-25.

Table 11-25: SSE Packed Sign-Extension with Saturation Instructions

Syntax Description

packsswb xmmdest, xmmsrc/mem128 Packs sixteen signed word values (from two 128-bit
sources) into sixteen byte lanes in a 128-bit destina-
tion register using signed saturation.

packuswb xmmdest, xmmsrc/mem128 Packs sixteen unsigned word values (from two 128-bit
sources) into sixteen byte lanes in a 128-bit destina-
tion register using unsigned saturation.

packssdw xmmdest, xmmsrc/mem128 Packs eight signed dword values (from two 128-bit
sources) into eight word values in a 128-bit destina-
tion register using signed saturation.

packusdw xmmdest, xmmsrc/mem128 Packs eight unsigned dword values (from two 128-bit
sources) into eight word values in a 128-bit destination
register using unsigned saturation.

The saturate operation checks its operand to see if the value exceeds
the range of the result (–128 to +127 for signed bytes, 0 to 255 for unsigned
bytes, –32,768 to +32,767 for signed words, and 0 to 65,535 for unsigned
words). When saturating to a byte, if the signed source value is less than
–128, byte saturation sets the value to –128. When saturating to a word, if
the signed source value is less than –32,786, signed saturation sets the value
to –32,768. Similarly, if a signed byte or word value exceeds +127 or +32,767,
then saturation replaces the value with +127 or +32,767, respectively. For
unsigned operations, saturation limits the value to +255 (for bytes) or
+65,535 (for words). Unsigned values are never less than 0, so unsigned
saturation clips values to only +255 or +65,535.

AVX-capable CPUs provide 128-bit variants of these instructions that sup-
port three operands: two source operands and an independent destination
operand. These instructions (mnemonics the same as the SSE instructions,
with a v prefix) have the following syntax:

vpacksswb xmmdest, xmmsrc1, xmmsrc2/mem128
vpackuswb xmmdest, xmmsrc1, xmmsrc2/mem128
vpackssdw xmmdest, xmmsrc1, xmmsrc2/mem128
vpackusdw xmmdest, xmmsrc1, xmmsrc2/mem128

These instructions are roughly equivalent to the SSE variants, except
that these instructions use XMMsrc1 as the first source operand rather than
XMMdest (which the SSE instructions use). Also, the SSE instructions do not
modify the upper bits of the YMM register (if present on the CPU), whereas
the AVX instructions store 0s into the upper YMM register bits.

668 Chapter 11

AVX2-capable CPUs also allow the use of the YMM registers (and 256-bit
memory locations) to double the number of values the instruction can satu-
rate (see Table 11-26). Of course, don’t forget to check for AVX2 (and AVX)
compatibility before using these instructions.

Table 11-26: AVX Packed Sign-Extension with Saturation Instructions

Syntax Description

vpacksswb ymmdest, ymmsrc1, ymmsrc2/mem256 Packs 32 signed word values (from two
256-bit sources) into 32 byte lanes in a
256-bit destination register using signed
saturation.

vpackuswb ymmdest, ymmsrc1, ymmsrc2/mem256 Packs 32 unsigned word values (from two
256-bit sources) into 32 byte lanes in a
256-bit destination register using unsigned
saturation.

vpackssdw ymmdest, ymmsrc1, ymmsrc2/mem256 Packs 16 signed dword values (from two
256-bit sources) into 16 word values in a
256-bit destination register using signed
saturation.

vpackusdw ymmdest, ymmsrc1, ymmsrc2/mem256 Packs 16 unsigned dword values (from two
256-bit sources) into 16 word values in a
256-bit destination register using unsigned
saturation.

 11.11 SIMD Floating-Point Arithmetic Operations
The SSE and AVX instruction set extensions provide packed arithmetic
equivalents for all the scalar floating-point instructions in “SSE Floating-
Point Arithmetic” in Chapter 6. This section does not repeat the discussion
of the scalar floating-point operations; see Chapter 6 for more details.

The 128-bit SSE packed floating-point instructions have the follow-
ing generic syntax (where instr is one of the floating-point instructions in
Table 11-27):

instrps xmmdest, xmmsrc/mem128
instrpd xmmdest, xmmsrc/mem128

The packed single (*ps) instructions perform four single-precision floating-
point operations simultaneously. The packed double (*pd) instructions per-
form two double-precision floating-point operations simultaneously. As is
typical for SSE instructions, these packed arithmetic instructions compute

xmmdest[lane] = xmmdest[lane] op xmmsrc/mem128[lane]

where lane varies from 0 to 3 for packed single-precision instructions
and from 0 to 1 for packed double-precision instructions. op represents the
operation (such as addition or subtraction). When the SSE instructions are
executed on a CPU that supports the AVX extensions, the SSE instructions
leave the upper bits of the AVX register unmodified.

SIMD Instructions 669

The 128-bit AVX packed floating-point instructions have this syntax:15

vinstrps xmmdest, xmmsrc1, xmmsrc2/mem128 ; For dyadic operations
vinstrpd xmmdest, xmmsrc1, xmmsrc2/mem128 ; For dyadic operations
vinstrps xmmdest, xmmsrc/mem128 ; For monadic operations
vinstrpd xmmdest, xmmsrc/mem128 ; For monadic operations

These instructions compute

xmmdest[lane] = xmmsrc1[lane] op xmmsrc2/mem128[lane]

where op corresponds to the operation associated with the specific instruc-
tion (for example, vaddps does a packed single-precision addition). These
128-bit AVX instructions clear the HO bits of the underlying YMMdest
register.

The 256-bit AVX packed floating-point instructions have this syntax:

vinstrps ymmdest, ymmsrc1, ymmsrc2/mem256 ; For dyadic operations
vinstrpd ymmdest, ymmsrc1, ymmsrc2/mem256 ; For dyadic operations
vinstrps ymmdest, ymmsrc/mem256 ; For monadic operations
vinstrpd ymmdest, ymmsrc/mem256 ; For monadic operations

These instructions compute

ymmdest[lane] = ymmsrc1[lane] op ymmsrc/mem256[lane]

where op corresponds to the operation associated with the specific instruc-
tion (for example, vaddps is a packed single-precision addition). Because these
instructions operate on 256-bit operands, they compute twice as many lanes
of data as the 128-bit instructions. Specifically, they simultaneously compute
eight single-precision (the v*ps instructions) or four double-precision results
(the v*pd instructions).

Table 11-27 provides the list of SSE/AVX packed instructions.

Table 11-27: Floating-Point Arithmetic Instructions

Instruction Lanes Description

addps 4 Adds four single-precision floating-point values

addpd 2 Adds two double-precision floating-point values

vaddps 4/8 Adds four (128-bit/XMM operands) or eight (256-bit/YMM operands) single-
precision values

vaddpd 2/4 Adds two (128-bit/XMM operands) or four (256-bit/YMM operands) double-
precision values

subps 4 Subtracts four single-precision floating-point values

subpd 2 Subtracts two double-precision floating-point values

15. Dyadic operations have two operands; for example, addition is dyadic: x + y. Monadic
operations have a single operand; for example, sqrt(x).

(continued)

670 Chapter 11

Instruction Lanes Description

vsubps 4/8 Subtracts four (128-bit/XMM operands) or eight (256-bit/YMM operands) single-
precision values

vsubpd 2/4 Subtracts two (128-bit/XMM operands) or four (256-bit/YMM operands) double-
precision values

mulps 4 Multiplies four single-precision floating-point values

mulpd 2 Multiplies two double-precision floating-point values

vmulps 4/8 Multiplies four (128-bit/XMM operands) or eight (256-bit/YMM operands) single-
precision values

vmulpd 2/4 Multiplies two (128-bit/XMM operands) or four (256-bit/YMM operands) double-
precision values

divps 4 Divides four single-precision floating-point values

divpd 2 Divides two double-precision floating-point values

vdivps 4/8 Divides four (128-bit/XMM operands) or eight (256-bit/YMM operands) single-
precision values

vdivpd 2/4 Divides two (128-bit/XMM operands) or four (256-bit/YMM operands) double-
precision values

maxps 4 Computes the maximum of four pairs of single-precision floating-point values

maxpd 2 Computes the maximum of two pairs of double-precision floating-point values

vmaxps 4/8 Computes the maximum of four (128-bit/XMM operands) or eight (256-bit/YMM
operands) pairs of single-precision values

vmaxpd 2/4 Computes the maximum of two (128-bit/XMM operands) or four (256-bit/YMM
operands) pairs of double-precision values

minps 4 Computes the minimum of four pairs of single-precision floating-point values

minpd 2 Computes the minimum of two pairs of double-precision floating-point values

vminps 4/8 Computes the minimum of four (128-bit/XMM operands) or eight (256-bit/YMM
operands) pairs of single-precision values

vminpd 2/4 Computes the minimum of two (128-bit/XMM operands) or four (256-bit/YMM
operands) pairs of double-precision values

sqrtps 4 Computes the square root of four single-precision floating-point values

sqrtpd 2 Computes the square root of two double-precision floating-point values

vsqrtps 4/8 Computes the square root of four (128-bit/XMM operands) or eight (256-bit/YMM
operands) single-precision values

vsqrtpd 2/4 Computes the square root of two (128-bit/XMM operands) or four (256-bit/YMM
operands) double-precision values

rsqrtps 4 Computes the approximate reciprocal square root of four single-precision floating-
point values*

vrsqrtps 4/8 Computes the approximate reciprocal square root of four (128-bit/XMM operands)
or eight (256-bit/YMM operands) single-precision values

* The relative error is ≤ 1.5 × 2-12.

Table 11-27: Floating-Point Arithmetic Instructions (continued)

SIMD Instructions 671

The SSE/AVX instruction set extensions also include floating-point
horizontal addition and subtraction instructions. The syntax for these
instructions is as follows:

haddps xmmdest, xmmsrc/mem128
vhaddps xmmdest, xmmsrc1, xmmsrc2/mem128
vhaddps ymmdest, ymmsrc1, ymmsrc2/mem256
haddpd xmmdest, xmmsrc/mem128
vhaddpd xmmdest, xmmsrc1, xmmsrc2/mem128
vhaddpd ymmdest, ymmsrc1, ymmsrc2/mem256

hsubps xmmdest, xmmsrc/mem128
vhsubps xmmdest, xmmsrc1, xmmsrc2/mem128
vhsubps ymmdest, ymmsrc1, ymmsrc2/mem256
hsubpd xmmdest, xmmsrc/mem128
vhsubpd xmmdest, xmmsrc1, xmmsrc2/mem128
vhsubpd ymmdest, ymmsrc1, ymmsrc2/mem256

As for the integer horizontal addition and subtraction instructions, these
instructions add or subtract the values in adjacent lanes in the same register and
store the result in the destination register (lane 2), as shown in Figure 11-43.

 11.12 SIMD Floating-Point Comparison Instructions
Like the integer packed comparisons, the SSE/AVX floating-point com-
parisons compare two sets of floating-point values (either single- or double-
precision, depending on the instruction’s syntax) and store a resulting
Boolean value (all 1 bits for true, all 0 bits for false) into the destination
lane. However, the floating-point comparisons are far more comprehensive
than those of their integer counterparts. Part of the reason is that floating-
point arithmetic is more complex; however, an ever-increasing silicon
budget for the CPU designers is also responsible for this.

11.12.1 SSE and AVX Comparisons
There are two sets of basic floating-point comparisons: (v)cmpps, which com-
pares a set of packed single-precision values, and (v)cmppd, which compares a
set of packed double-precision values. Instead of encoding the comparison
type into the mnemonic, these instructions use an imm8 operand whose
value specifies the type of comparison. The generic syntax for these instruc-
tions is as follows:

cmpps xmmdest, xmmsrc/mem128, imm8
vcmpps xmmdest, xmmsrc1, xmmsrc2/mem128, imm8
vcmpps ymmdest, ymmsrc1, ymmsrc2/mem256, imm8

cmppd xmmdest, xmmsrc/mem128, imm8
vcmppd xmmdest, xmmsrc1, xmmsrc2/mem128, imm8
vcmppd ymmdest, ymmsrc1, ymmsrc2/mem256, imm8

The imm8 operand specifies the type of the comparison. There are 32
possible comparisons, as listed in Table 11-28.

672 Chapter 11

Table 11-28: imm8 Values for cmpps and cmppd Instructions†

imm8 Description Result Signal

A < B A = B A > B Unord

00h EQ, ordered, quiet 0 1 0 0 No

01h LT, ordered, signaling 1 0 0 0 Yes

02h LE, ordered, signaling 1 1 0 0 Yes

03h Unordered, quiet 0 0 0 1 No

04h NE, unordered, quiet 1 0 1 1 No

05h NLT, unordered, signaling 0 1 1 1 Yes

06h NLE, unordered, signaling 0 0 1 1 Yes

07h Ordered, quiet 1 1 1 0 No

08h EQ, unordered, quiet 0 1 0 1 No

09h NGE, unordered, signaling 1 0 0 1 Yes

0Ah NGT, unordered, signaling 1 1 0 1 Yes

0Bh False, ordered, quiet 0 0 0 0 No

0Ch NE, ordered, quiet 1 0 1 0 No

0Dh GE, ordered, signaling 0 1 1 0 Yes

0Eh GT, ordered, signaling 0 0 1 0 Yes

0Fh True, unordered, quiet 1 1 1 1 No

10h EQ, ordered, signaling 0 1 0 0 Yes

11h LT, ordered, quiet 1 0 0 0 No

12h LE, ordered, quiet 1 1 0 0 No

13h Unordered, signaling 0 0 0 1 Yes

14h NE, unordered, signaling 1 0 1 1 Yes

15h NLT, unordered, quiet 0 1 1 1 No

16h NLE, unordered, quiet 0 0 1 1 No

17h Ordered, signaling 1 1 1 0 Yes

18h EQ, unordered, signaling 0 1 0 1 Yes

19h NGE, unordered, quiet 1 0 0 1 No

1Ah NGT, unordered, quiet 1 1 0 1 No

1Bh False, ordered, signaling 0 0 0 0 Yes

1Ch NE, ordered, signaling 1 0 1 0 Yes

1Dh GE, ordered, quiet 0 1 1 0 No

1Eh GT, ordered, quiet 0 0 1 0 No

1Fh True, unordered, signaling 1 1 1 1 Yes
† The darker shaded entries are available only on CPUs that support AVX extensions.

SIMD Instructions 673

The “true” and “false” comparisons always store true or false into the
destination lanes. For the most part, these comparisons aren’t particularly
useful. The pxor, xorps, xorpd, vxorps, and vxorpd instructions are probably
better for setting an XMM or a YMM register to 0. Prior to AVX2, using a
true comparison was the shortest instruction that would set all bits in an
XMM or a YMM register to 1, though pcmpeqb is commonly used as well
(be aware of microarchitectural inefficiencies with this latter instruction).

Note that non-AVX CPUs do not implement the GT, GE, NGT, and
NGE instructions. On these CPUs, use the inverse operation (for example,
NLT for GE) or swap the operands and use the opposite condition (as was
done for the packed integer comparisons).

11.12.2 Unordered vs. Ordered Comparisons
The unordered relationship is true when at least one of the two source
operands being compared is a NaN; the ordered relationship is true when
neither source operand is a NaN. Having ordered and unordered compari-
sons allows you to pass error conditions through comparisons as false or
true, depending on how you interpret the final Boolean results appearing
in the lanes. Unordered results, as their name implies, are incomparable.
When you compare two values, one of which is not a number, you must
always treat the result as a failed comparison.

To handle this situation, you use an ordered or unordered comparison
to force the result to be false or true, the opposite of what you ultimately
expect when using the comparison result. For example, suppose you are
comparing a sequence of values and want the resulting masks to be true if
all the comparisons are valid (for example, you’re testing to see if all the
src1 values are greater than the corresponding src2 values). You would use
an ordered comparison in this situation that would force a particular lane
to false if one of the values being compared is NaN. On the other hand, if
you’re checking to see if all the conditions are false after the comparison,
you’d use an unordered comparison to force the result to true if any of the
values are NaN.

11.12.3 Signaling and Quiet Comparisons
The signaling comparisons generate an invalid arithmetic operation excep-
tion (IA) when an operation produces a quiet NaN. The quiet comparisons
do not throw an exception and reflect only the status in the MXCSR (see
“SSE MXCSR Register” in Chapter 6). Note that you can also mask signal-
ing exceptions in the MXCSR register; you must explicitly set the IM (invalid
operation mask, bit 7) in the MXCSR to 0 if you want to allow exceptions.

11.12.4 Instruction Synonyms
MASM supports the use of certain synonyms so you don’t have to memorize
the 32 encodings. Table 11-29 lists these synonyms. In this table, x1 denotes
the destination operand (XMMn or YMMn), and x2 denotes the source oper-
and (XMMn/mem128 or YMMn/mem256, as appropriate).

674 Chapter 11

Table 11-29: Synonyms for Common Packed Floating-Point Comparisons

Synonym Instruction Synonym Instruction

cmpeqps x1, x2 cmpps x1, x2, 0 cmpeqpd x1, x2 cmppd x1, x2, 0

cmpltps x1, x2 cmpps x1, x2, 1 cmpltpd x1, x2 cmppd x1, x2, 1

cmpleps x1, x2 cmpps x1, x2, 2 cmplepd x1, x2 cmppd x1, x2, 2

cmpunordps x1, x2 cmpps x1, x2, 3 cmpunordpd x1, x2 cmppd x1, x2, 3

cmpneqps x1, x2 cmpps x1, x2, 4 cmpneqpd x1, x2 cmppd x1, x2, 4

cmpnltps x1, x2 cmpps x1, x2, 5 cmpnltpd x1, x2 cmppd x1, x2, 5

cmpnleps x1, x2 cmpps x1, x2, 6 cmpnlepd x1, x2 cmppd x1, x2, 6

cmpordps x1, x2 cmpps x1, x2, 7 cmpordpd x1, x2 cmppd x1, x2, 7

The synonyms allow you to write instructions such as

cmpeqps xmm0, xmm1

rather than

cmpps xmm0, xmm1, 0 ; Compare xmm0 to xmm1 for equality

Obviously, using the synonym makes the code much easier to read and
understand. There aren’t synonyms for all the possible comparisons. To
create readable synonyms for the instructions MASM doesn’t support, you
can use a macro (or a more readable symbolic constant). For more informa-
tion on macros, see Chapter 13.

11.12.5 AVX Extended Comparisons
The AVX versions of these instructions allow three register operands: a desti-
nation XMM or YMM register, a source XMM or YMM register, and a source
XMM or YMM register or 128-bit or 256-bit memory location (followed by the
imm8 operand specifying the type of the comparison). The basic syntax is the
following:

vcmpps xmmdest, xmmsrc1, xmmsrc2/mem128, imm8
vcmpps ymmdest, ymmsrc1, ymmsrc2/mem256, imm8

vcmppd xmmdest, xmmsrc1, xmmsrc2/mem128, imm8
vcmppd ymmdest, ymmsrc1, ymmsrc2/mem256, imm8

The 128-bit vcmpps instruction compares the four single-precision floating-
point values in each lane of the XMMsrc1 register against the values in the
corresponding XMMsrc2/mem128 lanes and stores the true (all 1 bits) or false
(all 0 bits) result into the corresponding lane of the XMMdest register. The
256-bit vcmpps instruction compares the eight single-precision floating-point
values in each lane of the YMMsrc1 register against the values in the cor-
responding YMMsrc2/mem256 lanes and stores the true or false result into the
corresponding lane of the YMMdest register.

SIMD Instructions 675

The vcmppd instructions compare the double-precision values in the two
lanes (128-bit version) or four lanes (256-bit version) and store the result
into the corresponding lane of the destination register.

As for the SSE compare instructions, the AVX instructions provide
synonyms that eliminate the need to memorize 32 imm8 values. Table 11-30
lists the 32 instruction synonyms.

Table 11-30: AVX Packed Compare Instructions

imm8 Instruction

00h vcmpeqps or vcmpeqpd

01h vcmpltps or vcmpltpd

02h vcmpleps or vcmplepd

03h vcmpunordps or vcmpunordpd

04h vcmpneqps or vcmpneqpd

05h vcmpltps or vcmpltpd

06h vcmpleps or vcmplepd

07h vcmpordps or vcmpordpd

08h vcmpeq_uqps or vcmpeq_uqpd

09h vcmpngeps or vcmpngepd

0Ah vcmpngtps or vcmpngtpd

0Bh vcmpfalseps or vcmpfalsepd

0Ch vcmpneq_oqps or vcmpneq_oqpd

0Dh vcmpgeps or vcmpgepd

0Eh vcmpgtps or vcmpgtpd

0Fh vcmptrueps or vcmptruepd

10h vcmpeq_osps or vcmpeq_ospd

11h vcmplt_oqps or vcmplt_oqpd

12h vcmple_oqps or vcmple_oqpd

13h vcmpunord_sps or vcmpunord_spd

14h vcmpneq_usps or vcmpneq_uspd

15h vcmpnlt_uqps or vcmpnlt_uqpd

16h vcmpnle_uqps or vcmpnle_uqpd

17h vcmpord_sps or vcmpord_spd

18h vcmpeq_usps or vcmpeq_uspd

19h vcmpnge_uqps or vcmpnge_uqpd

1Ah vcmpngt_uqps or vcmpngt_uqpd

1Bh vcmpfalse_osps or vcmpfalse_ospd

1Ch vcmpneq_osps or vcmpneq_ospd

(continued)

676 Chapter 11

imm8 Instruction

1Dh vcmpge_oqps or vcmpge_oqpd

1Eh vcmpgt_oqps or vcmpgt_oqpd

1Fh vcmptrue_usps or vcmptrue_uspd

N O T E The vcmpfalse* instructions always set the destination lanes to false (0 bits), and the
vcmptrue* instructions always set the destination lanes to true (1 bits).

11.12.6 Using SIMD Comparison Instructions
As for the integer comparisons (see “Using Packed Comparison Results” on
page 662), the floating-point comparison instructions produce a vector of
Boolean results that you use to mask further operations on data lanes. You
can use the packed logical instructions (pand and vpand, pandn and vpandn, por
and vpor, and pxor and vpxor) to manipulate these results. You could extract
the individual lane values and test them with a conditional jump, though this
is definitely not the SIMD way of doing things; the following section describes
one way to extract these masks.

11.12.7 The (v)movmskps, (v)movmskpd Instructions
The movmskps and movmskpd instructions extract the sign bits from their packed
single- and double-precision floating-point source operands and store these
bits into the LO 4 (or 8) bits of a general-purpose register. The syntax is

movmskps reg, xmmsrc
movmskpd reg, xmmsrc
vmovmskps reg, ymmsrc
vmovmskpd reg, ymmsrc

where reg is any 32-bit or 64-bit general-purpose integer register.
The movmskps instruction extracts the sign bits from the four single-

precision floating-point values in the XMM source register and copies these
bits to the LO 4 bits of the destination register, as shown in Figure 11-45.

The movmskpd instruction copies the sign bits from the two double-precision
floating-point values in the source XMM register to bits 0 and 1 of the desti-
nation register, as Figure 11-46 shows.

The vmovmskps instruction extracts the sign bits from the four and eight
single-precision floating-point values in the XMM and YMM source regis-
ter and copies these bits to the LO 4 and 8 bits of the destination register.
Figure 11-47 shows this operation with a YMM source register.

Table 11-30: AVX Packed Compare Instructions (continued)

SIMD Instructions 677

127XMM
(or YMM)
register

64- or 32-bit general-purpose register

95 63 31 0

63 31 3 2 1 0

Figure 11-45: movmskps operation

XMM
(or YMM)
register

1 03163

127 63 0

64- or 32-bit general-purpose register

Figure 11-46: movmskpd operation

3 2 1 04567

127
YMM register

95 63 31255 223 191 159 0

63 31

64- or 32-bit general-purpose register

Figure 11-47: vmovmskps operation

678 Chapter 11

The vmovmskpd instruction copies the sign bits from the four double-
precision floating-point values in the source YMM register to bits 0 to 3
of the destination register, as shown in Figure 11-48.

127 63255 191 0

63 31
64- or 32-bit general purpose register

3 2 1 0

YMM
register

Figure 11-48: vmovmskpd operation

This instruction, with an XMM source register, will copy the sign bits
from the two double-precision floating-point values into bits 0 and 1 of the
destination register. In all cases, these instructions zero-extend the results
into the upper bits of the general-purpose destination register. Note that
these instructions do not allow memory operands.

Although the stated data type for these instructions is packed single-
precision and packed double-precision, you will also use these instructions
on 32-bit integers (movmskps and vmovmskps) and 64-bit integers (movmskpd and
vmovmskpd). Specifically, these instructions are perfect for extracting 1-bit
Boolean values from the various lanes after one of the (dword or qword)
packed integer comparisons as well as after the single- or double-precision
floating-point comparisons (remember that although the packed floating-
point comparisons compare floating-point values, their results are actually
integer values).

Consider the following instruction sequence:

 cmpeqpd xmm0, xmm1
 movmskpd rax, xmm0 ; Moves 2 bits into RAX
 lea rcx, jmpTable
 jmp qword ptr [rcx][rax*8]

jmpTable qword nene
 qword neeq
 qword eqne
 qword eqeq

Because movmskpd extracts 2 bits from XMM0 and stores them into RAX,
this code can use RAX as an index into a jump table to select four different
branch labels. The code at label nene executes if both comparisons produce
not equal; label neeq is the target when the lane 0 values are equal but the
lane 1 values are not equal. Label eqne is the target when the lane 0 values
are not equal but the lane 1 values are equal. Finally, label eqeq is where this
code branches when both sets of lanes contain equal values.

SIMD Instructions 679

 11.13 Floating-Point Conversion Instructions
Previously, I described several instructions to convert data between vari-
ous scalar floating-point and integer formats (see “SSE Floating-Point
Conversions” in Chapter 6). Variants of these instructions also exist for
packed data conversions. Table 11-31 lists many of these instructions you
will commonly use.

Table 11-31: SSE Conversion Instructions

Instruction syntax Description

cvtdq2pd xmmdest, xmmsrc/mem64 Converts two packed signed double-word integers from XMMsrc/
mem64 to two packed double-precision floating-point values in
XMMdest. If YMM register is present, this instruction leaves the HO bits
unchanged.

vcvtdq2pd xmmdest, xmmsrc/mem64 (AVX) Converts two packed signed double-word integers from XMMsrc/
mem64 to two packed double-precision floating-point values in
XMMdest. This instruction stores 0s into the HO bits of the underlying
YMM register.

vcvtdq2pd ymmdest, xmmsrc/mem128 (AVX) Converts four packed signed double-word integers from
XMMsrc/mem128 to four packed double-precision floating-point values
in YMMdest.

cvtdq2ps xmmdest, xmmsrc/mem128 Converts four packed signed double-word integers from XMMsrc/
mem128 to four packed single-precision floating-point values in
XMMdest. If YMM register is present, this instruction leaves the
HO bits unchanged.

vcvtdq2ps xmmdest, xmmsrc/mem128 (AVX) Converts four packed signed double-word integers from
XMMsrc/mem128 to four packed single-precision floating-point values
in XMMdest. If YMM register is present, this instruction writes 0s to the
HO bits.

vcvtdq2ps ymmdest, ymmsrc/mem256 (AVX) Converts eight packed signed double-word integers from
YMMsrc/mem256 to eight packed single-precision floating-point values
in YMMdest. If YMM register is present, this instruction writes 0s to the
HO bits.

cvtpd2dq xmmdest, xmmsrc/mem128 Converts two packed double-precision floating-point values from
XMMsrc/mem128 to two packed signed double-word integers in
XMMdest. If YMM register is present, this instruction leaves the HO bits
unchanged. The conversion from floating-point to integer uses the cur-
rent SSE rounding mode.

vcvtpd2dq xmmdest, xmmsrc/mem128 (AVX) Converts two packed double-precision floating-point values from
XMMsrc/mem128 to two packed signed double-word integers in
XMMdest. This instruction stores 0s into the HO bits of the underlying
YMM register. The conversion from floating-point to integer uses the
current AVX rounding mode.

vcvtpd2dq xmmdest, ymmsrc/mem256 (AVX) Converts four packed double-precision floating-point values from
YMMsrc/mem256 to four packed signed double-word integers in
XMMdest. The conversion of floating-point to integer uses the current
AVX rounding mode.

(continued)

680 Chapter 11

Instruction syntax Description

cvtpd2ps xmmdest, xmmsrc/mem128 Converts two packed double-precision floating-point values from
XMMsrc/mem128 to two packed single-precision floating-point values in
XMMdest. If YMM register is present, this instruction leaves the HO bits
unchanged.

vcvtpd2ps xmmdest, xmmsrc/mem128 (AVX) Converts two packed double-precision floating-point values from
XMMsrc/mem128 to two packed single-precision floating-point values in
XMMdest. This instruction stores 0s into the HO bits of the underlying
YMM register.

vcvtpd2ps xmmdest, ymmsrc/mem256 (AVX) Converts four packed double-precision floating-point values from
YMMsrc/mem256 to four packed single-precision floating-point values in
YMMdest.

cvtps2dq xmmdest, xmmsrc/mem128 Converts four packed single-precision floating-point values from
XMMsrc/mem128 to four packed signed double-word integers in
XMMdest. If YMM register is present, this instruction leaves the HO bits
unchanged. The conversion of floating-point to integer uses the current
SSE rounding mode.

vcvtps2dq xmmdest, xmmsrc/mem128 (AVX) Converts four packed single-precision floating-point values from
XMMsrc/mem128 to four packed signed double-word integers in
XMMdest. This instruction stores 0s into the HO bits of the underlying
YMM register. The conversion of floating-point to integer uses the current
AVX rounding mode.

vcvtps2dq ymmdest, ymmsrc/mem256 (AVX) Converts eight packed single-precision floating-point values
from YMMsrc/mem256 to eight packed signed double-word integers in
YMMdest. The conversion of floating-point to integer uses the current
AVX rounding mode.

cvtps2pd xmmdest, xmmsrc/mem64 Converts two packed single-precision floating-point values from
XMMsrc/mem64 to two packed double-precision values in XMMdest. If
YMM register is present, this instruction leaves the HO bits unchanged.

vcvtps2pd xmmdest, xmmsrc/mem64 (AVX) Converts two packed single-precision floating-point values from
XMMsrc/mem64 to two packed double-precision values in XMMdest. This
instruction stores 0s into the HO bits of the underlying YMM register.

vcvtps2pd ymmdest, xmmsrc/mem128 (AVX) Converts four packed single-precision floating-point values from
XMMsrc/mem128 to four packed double-precision values in YMMdest.

cvttpd2dq xmmdest, xmmsrc/mem128 Converts two packed double-precision floating-point values from
XMMsrc/mem128 to two packed signed double-word integers in XMMdest
using truncation. If YMM register is present, this instruction
leaves the HO bits unchanged.

vcvttpd2dq xmmdest, xmmsrc/mem128 (AVX) Converts two packed double-precision floating-point values
from XMMsrc/mem128 to two packed signed double-word integers in
XMMdest using truncation. This instruction stores 0s into the HO bits of
the underlying YMM register.

vcvttpd2dq xmmdest, ymmsrc/mem256 (AVX) Converts four packed double-precision floating-point values
from YMMsrc/mem256 to four packed signed double-word integers in
XMMdest using truncation.

cvttps2dq xmmdest, xmmsrc/mem128 Converts four packed single-precision floating-point values from
XMMsrc/mem128 to four packed signed double-word integers in XMMdest
using truncation. If YMM register is present, this instruction leaves the
HO bits unchanged.

Table 11-31: SSE Conversion Instructions (continued)

SIMD Instructions 681

Instruction syntax Description

vcvttps2dq xmmdest, xmmsrc/mem128 (AVX) Converts four packed single-precision floating-point values from
XMMsrc/mem128 to four packed signed double-word integers in XMMdest
using truncation. This instruction stores 0s into the HO bits of the under-
lying YMM register.

vcvttps2dq ymmdest, ymmsrc/mem256 (AVX) Converts eight packed single-precision floating-point values
from YMMsrc/mem256 to eight packed signed double-word integers in
YMMdest using truncation.

 11.14 Aligning SIMD Memory Accesses
Most SSE and AVX instructions require their memory operands to be on
a 16-byte (SSE) or 32-byte (AVX) boundary, but this is not always possible.
The easiest way to handle unaligned memory addresses is to use instruc-
tions that don’t require aligned memory operands, like movdqu, movups, and
movupd. However, the performance hit of using unaligned data movement
instructions often defeats the purpose of using SSE/AVX instructions in
the first place.

Instead, the trick to aligning data for use by SIMD instructions is to
process the first few data items by using standard general-purpose registers
until you reach an address that is aligned properly. For example, suppose
you want to use the pcmpeqb instruction to compare blocks of 16 bytes in a
large array of bytes. pcmpeqb requires its memory operands to be at 16-byte-
aligned addresses, so if the memory operand is not already 16-byte-aligned,
you can process the first 1 to 15 bytes in the array by using standard (non-
SSE) instructions until you reach an appropriate address for pcmpeqb; for
example:

cmpLp: mov al, [rsi]
 cmp al, someByteValue
 je foundByte
 inc rsi
 test rsi, 0Fh
 jnz cmpLp
 Use SSE instructions here, as RSI is now 16-byte-aligned

ANDing RSI with 0Fh produces a 0 result (and sets the zero flag) if the
LO 4 bits of RSI contain 0. If the LO 4 bits of RSI contain 0, the address it
contains is aligned on a 16-byte boundary.16

The only drawback to this approach is that you must process as many as
15 bytes individually until you get an appropriate address. That’s 6 × 15, or
90, machine instructions. However, for large blocks of data (say, more than
about 48 or 64 bytes), you amortize the cost of the single-byte comparisons,
and this approach isn’t so bad.

To improve the performance of this code, you can modify the initial
address so that it begins at a 16-byte boundary. ANDing the value in RSI

16. Logically AND with the value 1Fh for 32-byte alignment.

682 Chapter 11

(in this particular example) with 0FFFFFFFFFFFFFFF0h (–16) modifies
RSI so that it holds the address of the start of the 16-byte block containing
the original address:17

 and rsi, -16

To avoid matching unintended bytes before the start of the data struc-
ture, we can create a mask to cover the extra bytes. For example, suppose
that we’re using the following instruction sequence to rapidly compare
16 bytes at a time:

 sub rsi, 16
cmpLp: add rsi, 16
 movdqa xmm0, xmm2 ; XMM2 contains bytes to test
 pcmpeqb xmm0, [rsi]
 pmovmskb eax, xmm0
 ptest eax, eax
 jz cmpLp

If we use the AND instruction to align the RSI register prior to the execu-
tion of this code, we might get false results when we compare the first 16 bytes.
To solve this, we can create a mask that will eliminate any bits from unin-
tended comparisons. To create this mask, we start with all 1 bits and zero out
any bits corresponding to addresses from the beginning of the 16-byte block
to the first actual data item we’re comparing. This mask can be calculated
using the following expression:

-1 << (startAdrs & 0xF) ; Note: -1 is all 1 bits

This creates 0 bits in the locations before the data to compare and 1 bit
thereafter (for the first 16 bytes). We can use this mask to zero out the
undesired bit results from the pmovmskb instruction. The following code
snippet demonstrates this technique:

 mov rcx, rsi
 and rsi, -16 ; Align to 16 bits
 and ecx, 0fH ; Strip out offset of start of data
 mov ebx, -1 ; 0FFFFFFFFh – all 1 bits
 shl ebx, cl ; Create mask

; Special case for the first 1 to 16 bytes:

 movdqa xmm0, xmm2
 pcmpeqb xmm0, [rsi]
 pmovmskb eax, xmm0
 and eax, ebx
 jnz foundByte

17. One nice feature of the two’s complement numbering system is that negating a power of 2
produces all 1 bits except for the LO log2(pwrOf2) bits of the number. For example, –32
has 0s in the LO 5 bits, –16 has 0s in the LO 4 bits, –8 has 0s in the LO 3 bits, –4 has 0s
in the LO 2 bits, and –2 has a 0 in the LO bit.

SIMD Instructions 683

cmpLp: add rsi, 16
 movdqa xmm0, xmm2 ; XMM2 contains bytes to test
 pcmpeqb xmm0, [rsi]
 pmovmskb eax, xmm0
 test eax, eax
 jz cmpLp
foundByte:
 Do whatever needs to be done when the block of 16 bytes
 contains at least one match between the bytes in XMM2
 and the data at RSI

Suppose, for example, that the address is already aligned on a 16-byte
boundary. ANDing that value with 0Fh produces 0. Shifting –1 to the left
zero positions produces –1 (all 1 bits). Later, when the code logically ANDs
this with the mask obtained after the pcmpeqb and pmovmskb instructions, the
result does not change. Therefore, the code tests all 16 bytes (as we would
want if the original address is 16-byte-aligned).

When the address in RSI has the value 0001b in the LO 4 bits, the
actual data starts at offset 1 into the 16-byte block. So, we want to ignore
the first byte when comparing the values in XMM2 against the 16 bytes at
[RSI]. In this case, the mask is 0FFFFFFFEh, which is all 1s except for a 0
in bit 0. After the comparison, if bit 0 of EAX contains a 1 (meaning the
bytes at offset 0 match), the AND operation eliminates this bit (replacing
it with 0) so it doesn’t affect the comparison. Likewise, if the starting offset
into the block is 2, 3, . . . , 15, the shl instruction modifies the bit mask in
EBX to eliminate bytes at those offsets from consideration in the first
compare operation. The result is that it takes only 11 instructions to do the
same work as (up to) 90+ instructions in the original (byte-by-byte compari-
son) example.

 11.15 Aligning Word, Dword, and Qword Object Addresses
When aligning non-byte-sized objects, you increment the pointer by the size
of the object (in bytes) until you obtain an address that is 16- (or 32-) byte-
aligned. However, this works only if the object size is 2, 4, or 8 (because any
other value will likely miss addresses that are multiples of 16).

For example, you can process the first several elements of an array
of word objects (where the first element of the array appears at an even
address in memory) on a word-by-word basis, incrementing the pointer by
2, until you obtain an address that is divisible by 16 (or 32). Note, though,
that this scheme works only if the array of objects begins at an address that
is a multiple of the element size. For example, if an array of word values
begins at an odd address in memory, you will not be able to get an address
that is divisible by 16 or 32 with a series of additions by 2, and you would not
be able to use SSE/AVX instructions to process this data without first mov-
ing it to another location in memory that is properly aligned.

684 Chapter 11

 11.16 Filling an XMM Register with Several Copies of the
Same Value
For many SIMD algorithms, you will want multiple copies of the same value in
an XMM or a YMM register. You can use the (v)movddup, (v)movshdup, (v)pinsd,
(v)pinsq, and (v)pshufd instructions for single-precision and double-precision
floating-point values. For example, if you have a single-precision floating-point
value, r4var, in memory and you want to replicate it throughout XMM0, you
could use the following code:

movss xmm0, r4var
pshufd xmm0, xmm0, 0 ; Lanes 3, 2, 1, and 0 from lane 0

To copy a pair of double-precision floating-point values from r8var into
XMM0, you could use:

movsd xmm0, r8var
pshufd xmm0, xmm0, 44h ; Lane 0 to lanes 0 and 2, 1 to 1, and 3

Of course, pshufd is really intended for double-word integer operations,
so additional latency (time) may be involved in using pshufd immediately
after movsd or movss. Although pshufd allows a memory operand, that oper-
and must be a 16-byte-aligned 128-bit-memory operand, so it’s not useful
for directly copying a floating-point value through an XMM register.

For double-precision floating-point values, you can use movddup to dupli-
cate a single 64-bit float in the LO bits of an XMM register into the HO bits:

movddup xmm0, r8var

The movddup instruction allows unaligned 64-bit memory operands, so
it’s probably the best choice for duplicating double-precision values.

To copy byte, word, dword, or qword integer values throughout an
XMM register, the pshufb, pshufw, pshufd, or pshufq instructions are a good
choice. For example, to replicate a single byte throughout XMM0, you
could use the following sequence:

movzx eax, byteToCopy
movd xmm0, eax
pxor xmm1, xmm1 ; Mask to copy byte 0 throughout
pshufb xmm0, xmm1

The XMM1 operand is an array of bytes containing masks used to
copy data from locations in XMM0 onto itself. The value 0 copies byte 0
in XMM0 throughout all the other bits in XMM0. This same code can be
used to copy words, dwords, and qwords by simply changing the mask value

SIMD Instructions 685

in XMM1. Or you could use the pshuflw or pshufd instructions to do the job.
Here’s another variant that replicates a byte throughout XMM0:

movzx eax, byteToCopy
mov ah, al
movd xmm0, eax
punpcklbw xmm0, xmm0 ; Copy bytes 0 and 1 to 2 and 3
pshufd xmm0, xmm0, 0 ; Copy LO dword throughout

 11.17 Loading Some Common Constants Into XMM and
YMM Registers
No SSE/AVX instructions let you load an immediate constant into a register.
However, you can use a couple of idioms (tricks) to load certain common
constant values into an XMM or a YMM register. This section discusses some
of these idioms.

Loading 0 into an SSE/AVX register uses the same idiom that general-
purpose integer registers employ: exclusive-OR the register with itself. For
example, to set all the bits in XMM0 to 0s, you would use the following
instruction:

pxor xmm0, xmm0

To set all the bits in an XMM or a YMM register to 1, you can use the
pcmpeqb instruction, as follows:

pcmpeqb xmm0, xmm0

Because any given XMM or YMM register is equal to itself, this instruc-
tion stores 0FFh in all the bytes of XMM0 (or whatever XMM or YMM regis-
ter you specify).

If you want to load the 8-bit value 01h into all 16 bytes of an XMM regis-
ter, you can use the following code (this comes from Intel):

pxor xmm0, xmm0
pcmpeqb xmm1, xmm1
psubb xmm0, xmm1 ; 0 - (-1) is (1)

You can substitute psubw or psubd for psubb in this example if you want to
create 16- or 32-bit results (for example, four 32-bit dwords in XMM0, each
containing the value 00000001h).

If you would like the 1 bit in a different bit position (rather than bit 0 of
each byte), you can use the pslld instruction after the preceding sequence to
reposition the bits. For example, if you want to load the XMM0 register with
8080808080808080h, you could use the following instruction sequence:

pxor xmm0, xmm0
pcmpeqb xmm1, xmm1

686 Chapter 11

psubb xmm0, xmm1
pslld xmm0, 7 ; 01h -> 80h in each byte

Of course, you can supply a different immediate constant to pslld to
load each byte in the register with 02h, 04h, 08h, 10h, 20h, or 40h.

Here’s a neat trick you can use to load 2n – 1 (all 1 bits up to the nth bit
in a number) into all the lanes on an SSE/AVX register:18

; For 16-bit lanes:

pcmpeqd xmm0, xmm0 ; Set all bits to 1
psrlw xmm0, 16 - n ; Clear top 16 - n bits of xmm0

; For 32-bit lanes:

pcmpeqd xmm0, xmm0 ; Set all bits to 1
psrld xmm0, 32 - n ; Clear top 16 - n bits of xmm0

; For 64-bit lanes:

pcmpeqd xmm0, xmm0 ; Set all bits to 1
psrlq xmm0, 64 - n ; Clear top 16 - n bits of xmm0

You can also load the inverse (NOT(2n – 1), all 1 bits in bit position n
through the end of the register) by shifting to the left rather than the right:

; For 16-bit lanes:

pcmpeqd xmm0, xmm0 ; Set all bits to 1
psllw xmm0, n ; Clear bottom n bits of xmm0

; For 32-bit lanes:

pcmpeqd xmm0, xmm0 ; Set all bits to 1
pslld xmm0, n ; Clear bottom n bits of xmm0

; For 64-bit lanes:

pcmpeqd xmm0, xmm0 ; Set all bits to 1
psllq xmm0, n ; Clear bottom n bits of xmm0

Of course, you can also load a “constant” into an XMM or a YMM regis-
ter by putting that constant into a memory location (preferably 16- or 32-byte-
aligned) and then using a movdqu or movdqa instruction to load that value
into a register. Do keep in mind, however, that such an operation can be
relatively slow if the data in memory does not appear in cache. Another pos-
sibility, if the constant is small enough, is to load the constant into a 32- or
64-bit integer register and use movd or movq to copy that value into an XMM
register.

18. Suggested by Raymond Chen at https://blogs.msdn.microsoft.com/oldnewthing/.

https://blogs.msdn.microsoft.com/oldnewthing/

SIMD Instructions 687

 11.18 Setting, Clearing, Inverting, and Testing a Single Bit
in an SSE Register
Here’s another set of tricks suggested by Raymond Chen (https://blogs.msdn
.microsoft.com/oldnewthing/20141222-00/?p=43333/) to set, clear, or test an
individual bit in an XMM register.

To set an individual bit (bit n, assuming that n is a constant) with all
other bits cleared, you can use the following macro:

; setXBit - Sets bit n in SSE register xReg.

setXBit macro xReg, n
 pcmpeqb xReg, xReg ; Set all bits in xReg
 psrlq xReg, 63 ; Set both 64-bit lanes to 01h
 if n lt 64
 psrldq xReg, 8 ; Clear the upper lane
 else
 pslldq xReg, 8 ; Clear the lower lane
 endif
 if (n and 3fh) ne 0
 psllq xReg, (n and 3fh)
 endif
 endm

Once you can fill an XMM register with a single set bit, you can use that
register’s value to set, clear, invert, or test that bit in another XMM register.
For example, to set bit n in XMM1, without affecting any of the other bits in
XMM1, you could use the following code sequence:

setXBit xmm0, n ; Set bit n in XMM1 to 1 without
por xmm1, xmm0 ; affecting any other bits

To clear bit n in an XMM register, you use the same sequence but sub-
stitute the vpandn (AND NOT) instruction for the por instruction:

setXBit xmm0, n ; Clear bit n in XMM1 without
vpandn xmm1, xmm0, xmm1 ; affecting any other bits

To invert a bit, simply substitute pxor for por or vpandn:

setXBit xmm0, n ; Invert bit n in XMM1 without
pxor xmm1, xmm0 ; affecting any other bits

To test a bit to see if it is set, you have a couple of options. If your
CPU supports the SSE4.1 instruction set extensions, you can use the ptest
instruction:

setXBit xmm0, n ; Test bit n in XMM1
ptest xmm1, xmm0
jnz bitNisSet ; Fall through if bit n is clear

https://blogs.msdn.microsoft.com/oldnewthing/20141222-00/?p=43333/
https://blogs.msdn.microsoft.com/oldnewthing/20141222-00/?p=43333/

688 Chapter 11

If you have an older CPU that doesn’t support the ptest instruction, you
can use pmovmskb as follows:

; Remember, psllq shifts bits, not bytes.
; If bit n is not in bit position 7 of a given
; byte, then move it there. For example, if n = 0, then
; (7 - (0 and 7)) is 7, so psllq moves bit 0 to bit 7.

movdqa xmm0, xmm1
if 7 - (n and 7)
psllq xmm0, 7 - (n and 7)
endif

; Now that the desired bit to test is sitting in bit position
; 7 of *some* byte, use pmovmskb to extract all bit 7s into AX:

pmovmskb eax, xmm0

; Now use the (integer) test instruction to test that bit:

test ax, 1 shl (n / 8)
jnz bitNisSet

 11.19 Processing Two Vectors by Using a Single
Incremented Index
Sometimes your code will need to process two blocks of data simultaneously,
incrementing pointers into both blocks during the execution of the loop.

One easy way to do this is to use the scaled-indexed addressing mode.
If R8 and R9 contain pointers to the data you want to process, you can walk
along both blocks of data by using code such as the following:

 dec rcx
blkLoop: inc rcx
 mov eax, [r8][rcx * 4]
 cmp eax, [r9][rcx * 4]
 je theyreEqual
 cmp eax, sentinelValue
 jne blkLoop

This code marches along through the two dword arrays comparing val-
ues (to search for an equal value in the arrays at the same index). This loop
uses four registers: EAX to compare the two values from the arrays, the two
pointers to the arrays (R8 and R9), and then the RCX index register to step
through the two arrays.

It is possible to eliminate RCX from this loop by incrementing the R8
and R9 registers in this loop (assuming it’s okay to modify the values in
R8 and R9):

 sub r8, 4
 sub r9, 4
blkLoop: add r8, 4

SIMD Instructions 689

 add r9, 4
 mov eax, [r8]
 cmp eax, [r9]
 je theyreEqual
 cmp eax, sentinelValue
 jne blkLoop

This scheme requires an extra add instruction in the loop. If the execu-
tion speed of this loop is critical, inserting this extra addition could be a
deal breaker.

There is, however, a sneaky trick you can use so that you have to incre-
ment only a single register on each iteration of the loop:

 sub r9, r8 ; R9 = R9 - R8
 sub r8, 4
blkLoop: add r8, 4
 mov eax, [r8]
 cmp eax, [r9][r8 * 1] ; Address = R9 + R8
 je theyreEqual
 cmp eax, sentinelValue
 jne blkLoop

The comments are there because they explain the trick being used. At
the beginning of the code, you subtract the value of R8 from R9 and leave
the result in R9. In the body of the loop, you compensate for this subtraction
by using the [r9][r8 * 1] scaled-indexed addressing mode (whose effective
address is the sum of R8 and R9, thus restoring R9 to its original value, at
least on the first iteration of the loop). Now, because the cmp instruction’s
memory address is the sum of R8 and R9, adding 4 to R8 also adds 4 to the
effective address used by the cmp instruction. Therefore, on each iteration
of the loop, the mov and cmp instructions look at successive elements of their
respective arrays, yet the code has to increment only a single pointer.

N O T E In this example, you always use the * 1 scale factor on the scaled-indexed addressing
mode. Adjusting for the size of the operand (4 bytes) happens when adding 4 to the R8
register.

This scheme works especially well when processing SIMD arrays with SSE
and AVX instructions because the XMM and YMM registers are 16 and 32
bytes each, so you can’t use normal scaling factors (1, 2, 4, or 8) to index into
an array of packed data values. You wind up having to add 16 (or 32) to your
pointers when stepping through the arrays, thus losing one of the benefits of
the scaled-indexed addressing mode. For example:

; Assume R9 and R8 point at (32-byte-aligned) arrays of 20 double values.
; Assume R10 points at a (32-byte-aligned) destination array of 20 doubles.

 sub r9, r8 ; R9 = R9 - R8
 sub r10, r8 ; R10 = R10 – R8
 sub r8, 32

690 Chapter 11

 mov ecx, 5 ; Vector with 20 (5 * 4) double values
addLoop: add r8, 32
 vmovapd ymm0, [r8]
 vaddpd ymm0, ymm0, [r9][r8 * 1] ; Address = R9 + R8
 vmovapd [r10][r8 * 1], ymm0 ; Address = R10 + R8
 dec ecx
 jnz addLoop

 11.20 Aligning Two Addresses to a Boundary
The vmovapd and vaddpd instructions from the preceding example require their
memory operands to be 32-byte-aligned or you will get a general protection
fault (memory access violation). If you have control over the placement of the
arrays in memory, you can specify an alignment for the arrays. If you have no
control over the data’s placement in memory, you have two options: working
with the unaligned data regardless of the performance loss, or moving the
data to a location where it is properly aligned.

If you must work with unaligned data, you can substitute an unaligned
move for an aligned move (for example, vmovupd for vmovdqa) or load the data
into a YMM register by using an unaligned move and then operate on the
data in that register by using your desired instruction. For example:

addLoop: add r8, 32
 vmovupd ymm0, [r8]
 vmovupd ymm1, [r9][r8 * 1] ; Address = R9 + R8
 vaddpd ymm0, ymm0, ymm1
 vmovupd [r10][r8 * 1], ymm0 ; Address = R10 + R8
 dec ecx
 jnz addLoop

Sadly, the vaddpd instruction does not support unaligned access to mem-
ory, so you must load the value from the second array (pointed at by R9)
into another register (YMM1) before the packed addition operation. This is
the drawback to unaligned access: not only are unaligned moves slower, but
you also may need to use additional registers and instructions to deal with
unaligned data.

Moving the data to a memory location whose alignment you can control
is an option when you have a data operand you will be using over and over
again in the future. Moving data is an expensive operation; however, if you
have a standard block of data you’re going to compare against many other
blocks, you can amortize the cost of moving that block to a new location
over all the operations you need to do.

Moving the data is especially useful when one (or both) of the data arrays
appears at an address that is not an integral multiple of the sub-elements’s
size. For example, if you have an array of dwords that begin at an odd address,
you will never be able to align a pointer to that array’s data to a 16-byte bound-
ary without moving the data.

SIMD Instructions 691

 11.21 Working with Blocks of Data Whose Length Is Not a
Multiple of the SSE/AVX Register Size
Using SIMD instructions to march through a large data set processing 2,
4, 8, 16, or 32 values at a time often allows a SIMD algorithm (a vectorized
algorithm) to run an order of magnitude faster than the SISD (scalar) algo-
rithm. However, two boundary conditions create problems: the start of the
data set (when the starting address might not be properly aligned) and the
end of the data set (when there might not be a sufficient number of array
elements to completely fill an XMM or a YMM register). I’ve addressed
the issues with the start of the data set (misaligned data) already. This sec-
tion takes a look at the latter problem.

For the most part, when you run out of data at the end of the array
(and the XMM and YMM registers need more for a packed operation), you
can use the same technique given earlier for aligning a pointer: load more
data than is necessary into the register and mask out the unneeded results.
For example, if only 8 bytes are left to process in a byte array, you can load
16 bytes, do the operation, and ignore the results from the last 8 bytes. In
the comparison loop examples I’ve been using through these past sections,
you could do the following:

movdqa xmm0, [r8]
pcmpeqd xmm0, [r9]
pmovmskb eax, xmm0
and eax, 0ffh ; Mask out the last 8 compares
cmp eax, 0ffh
je matchedData

In most cases, accessing data beyond the end of the data structures
(either the data pointed at by R8, R9, or both in this example) is harmless.
However, as you saw in “Memory Access and 4K Memory Management Unit
Pages” in Chapter 3, if that extra data happens to cross a memory manage-
ment unit page, and that new page doesn’t allow read access, the CPU will
generate a general protection fault (memory access or segmentation fault).
Therefore, unless you know that valid data follows the array in memory
(at least to the extent the instruction references), you shouldn’t access that
memory area; doing so could crash your software.

This problem has two solutions. First, you can align memory accesses
on an address boundary that is the same size as the register (for example,
16-byte alignment for XMM registers). Accessing data beyond the end
of the data structure with an SSE/AVX instruction will not cross a page
boundary (because 16-byte accesses aligned on 16-byte boundaries will
always fall within the same MMU page, and ditto for 32-byte accesses on
32-byte boundaries).

The second solution is to examine the memory address prior to accessing
memory. While you cannot access the new page without possibly triggering

692 Chapter 11

an access fault,19 you can check the address itself and see if accessing
16 (or 32) bytes at that address will access data in a new page. If it would,
you can take some precautions before accessing the data on the next page.
For example, rather than continuing to process the data in SIMD mode,
you could drop down to SISD mode and finish processing the data to the
end of the array by using standard scalar instructions.

To test if a SIMD access will cross an MMU page boundary, supposing
that R9 contains the address at which you’re about to access 16 bytes in
memory using an SSE instruction, use code like the following:

mov eax, r9d
and eax, 0fffh
cmp eax, 0ff0h
ja willCrossPage

Each MMU page is 4KB long and is situated on a 4KB address bound-
ary in memory. Therefore, the LO 12 bits of an address provide an index
into the MMU page associated with that address. The preceding code
checks whether the address has a page offset greater than 0FF0h (4080). If
so, then accessing 16 bytes starting at that address will cross a page bound-
ary. Check for a value of 0FE0h if you need to check for a 32-byte access.

 11.22 Dynamically Testing for a CPU Feature
At the beginning of this chapter, I mentioned that when testing the CPU
feature set to determine which extensions it supports, the best solution is
to dynamically select a set of functions based on the presence or absence
of certain capabilities. To demonstrate dynamically testing for, and using
(or avoiding), certain CPU features—specifically, testing for the presence
of AVX extensions—I’ll modify (and expand) the print procedure that I’ve
been using in examples up to this point.

The print procedure I’ve been using is very convenient, but it doesn’t
preserve any SSE or AVX registers that a call to printf() could (legally)
modify. A generic version of print should preserve the volatile XMM and
YMM registers as well as general-purpose registers.

The problem is that you cannot write a generic version of print that will
run on all CPUs. If you preserve the XMM registers only, the code will run
on any x86-64 CPU. However, if the CPU supports the AVX extensions and
the program uses YMM0 to YMM5, the print routine will preserve only the
LO 128 bits of those registers, as they are aliased to the corresponding XMM
registers. If you save the volatile YMM registers, that code will crash on a CPU
that doesn’t support the AVX extensions. So, the trick is to write code that
will dynamically determine whether the CPU has the AVX registers and pre-
serve them if they are present, and otherwise preserve only the SSE registers.

19. As far as I know, at least while this is being written, there is no convenient way to test a
byte in memory to see if it is accessible without causing a fault; in theory, you could put in
an exception handler, but triggering and handling the exception is far too expensive to
consider.

SIMD Instructions 693

The easy way to do this, and probably the most appropriate solution for
the print function, is to simply stick the cpuid instruction inside print and
test the results immediately before preserving (and restoring) the registers.
Here’s a code fragment that demonstrates how this could be done:

AVXSupport = 10000000h ; Bit 28

print proc

; Preserve all the volatile registers
; (be nice to the assembly code that
; calls this procedure):

 push rax
 push rbx ; CPUID messes with EBX
 push rcx
 push rdx
 push r8
 push r9
 push r10
 push r11

; Reserve space on the stack for the AVX/SSE registers.
; Note: SSE registers need only 96 bytes, but the code
; is easier to deal with if we reserve the full 128 bytes
; that the AVX registers need and ignore the extra 64
; bytes when running SSE code.

 sub rsp, 192

; Determine if we have to preserve the YMM registers:

 mov eax, 1
 cpuid
 test ecx, AVXSupport ; Test bits 19 and 20
 jnz preserveAVX

; No AVX support, so just preserve the XXM0 to XXM3 registers:

 movdqu xmmword ptr [rsp + 00], xmm0
 movdqu xmmword ptr [rsp + 16], xmm1
 movdqu xmmword ptr [rsp + 32], xmm2
 movdqu xmmword ptr [rsp + 48], xmm3
 movdqu xmmword ptr [rsp + 64], xmm4
 movdqu xmmword ptr [rsp + 80], xmm5
 jmp restOfPrint

; YMM0 to YMM3 are considered volatile, so preserve them:

preserveAVX:
 vmovdqu ymmword ptr [rsp + 000], ymm0
 vmovdqu ymmword ptr [rsp + 032], ymm1
 vmovdqu ymmword ptr [rsp + 064], ymm2
 vmovdqu ymmword ptr [rsp + 096], ymm3

694 Chapter 11

 vmovdqu ymmword ptr [rsp + 128], ymm4
 vmovdqu ymmword ptr [rsp + 160], ymm5

restOfPrint:
 The rest of the print function goes here

At the end of the print function, when it’s time to restore everything,
you could do another test to determine whether to restore XMM or YMM
registers.20

For other functions, when you might not want the expense of cpuid (and
preserving all the registers it stomps on) incurred on every function call,
the trick is to write three functions: one for SSE CPUs, one for AVX CPUs,
and a special function (that you call only once) that selects which of these
two you will call in the future. The bit of magic that makes this efficient is
indirection. You won’t directly call any of these functions. Instead, you’ll ini-
tialize a pointer with the address of the function to call and indirectly call
one of these three functions by using the pointer. For the current example,
we’ll name this pointer print and initialize it with the address of the third
function, choosePrint:

 .data
print qword choosePrint

Here’s the code for choosePrint:

; On first call, determine if we support AVX instructions
; and set the "print" pointer to point at print_AVX or
; print_SSE:

choosePrint proc
 push rax ; Preserve registers that get
 push rbx ; tweaked by CPUID
 push rcx
 push rdx

 mov eax, 1
 cpuid
 test ecx, AVXSupport ; Test bit 28 for AVX
 jnz doAVXPrint

 lea rax, print_SSE ; From now on, call
 mov print, rax ; print_SSE directly

; Return address must point at the format string
; following the call to this function! So we have
; to clean up the stack and JMP to print_SSE.

 pop rdx
 pop rcx
 pop rbx

20. You could save the cpuid results and just test the flag, if that is more convenient for you.

SIMD Instructions 695

 pop rax
 jmp print_SSE

doAVXPrint: lea rax, print_AVX ; From now on, call
 mov print, rax ; print_AVX directly

; Return address must point at the format string
; following the call to this function! So we have
; to clean up the stack and JMP to print_AUX.

 pop rdx
 pop rcx
 pop rbx
 pop rax
 jmp print_AVX

choosePrint endp

The print_SSE procedure runs on CPUs without AVX support, and
the print_AVX procedure runs on CPUs with AVX support. The choosePrint
procedure executes the cpuid instruction to determine whether the CPU
supports the AVX extensions; if so, it initializes the print pointer with the
address of the print_AVX procedure, and if not, it stores the address of print_SSE
into the print variable.

choosePrint is not an explicit initialization procedure you must call prior
to calling print. The choosePrint procedure executes only once (assuming
you call it via the print pointer rather than calling it directly). After the first
execution, the print pointer contains the address of the CPU-appropriate
print function, and choosePrint no longer executes.

You call the print pointer just as you would make any other call to print;
for example:

call print
byte "Hello, world!", nl, 0

After setting up the print pointer, choosePrint must transfer control to
the appropriate print procedure (print_SSE or print_AVX) to do the work the
user is expecting. Because preserved register values are sitting on the stack,
and the actual print routines expect only a return address, choosePrint will
first restore all the (general-purpose) registers it saved and then jump to
(not call) the appropriate print procedure. It does a jump, rather than a call,
because the return address pointing to the format string is already sitting
on the top of the stack. On return from the print_SSE or print_AVX procedure,
control will return to whomever called choosePrint (via the print pointer).

Listing 11-5 shows the complete print function, with print_SSE and print_AVX,
and a simple main program that calls print. I’ve extended print to accept

696 Chapter 11

arguments in R10 and R11 as well as in RDX, R8, and R9 (this function
reserves RCX to hold the address of the format string following the call to print).

; Listing 11-5

; Generic print procedure and dynamically
; selecting CPU features.

 option casemap:none

nl = 10

; SSE4.2 feature flags (in ECX):

SSE42 = 00180000h ; Bits 19 and 20
AVXSupport = 10000000h ; Bit 28

; CPUID bits (EAX = 7, EBX register)

AVX2Support = 20h ; Bit 5 = AVX

 .const
ttlStr byte "Listing 11-5", 0

 .data
 align qword
print qword choosePrint ; Pointer to print function

; Floating-point values for testing purposes:

fp1 real8 1.0
fp2 real8 2.0
fp3 real8 3.0
fp4 real8 4.0
fp5 real8 5.0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; print - "Quick" form of printf that allows the format string to
; follow the call in the code stream. Supports up to five
; additional parameters in RDX, R8, R9, R10, and R11.

SIMD Instructions 697

; This function saves all the Microsoft ABI–volatile,
; parameter, and return result registers so that code
; can call it without worrying about any registers being
; modified (this code assumes that Windows ABI treats
; YMM4 to YMM15 as nonvolatile).

; Of course, this code assumes that AVX instructions are
; available on the CPU.

; Allows up to 5 arguments in:

; RDX - Arg #1
; R8 - Arg #2
; R9 - Arg #3
; R10 - Arg #4
; R11 - Arg #5

; Note that you must pass floating-point values in
; these registers, as well. The printf function
; expects real values in the integer registers.

; There are two versions of this function, one that
; will run on CPUs without AVX capabilities (no YMM
; registers) and one that will run on CPUs that
; have AVX capabilities (YMM registers). The difference
; between the two is which registers they preserve
; (print_SSE preserves only XMM registers and will
; run properly on CPUs that don't have YMM register
; support; print_AVX will preserve the volatile YMM
; registers on CPUs with AVX support).

; On first call, determine if we support AVX instructions
; and set the "print" pointer to point at print_AVX or
; print_SSE:

choosePrint proc
 push rax ; Preserve registers that get
 push rbx ; tweaked by CPUID
 push rcx
 push rdx

 mov eax, 1
 cpuid
 test ecx, AVXSupport ; Test bit 28 for AVX
 jnz doAVXPrint

 lea rax, print_SSE ; From now on, call
 mov print, rax ; print_SSE directly

; Return address must point at the format string
; following the call to this function! So we have
; to clean up the stack and JMP to print_SSE.

 pop rdx
 pop rcx

698 Chapter 11

 pop rbx
 pop rax
 jmp print_SSE

doAVXPrint: lea rax, print_AVX ; From now on, call
 mov print, rax ; print_AVX directly

; Return address must point at the format string
; following the call to this function! So we have
; to clean up the stack and JMP to print_AUX.

 pop rdx
 pop rcx
 pop rbx
 pop rax
 jmp print_AVX

choosePrint endp

; Version of print that will preserve volatile
; AVX registers (YMM0 to YMM3):

print_AVX proc

; Preserve all the volatile registers
; (be nice to the assembly code that
; calls this procedure):

 push rax
 push rbx
 push rcx
 push rdx
 push r8
 push r9
 push r10
 push r11

; YMM0 to YMM7 are considered volatile, so preserve them:

 sub rsp, 256
 vmovdqu ymmword ptr [rsp + 000], ymm0
 vmovdqu ymmword ptr [rsp + 032], ymm1
 vmovdqu ymmword ptr [rsp + 064], ymm2
 vmovdqu ymmword ptr [rsp + 096], ymm3
 vmovdqu ymmword ptr [rsp + 128], ymm4
 vmovdqu ymmword ptr [rsp + 160], ymm5
 vmovdqu ymmword ptr [rsp + 192], ymm6
 vmovdqu ymmword ptr [rsp + 224], ymm7

 push rbp

returnAdrs textequ <[rbp + 328]>

 mov rbp, rsp
 sub rsp, 128

SIMD Instructions 699

 and rsp, -16

; Format string (passed in RCX) is sitting at
; the location pointed at by the return address,
; load that into RCX:

 mov rcx, returnAdrs

; To handle more than 3 arguments (4 counting
; RCX), you must pass data on stack. However, to the
; print caller, the stack is unavailable, so use
; R10 and R11 as extra parameters (could be just
; junk in these registers, but pass them just
; in case):

 mov [rsp + 32], r10
 mov [rsp + 40], r11
 call printf

; Need to modify the return address so
; that it points beyond the zero-terminating byte.
; Could use a fast strlen function for this, but
; printf is so slow it won't really save us anything.

 mov rcx, returnAdrs
 dec rcx
skipTo0: inc rcx
 cmp byte ptr [rcx], 0
 jne skipTo0
 inc rcx
 mov returnAdrs, rcx

 leave
 vmovdqu ymm0, ymmword ptr [rsp + 000]
 vmovdqu ymm1, ymmword ptr [rsp + 032]
 vmovdqu ymm2, ymmword ptr [rsp + 064]
 vmovdqu ymm3, ymmword ptr [rsp + 096]
 vmovdqu ymm4, ymmword ptr [rsp + 128]
 vmovdqu ymm5, ymmword ptr [rsp + 160]
 vmovdqu ymm6, ymmword ptr [rsp + 192]
 vmovdqu ymm7, ymmword ptr [rsp + 224]
 add rsp, 256
 pop r11
 pop r10
 pop r9
 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
print_AVX endp

; Version that will run on CPUs without
; AVX support and will preserve the

700 Chapter 11

; volatile SSE registers (XMM0 to XMM3):

print_SSE proc

; Preserve all the volatile registers
; (be nice to the assembly code that
; calls this procedure):

 push rax
 push rbx
 push rcx
 push rdx
 push r8
 push r9
 push r10
 push r11

; XMM0 to XMM3 are considered volatile, so preserve them:

 sub rsp, 128
 movdqu xmmword ptr [rsp + 00], xmm0
 movdqu xmmword ptr [rsp + 16], xmm1
 movdqu xmmword ptr [rsp + 32], xmm2
 movdqu xmmword ptr [rsp + 48], xmm3
 movdqu xmmword ptr [rsp + 64], xmm4
 movdqu xmmword ptr [rsp + 80], xmm5
 movdqu xmmword ptr [rsp + 96], xmm6
 movdqu xmmword ptr [rsp + 112], xmm7

 push rbp

returnAdrs textequ <[rbp + 200]>

 mov rbp, rsp
 sub rsp, 128
 and rsp, -16

; Format string (passed in RCX) is sitting at
; the location pointed at by the return address,
; load that into RCX:

 mov rcx, returnAdrs

; To handle more than 3 arguments (4 counting
; RCX), you must pass data on stack. However, to the
; print caller, the stack is unavailable, so use
; R10 and R11 as extra parameters (could be just
; junk in these registers, but pass them just
; in case):

 mov [rsp + 32], r10
 mov [rsp + 40], r11
 call printf

; Need to modify the return address so

SIMD Instructions 701

; that it points beyond the zero-terminating byte.
; Could use a fast strlen function for this, but
; printf is so slow it won't really save us anything.

 mov rcx, returnAdrs
 dec rcx
skipTo0: inc rcx
 cmp byte ptr [rcx], 0
 jne skipTo0
 inc rcx
 mov returnAdrs, rcx

 leave
 movdqu xmm0, xmmword ptr [rsp + 00]
 movdqu xmm1, xmmword ptr [rsp + 16]
 movdqu xmm2, xmmword ptr [rsp + 32]
 movdqu xmm3, xmmword ptr [rsp + 48]
 movdqu xmm4, xmmword ptr [rsp + 64]
 movdqu xmm5, xmmword ptr [rsp + 80]
 movdqu xmm6, xmmword ptr [rsp + 96]
 movdqu xmm7, xmmword ptr [rsp + 112]
 add rsp, 128
 pop r11
 pop r10
 pop r9
 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
print_SSE endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

; Trivial example, no arguments:

 call print
 byte "Hello, world!", nl, 0

; Simple example with integer arguments:

 mov rdx, 1 ; Argument #1 for printf
 mov r8, 2 ; Argument #2 for printf

702 Chapter 11

 mov r9, 3 ; Argument #3 for printf
 mov r10, 4 ; Argument #4 for printf
 mov r11, 5 ; Argument #5 for printf
 call print
 byte "Arg 1=%d, Arg2=%d, Arg3=%d "
 byte "Arg 4=%d, Arg5=%d", nl, 0

; Demonstration of floating-point operands. Note that
; args 1, 2, and 3 must be passed in RDX, R8, and R9.
; You'll have to load parameters 4 and 5 into R10 and R11.

 mov rdx, qword ptr fp1
 mov r8, qword ptr fp2
 mov r9, qword ptr fp3
 mov r10, qword ptr fp4
 mov r11, qword ptr fp5
 call print
 byte "Arg1=%6.1f, Arg2=%6.1f, Arg3=%6.1f "
 byte "Arg4=%6.1f, Arg5=%6.1f ", nl, 0

allDone: leave
 pop rdi
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 11-5: Dynamically selected print procedure

Here’s the build command and output for the program in Listing 11-5:

C:\>build listing11-5

C:\>echo off
 Assembling: listing11-5.asm
c.cpp

C:\>listing11-5
Calling Listing 11-5:
Hello, World!
Arg 1=1, Arg2=2, Arg3=3 Arg 4=4, Arg5=5
Arg1= 1.0, Arg2= 2.0, Arg3= 3.0 Arg4= 4.0, Arg5= 5.0
Listing 11-5 terminated

 11.23 The MASM Include Directive
As you’ve seen already, including the source code for the print procedure
in every sample listing in this book wastes a lot of space. Including the new
version from the previous section in every listing would be impractical. In
Chapter 15, I discuss include files, libraries, and other functionality you can
use to break large projects into manageable pieces. In the meantime, how-
ever, it’s worthwhile to discuss the MASM include directive so this book can
eliminate a lot of unnecessary code duplication in sample programs.

SIMD Instructions 703

The MASM include directive uses the following syntax:

include source_filename

where source_filename is the name of a text file (generally in the same direc-
tory of the source file containing this include directive). MASM will take the
source file and insert it into the assembly at the point of the include direc-
tive, exactly as though the text in that file had appeared in the source file
being assembled.

For example, I have extracted all the source code associated with the
new print procedure (the choosePrint, print_AVX, and print_SSE procedures,
and the print qword variable), and I’ve inserted them into the print.inc
source file.21 In listings that follow in this book, I’ll simply place the follow-
ing directive in the code in place of the print function:

include print.inc

I’ve also put the getTitle procedure into its own header file (getTitle.inc)
to be able to remove that common code from sample listings.

 11.24 And a Whole Lot More
This chapter doesn’t even begin to describe all the various SSE, AVX,
AVX2, and AVX512 instructions. As already mentioned, most of the SIMD
instructions have a specific purpose (such as interleaving or deinterleaving
bytes associated with video or audio information) that aren’t very useful
outside their particular problem domain. Other instructions (at least, as
this book was being written) are sufficiently new that they won’t execute on
many CPUs in use today. If you’re interested in learning about more of the
SIMD instructions, check out the information in the next section.

 11.25 For More Information
For more information about the cpuid instruction on AMD CPUs, see the
2010 AMD document “CPUID Specification” (https://www.amd.com/system/
files/TechDocs/25481.pdf). For Intel CPUs, check out “Intel Architecture and
Processor Identification with CPUID Model and Family Numbers” (https://
software.intel.com/en-us/articles/intel-architecture-and-processor-identification-with
-cpuid-model-and-family-numbers/).

Microsoft’s website (particularly the Visual Studio documentation)
has additional information on the MASM segment directive and x86-64 seg-
ments. A search for MASM Segment Directive on the internet, for example,
brought up the page https://docs.microsoft.com/en-us/cpp/assembler/masm/
segment?view=msvc-160/.

The complete discussion of all the SIMD instructions can be found in
Intel’s documentation: Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2: Instruction Set Reference.

21. .inc is the typical suffix MASM programmers use for include files.

https://www.amd.com/system/files/TechDocs/25481.pdf
https://www.amd.com/system/files/TechDocs/25481.pdf
https://software.intel.com/en-us/articles/intel-architecture-and-processor-identification-with-cpuid-model-and-family-numbers/
https://software.intel.com/en-us/articles/intel-architecture-and-processor-identification-with-cpuid-model-and-family-numbers/
https://software.intel.com/en-us/articles/intel-architecture-and-processor-identification-with-cpuid-model-and-family-numbers/
https://docs.microsoft.com/en-us/cpp/assembler/masm/segment?view=msvc-160/
https://docs.microsoft.com/en-us/cpp/assembler/masm/segment?view=msvc-160/

704 Chapter 11

You can easily find this documentation online at Intel’s website; for
example:

• https://software.intel.com/en-us/articles/intel-sdm/

• https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia
-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html

AMD’s variant can be found at https://www.amd.com/system/files/TechDocs/
40332.pdf.

Although this chapter has presented many of the SSE/AVX/AVX2
instructions and what they do, it has not spent much time describing how
you would use these instructions in a typical program. You can easily find
lots of useful high-performance algorithms that use SSE and AVX instruc-
tions on the internet. The following URLs provide some examples:

Tutorials on SIMD programming

• SSE Arithmetic, by Stefano Tommesani, http://www.tommesani.com/index
.php/simd/46-sse-arithmetic.html

• x86/x64 SIMD Instruction List, https://www.officedaytime.com/simd512e/

• Basics of SIMD Programming, Sony Computer Entertainment, http://
ftp.cvut.cz/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/
BasicsOfSIMDProgramming.html

Sorting algorithms

• “A Novel Hybrid Quicksort Algorithm Vectorized Using AVX-512 on
Intel Skylake,” by Berenger Bramas, https://arxiv.org/pdf/1704.08579.pdf

• “Register Level Sort Algorithm on Multi-Core SIMD Processors” by
Tian Xiaochen et al., http://olab.is.s.u-tokyo.ac.jp/~kamil.rocki/xiaochen
_rocki_IA3_SC13.pdf

• “Fast Quicksort Implementation Using AVX Instructions” by Shay Gueron
and Vlad Krasnov, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100
9.7773&rep=rep1&type=pdf

Search algorithms

• “SIMD-Friendly Algorithms for Substring Searching” by Wojciech Mula,
http://0x80.pl/articles/simd-strfind.html

• “Fast Multiple String Matching Using Streaming SIMD Extensions
Technology” by Simone Faro and M. Oğuzhan Külekci, https://citeseerx
.ist.psu.edu/viewdoc/download?doi=10.1.1.1041.3831&rep=rep1&type=pdf

• “k-Ary Search on Modern Processors” by Benjamin Schlegel et al.,
https://event.cwi.nl/damon2009/DaMoN09-KarySearch.pdf

https://software.intel.com/en-us/articles/intel-sdm/
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://software.intel.com/content/www/us/en/develop/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.amd.com/system/files/TechDocs/40332.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf
https://tommesani.com/index.php/2010/04/24/sse-arithmetic/
https://tommesani.com/index.php/2010/04/24/sse-arithmetic/
https://www.officedaytime.com/simd512e/
http://ftp.cvut.cz/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
http://ftp.cvut.cz/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
http://ftp.cvut.cz/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
https://arxiv.org/pdf/1704.08579.pdf
http://olab.is.s.u-tokyo.ac.jp/~kamil.rocki/xiaochen_rocki_IA3_SC13.pdf
http://olab.is.s.u-tokyo.ac.jp/~kamil.rocki/xiaochen_rocki_IA3_SC13.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1009.7773&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1009.7773&rep=rep1&type=pdf
http://0x80.pl/articles/simd-strfind.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1041.3831&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1041.3831&rep=rep1&type=pdf
https://event.cwi.nl/damon2009/DaMoN09-KarySearch.pdf

SIMD Instructions 705

 11.26 Test Yourself

1. How can you determine whether a particular SSE or AVX feature is
available on the CPU?

2. Why is it important to check the manufacturer of the CPU?

3. What EAX setting do you use with cpuid to obtain the feature flags?

4. What feature flag bit tells you that the CPU supports SSE4.2
instructions?

5. What is the name of the default segment used by the following
directives?

a. .code

b. .data

c. .data?

d. .const

6. What is the default segment alignment?

7. How would you create a data segment aligned on a 64-byte boundary?

8. Which instruction set extensions support the YMMx registers?

9. What is a lane?

10. What is the difference between a scalar instruction and a vector
instruction?

11. SSE memory operands (XMM) must usually be aligned on what memory
boundary?

12. AVX memory operands (YMM) must usually be aligned on what memory
boundary?

13. AVX-512 memory operands (ZMM) must usually be aligned on what
memory boundary?

14. What instruction would you use to move the data from a 32-bit general-
purpose integer register into the LO 32 bits of an XMM and a YMM
register?

15. What instruction would you use to move the data from a 64-bit general-
purpose integer register into the LO 64 bits of an XMM and a YMM
register?

16. What three instructions would you use to load 16 bytes from an aligned
memory location into an XMM register?

17. What three instructions would you use to load 16 bytes from an arbi-
trary memory address into an XMM register?

18. If you want to move the HO 64 bits of an XMM register into the HO
64 bits of another XMM register without affecting the LO 64 bits of the
destination, what instruction would you use?

706 Chapter 11

19. If you want to duplicate a double-precision value in the LO 64 bits of an
XMM register in the two qwords (LO and HO) of another XMM regis-
ter, what instruction would you use?

20. Which instruction would you use to rearrange the bytes in an XMM
register?

21. Which instruction would you use to rearrange the dword lanes in an
XMM register?

22. Which instructions would you use to extract bytes, words, dwords, or
qwords from an XMM register and move them into a general-purpose
register?

23. Which instructions would you use to take a byte, word, dword, or qword
in a general-purpose register and insert it somewhere in an XMM
register?

24. What does the andnpd instruction do?

25. Which instruction would you use to shift the bytes in an XMM register
one byte position to the left (8 bits)?

26. Which instruction would you use to shift the bytes in an XMM register
one byte position to the right (8 bits)?

27. If you want to shift the two qwords in an XMM register n bit positions to
the left, what instruction would you use?

28. If you want to shift the two qwords in an XMM register n bit positions to
the right, what instruction would you use?

29. What happens in a paddb instruction when a sum will not fit into 8 bits?

30. What is the difference between a vertical addition and a horizontal
addition?

31. Where does the pcmpeqb instruction put the result of the comparison?
How does it indicate the result is true?

32. There is no pcmpltq instruction. Explain how to compare lanes in a pair
of XMM registers for the less-than condition.

33. What does the pmovmskb instruction do?

34. How many simultaneous additions are performed by the following?

a. addps

b. addpd

35. If you have a pointer to data in RAX and want to force that address to
be aligned on a 16-byte boundary, what instruction would you use?

36. How can you set all the bits in the XMM0 register to 0?

37. How can you set all the bits in the XMM1 register to 1?

38. What directive do you use to insert the content of a source file into the
current source file during assembly?

12
B I T M A N I P U L A T I O N

Manipulating bits in memory is, perhaps, the
feature for which assembly language is most

famous. Even the C programming language,
known for bit manipulation, doesn’t provide as

complete a set of bit-manipulation operations.
This chapter discusses how to manipulate strings of bits in memory

and registers by using x86-64 assembly language. It begins with a review
of the bit-manipulation instructions covered thus far, introduces a few
new instructions, then reviews information on packing and unpacking bit
strings in memory, which is the basis for many bit-manipulation operations.
Finally, this chapter discusses several bit-centric algorithms and their imple-
mentation in assembly language.

 12.1 What Is Bit Data, Anyway?
Bit manipulation refers to working with bit data: data types that consist
of strings of bits that are noncontiguous or not a multiple of 8 bits long.

708 Chapter 12

Generally, such bit objects will not represent numeric integers, although we
will not place this restriction on our bit strings.

A bit string is a contiguous sequence of 1 or more bits. It does not have
to start or end at any special point. For example, a bit string could start in
bit 7 of a byte in memory and continue through to bit 6 of the next byte in
memory. Likewise, a bit string could begin in bit 30 of EAX, consume the
upper 2 bits of EAX, and then continue from bit 0 through bit 17 of EBX.
In memory, the bits must be physically contiguous (that is, the bit numbers
are always increasing except when crossing a byte boundary, and at byte
boundaries the memory address increases by 1 byte). In registers, if a bit
string crosses a register boundary, the application defines the continuation
register, but the bit string always continues in bit 0 of that second register.

A bit run is a sequence of bits with all the same value. A run of zeros is a
bit string that contains all 0s, and a run of ones is a bit string containing all
1s. The first set bit in a bit string is the bit position of the first bit containing
a 1 in a bit string; that is, the first 1 bit following a possible run of zeros. A
similar definition exists for the first clear bit. The last set bit is the last bit posi-
tion in a bit string that contains 1s; the remainder of the string forms an
uninterrupted run of zeros. A similar definition exists for the last clear bit.

A bit set is a collection of bits, not necessarily contiguous, within a larger
data structure. For example, bits 0 to 3, 7, 12, 24, and 31 from a double
word form a set of bits. Normally, we will deal with bit sets that are part of
a container object (the data structure that encapsulates the bit set) no more
than about 32 or 64 bits in size, though this limit is completely artificial. Bit
strings are special cases of bit sets.

A bit offset is the number of bits from a boundary position (usually a
byte boundary) to the specified bit. As noted in Chapter 2, we number the
bits starting from 0 at the boundary location.

A mask is a sequence of bits that we’ll use to manipulate certain bits
in another value. For example, the bit string 0000_1111_0000b, when it’s
used with the and instruction, masks away (clears) all the bits except bits
4 through 7. Likewise, if you use the same value with the or instruction, it
can set bits 4 through 7 in the destination operand. The term mask comes
from the use of these bit strings with the and instruction. In those situations,
the 1 and 0 bits behave like masking tape when you’re painting something;
they pass through certain bits unchanged while masking out (clearing) the
other bits.

Armed with these definitions, we’re ready to start manipulating some bits!

 12.2 Instructions That Manipulate Bits
Bit manipulation generally consists of six activities: setting bits, clearing
bits, inverting bits, testing and comparing bits, extracting bits from a bit
string, and inserting bits into a bit string. The most basic bit-manipulation

Bit Manipulation 709

instructions are the and, or, xor, not, test, and shift and rotate instructions.
The following paragraphs review these instructions, concentrating on how
you could use them to manipulate bits in memory or registers.

12.2.1 The and Instruction
The and instruction provides the ability to replace unwanted bits in a bit
sequence with 0s. This instruction is especially useful for isolating a bit
string or a bit set that is merged with other, unrelated data (or, at least, data
that is not part of the bit string or bit set). For example, suppose that a bit
string consumes bit positions 12 through 24 of the EAX register; we can iso-
late this bit string by setting all other bits in EAX to 0 by using the following
instruction (see Figure 12-1):

and eax, 1111111111111000000000000b

In theory, you could use the or instruction to mask all unwanted bits to
1s rather than 0s, but later comparisons and operations are often easier if
the unneeded bit positions contain 0.

Using a bit mask to isolate bits 12...24 in EAX.

Top: Original value in EAX.
Middle: Bit mask.
Bottom: Final value in EAX.

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X S S S S S S S S S S S S S X X X X X X X X X X X X

0 0 0 0 0 0 0 S S S S S S S S S S S S S 0 0 0 0 0 0 0 0 0 0 0 0

Figure 12-1: Isolating a bit string by using the and instruction

Once you’ve cleared the unneeded bits in a set of bits, you can often oper-
ate on the bit set in place. For example, to see if the string of bits in positions
12 through 24 of EAX contains 12F3h, you could use the following code:

and eax, 1111111111111000000000000b
cmp eax, 1001011110011000000000000b

Here’s another solution, using constant expressions, that’s a little easier
to digest:

and eax, 1111111111111000000000000b
cmp eax, 12F3h shl 12

710 Chapter 12

To make the constants and other values you use in conjunction with
this value easier to deal with, you can use the shr instruction to align the bit
string with bit 0 after you’ve masked it, like this:

and eax, 1111111111111000000000000b
shr eax, 12
cmp eax, 12F3h
 Other operations that require the bit string at bit #0

12.2.2 The or Instruction
The or instruction is especially useful for inserting a bit set into another bit
string, using the following steps:

1. Clear all the bits surrounding your bit set in the source operand.

2. Clear all the bits in the destination operand where you wish to insert
the bit set.

3. OR the bit set and destination operand together.

For example, suppose you have a value in bits 0 to 12 of EAX that you
wish to insert into bits 12 to 24 of EBX without affecting any of the other
bits in EBX. You would begin by stripping out bits 13 and above from EAX;
then you would strip out bits 12 to 24 in EBX. Next, you would shift the bits
in EAX so the bit string occupies bits 12 to 24 of EAX. Finally, you would
OR the value in EAX into EBX (see Figure 12-2), as shown here:

and eax, 1FFFh ; Strip all but bits 0 to 12 from EAX
and ebx, 0FE000FFFh ; Clear bits 12 to 24 in EBX
shl eax, 12 ; Move bits 0 to 12 to 12 to 24 in EAX
or ebx,eax ; Merge the bits into EBX

In Figure 12-2, the desired bits (AAAAAAAAAAAAA) form a bit
string. However, this algorithm still works fine even if you’re manipulating a
noncontiguous set of bits. All you have to do is to create a bit mask that has
1s in the appropriate places.

When you work with bit masks, it is incredibly poor programming style
to use literal numeric constants as in the past few examples. You should
always create symbolic constants in MASM. By combining these with some
constant expressions, you can produce code that is much easier to read
and maintain. The current example code is more properly written as the
following:

StartPosn = 12
BitMask = 1FFFh shl StartPosn ; Mask occupies bits 12 to 24
 .
 .
 .
 shl eax, StartPosn ; Move into position
 and eax, BitMask ; Strip all but bits 12 to 24 from EAX
 and ebx, not BitMask ; Clear bits 12 to 24 in EBX
 or ebx, eax ; Merge the bits into EBX

Bit Manipulation 711

Step 1: Strip the unneeded bits from EAX (the “U” bits).

EBX:

EAX:

X X X X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y X X X X X X X X X X X X

U U U U U U U U U U U U U U U U U U U A A A A A A A A A A A A A

Step 2: Mask out the destination bit field in EBX.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A A A A

X X X X X X X Y Y Y Y Y Y Y Y Y Y Y Y Y X X X X X X X X X X X X
EBX:

EAX:

Step 3: Shift the bits in EAX 12 positions to the left to align them with the desination bit field.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A A A A A A A A A A A A A

X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X X
EBX:

EAX:

Step 4: Merge the value in EAX with the value in EBX.

0 0 0 0 0 0 0 A A A A A A A A A A A A A 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X 0 0 0 0 0 0 0 0 0 0 0 0 0 X X X X X X X X X X X X
EBX:

EAX:

Final result is in EBX.

0 0 0 0 0 0 0 A A A A A A A A A A A A A 0 0 0 0 0 0 0 0 0 0 0 0

X X X X X X X A A A A A A A A A A A A A X X X X X X X X X X X X
EBX:

EAX:

Figure 12-2: Inserting bits 0 to 12 of EAX into bits 12 to 24 of EBX

The use of the compile time not operator to invert the bit mask saves
having to create another constant in the program that has to be changed
anytime you modify the BitMask constant. Having to maintain two separate
symbols whose values are dependent on one another is not a good thing in
a program.

Of course, in addition to merging one bit set with another, the or
instruction is also useful for forcing bits to 1 in a bit string. By setting vari-
ous bits in a source operand to 1, you can force the corresponding bits in
the destination operand to 1 by using the or instruction.

712 Chapter 12

12.2.3 The xor Instruction
The xor instruction allows you to invert selected bits in a bit set. Of course,
if you want to invert all the bits in a destination operand, the not instruction
is more appropriate; however, if you want to invert selected bits while not
affecting others, xor is the way to go.

One interesting fact about xor’s operation is that it lets you manipulate
known data in just about any way imaginable. For example, if you know that
a field contains 1010b, you can force that field to 0 by XORing it with 1010b.
Similarly, you can force it to 1111b by XORing it with 0101b. Although this
might seem like a waste, because you can easily force this 4-bit string to 0
or all 1s by using and/or, the xor instruction has two advantages. First, you
are not limited to forcing the field to all 0s or all 1s; you can actually set
these bits to any of the 16 valid combinations via xor. Second, if you need to
manipulate other bits in the destination operand at the same time, and/or
may not be able to do the job.

For example, suppose you know that one field contains 1010b that you
want to force to 0, and another field in the same operand contains 1000b
and you wish to increment that field by 1 (that is, set the field to 1001b). You
cannot accomplish both operations with a single and or or instruction, but
you can with a single xor instruction; just XOR the first field with 1010b and
the second field with 0001b. Remember, however, that this trick works only if
you know the current value of a bit set within the destination operand.

12.2.4 Flag Modification by Logical Instructions
In addition to setting, clearing, and inverting bits in a destination operand,
the and, or, and xor instructions also affect various condition codes in the
FLAGS register. These instructions do the following:

•	 Always clear the carry and overflow flags.

•	 Set the sign flag if the result has a 1 in the HO bit. They clear it other-
wise; that is, these instructions copy the HO bit of the result into the
sign flag.

•	 Set or clear the zero flag if the result is zero or not zero, respectively.

•	 Set the parity flag if there is an even number of set bits in the LO byte
of the destination operand, and clear the parity flag if there is an odd
number of set bits.

Because these instructions always clear the carry and overflow flags,
you cannot expect the system to preserve the state of these two flags across
the execution of these instructions. A common mistake in many assembly
language programs is the assumption that these instructions do not affect
the carry flag. Many people will execute an instruction that sets or clears the
carry flag; execute an and, or, or xor instruction; and then attempt to test the
state of the carry from the previous instruction. This simply will not work.

One of the more interesting aspects to these instructions is that they
copy the HO bit of their result into the sign flag. Therefore, you can easily

Bit Manipulation 713

test the HO bit by testing the sign flag (using cmovs and cmovns, sets and
setns, or js and jns instructions). For this reason, many assembly language
programmers will place an important Boolean variable in the HO bit of an
operand so they can easily test the state of that variable by using the sign
flag after a logical operation.

12.2.4.1 The Parity Flag

Parity is a simple error-detection scheme originally employed by telegraphs
and other serial communication protocols. The idea was to count the num-
ber of set bits in a character and include an extra bit in the transmission to
indicate whether that character contained an even or odd number of set
bits. The receiving end of the transmission would also count the bits and
verify that the extra parity bit indicated a successful transmission. The pur-
pose of the parity flag is to help compute the value of this extra bit, though
parity-checking has been taken over by hardware.1

The x86-64 and, or, and xor instructions set the parity bit if the LO byte
of their operand contains an even number of set bits. An important fact
bears repeating here: the parity flag reflects only the number of set bits in
the LO byte of the destination operand; it does not include the HO bytes in a
word, double-word, or other-sized operand. The instruction set uses the LO
byte only to compute the parity because communication programs that use
parity are typically character-oriented transmission systems (better error-
checking schemes could be used if you transmit more than 8 bits at a time).

12.2.4.2 The Zero Flag

The zero flag setting is one of the more important results produced by the
and, or, and xor instructions. Indeed, programs reference this flag so often
after the and instruction that Intel added a separate instruction, test, whose
main purpose is to logically AND two results and set the flags without oth-
erwise affecting either instruction operand.

The zero flag has three main uses after the execution of an and or a test
instruction: (1) checking to see if a particular bit in an operand is set, (2)
checking to see if at least one of several bits in a bit set is 1, and (3) check-
ing to see if an operand is 0. Using (1) is actually a special case of (2), in
which the bit set contains only a single bit. We’ll explore each of these uses
in the following paragraphs.

To test whether a particular bit is set in a given operand, use the and
and test instructions for an operand with a constant value containing a
single set bit you wish to test. This clears all the other bits in the operand,
leaving a 0 in the bit position under test if the operand contained a 0 in
that bit position and a 1 if it contained a 1. Because all of the other bits
in the result are 0, the entire result will be 0 if that particular bit is 0; the
entire result will be nonzero if that bit position contains a 1. The x86-64

1. Serial communications chips and other communications hardware that use parity for error
checking normally compute the parity in hardware; you don’t have to use software for this
purpose.

714 Chapter 12

reflects this status in the zero flag (Z = 1 indicates a 0 bit; Z = 0 indicates a
1 bit). The following instruction sequence demonstrates how to test if bit
4 is set in EAX:

 test eax, 10000b ; Check bit #4 to see if it is 0 or 1
 jnz bitIsSet

 Do this if the bit is clear
 .
 .
 .
bitIsSet: ; Branch here if the bit is set

You can also use the and and test instructions to see if any one of several
bits is set. Simply supply a constant that has a 1 in all the positions you want
to test (and 0s everywhere else). ANDing an operand with such a constant
will produce a nonzero value if one or more of the bits in the operand
under test contain a 1. The following example tests whether the value in
EAX contains a 1 in bit positions 1, 2, 4, and 7:

 test eax, 10010110b
 jz noBitsSet

 Do whatever needs to be done if one of the bits is set

noBitsSet:

You cannot use a single and or test instruction to see if all the corre-
sponding bits in the bit set are equal to 1. To accomplish this, you must first
mask out the bits that are not in the set and then compare the result against
the mask itself. If the result is equal to the mask, all the bits in the bit set
contain 1s. You must use the and instruction for this operation because the
test instruction does not modify the result. The following example checks
whether all the bits in a bit set (bitMask) are equal to 1:

 and eax, bitMask
 cmp eax, bitMask
 jne allBitsArentSet

; All the bit positions in EAX corresponding to the set
; bits in bitMask are equal to 1 if we get here.

 Do whatever needs to be done if the bits match

allBitsArentSet:

Of course, once we stick the cmp instruction in there, we don’t really
have to check whether all the bits in the bit set contain 1s. We can check for
any combination of values by specifying the appropriate value as the oper-
and to the cmp instruction.

Note that the test and and instructions will set the zero flag in the
preceding code sequences only if all the bits in EAX (or other destination

Bit Manipulation 715

operand) have 0s in the positions where 1s appear in the constant operand.
This suggests another way to check for all 1s in the bit set: invert the value
in EAX prior to using the and or test instruction. Then if the zero flag is set,
you know that there were all 1s in the (original) bit set. For example:

not eax
test eax, bitMask
jnz NotAllOnes

; At this point, EAX contained all 1s in the bit positions
; occupied by 1s in the bitMask constant.

 Do whatever needs to be done at this point

NotAllOnes:

The previous paragraphs all suggest that the bitMask (the source oper-
and) is a constant, but you can use a variable or other register too. Simply
load that variable or register with the appropriate bit mask before you exe-
cute the test, and, or cmp instructions in the preceding examples.

12.2.5 The Bit Test Instructions
Another set of instructions we’ve already seen that we can use to manipu-
late bits is the bit test instructions. These instructions include bt (bit test), bts
(bit test and set), btc (bit test and complement), and btr (bit test and reset). The btx
instructions use the following syntax:

btx bits_to_test, bit_number
btx reg16, reg16
btx reg32, reg32
btx reg64, reg64
btx reg16, constant
btx reg32, constant
btx reg64, constant
btx mem16, reg16
btx mem32, reg32
btx mem64, reg64
btx mem16, constant
btx mem32, constant
btx mem64, constant

where x is nothing, c, s, or r.
The btx instructions’ second operand is a bit number that specifies

which bit to check in the first operand. If the first operand is a register, the
second operand must contain a value between 0 and the size of the register
(in bits) minus 1; because the x86-64’s largest (general-purpose) registers
are 64 bits, this value has the maximum value of 63 (for 64-bit registers). If
the first operand is a memory location, the bit count is not limited to values
in the range 0 to 63. If the second operand is a constant, it can be any 8-bit
value in the range 0 to 255. If the second operand is a register, it has no
(practical) limitation and, in fact, it allows negative bit offsets.

716 Chapter 12

The bt instruction copies the specified bit from the second operand
into the carry flag. For example, the bt eax, 8 instruction copies bit 8 of
the EAX register into the carry flag. You can test the carry flag after this
instruction to determine whether bit 8 was set or clear in EAX.

The bts, btc, and btr instructions manipulate the bit they test while they
are testing it. These instructions may be slow (depending on the processor
you’re using), and you should avoid them if performance is your primary
concern, particularly if you’re using an older CPU. If performance (versus
convenience) is an issue, you should always try two different algorithms—
one that uses these instructions, and one that uses and and or instructions—
and measure the performance difference; then choose the best of the two
approaches.

12.2.6 Manipulating Bits with Shift and Rotate Instructions
The shift and rotate instructions are another group of instructions you can
use to manipulate and test bits. These instructions move the HO (left shift
and rotate) or LO (right shift and rotate) bits into the carry flag. Therefore,
you can test the carry flag after you execute one of these instructions to
determine the original setting of the operand’s HO or LO bit; for example:

shr al, 1
jc LOBitWasSet

The nice thing about the shift and rotate instructions is that they auto-
matically move bits up or down in their operand so the next bit to test is in
place; this is especially useful when operating within a loop.

The shift and rotate instructions are invaluable for aligning bit strings
and packing and unpacking data. Chapter 2 has several examples of
this, and some earlier examples in this chapter also use the shift instruc-
tions for this purpose.

 12.3 The Carry Flag as a Bit Accumulator
The btx, shift, and rotate instructions set or clear the carry flag depending
on the operation and selected bit. Because these instructions place their
“bit result” in the carry flag, it is often convenient to think of the carry flag
as a 1-bit register or accumulator for bit operations. In this section, we will
explore some of the operations possible with this bit result in the carry flag.

Instructions that use the carry flag as some sort of input value are use-
ful for manipulating bit results in the carry flag. For example:

•	 adc, sbb

•	 rcl, rcr

•	 cmc, clc, and stc

•	 cmovc, cmovnc

•	 jc, jnc

•	 setc, setnc

Bit Manipulation 717

The adc and sbb instructions add or subtract their operands along
with the carry flag, so if you’ve computed a bit result into the carry flag,
you can figure that result into an addition or a subtraction by using these
instructions.

To save a carry flag result, you can use the rotate-through-carry instruc-
tions (rcl and rcr), which move the carry flag into the LO or HO bits of
their destination operand. These instructions are useful for packing a set of
bit results into a byte, word, or double-word value.

The cmc (complement carry) instruction lets you easily invert the result of
a bit operation. You can also use the clc and stc instructions to initialize the
carry flag prior to a string of bit operations involving the carry flag.

Instructions that test the carry flag, like jc, jnc, cmovc, cmovnc, setc, and
setnc, are useful after a calculation that leaves a bit result in the carry flag.

If you have a sequence of bit calculations and would like to test whether
those calculations produce a specific set of 1-bit results, you can clear a
register or memory location and use the rcl or rcr instruction to shift each
result into that location. Once the bit operations are complete, compare the
register or memory location, holding the result against a constant value. If
you want to test a sequence of results involving ANDs and ORs, you could
use the setc and setnc instruction to set a register to 0 or 1 and then use the
and and or instructions to merge the results.

 12.4 Packing and Unpacking Bit Strings
A common bit operation is inserting a bit string into an operand or extract-
ing a bit string from an operand. Chapter 2 provided simple examples of
packing and unpacking such data; now it is time to formally describe how
to do this.

For our purposes, I will assume that we’re dealing with bit strings that fit
within a byte, word, double-word, or quad-word operand. Large bit strings
that cross object boundaries require additional processing; we’ll discuss bit
strings that cross quad-word boundaries later in this section.

When packing and unpacking a bit string, we must consider its starting
bit position and length. The starting bit position is the bit number of the LO
bit of the string in the larger operand. The length is the number of bits in
the operand.

To insert (pack) data into a destination operand, you start with a bit
string of the appropriate length that is right-justified (starts in bit position 0)
and zero-extended to 8, 16, 32, or 64 bits; then insert this data at the appro-
priate starting position in another operand that is 8, 16, 32, or 64 bits wide.
There is no guarantee that the destination bit positions contain any particu-
lar value.

The first two steps (which can occur in any order) are to clear out the
corresponding bits in the destination operand and to shift (a copy of) the
bit string so that the LO bit begins at the appropriate bit position. The third
step is to OR the shifted result with the destination operand. This inserts the
bit string into the destination operand (see Figure 12-3).

718 Chapter 12

Step 1: Insert YYYY into the positions occupied by DDDD in the destination operand.
Begin by shifting the source operand to the left five bits.

Destination:

Source:

X X X X X X X D D D D X X X X X

0 0 0 0 0 0 0 0 0 0 0 0 Y Y Y Y

Step 2: Clear out the destination bits using the and instruction.

Destination:

Source:

X X X X X X X D D D D X X X X X

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

Step 3: OR the two values together.

Destination:

Source:

X X X X X X X 0 0 0 0 X X X X X

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

Final result appears in the destination operand.

Destination:

Source:

X X X X X X X Y Y Y Y X X X X X

0 0 0 0 0 0 0 Y Y Y Y 0 0 0 0 0

Figure 12-3: Inserting a bit string into a destination operand

 The following three instructions insert a bit string of known length into
a destination operand, as shown in Figure 12-3. These instructions assume
that the source operand is in BX and the destination operand is in AX:

shl bx, 5
and ax, 1111111000011111b
or ax, bx

If the length and the starting position aren’t known when you’re writ-
ing the program (that is, you have to calculate them at runtime), then you
can use a lookup table to insert a bit string. Let’s assume that we have two
8-bit values: a starting bit position for the field we’re inserting and a non-
zero 8-bit length value. Also assume that the source operand is in EBX and
the destination operand is in EAX. The mergeBits procedure in Listing 12-1
demonstrates how to do this.

Bit Manipulation 719

; Listing 12-1

; Demonstrate inserting bit strings into a register.

; Note that this program must be assembled and linked
; with the "LARGEADDRESSAWARE:NO" option.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 12-1", 0

; The index into the following table specifies the length
; of the bit string at each position. There are 65 entries
; in this table (one for each bit length from 0 to 64).

 .const
MaskByLen equ this qword
 qword 0
 qword 1, 3, 7, 0fh
 qword 1fh, 3fh, 7fh, 0ffh
 qword 1ffh, 3ffh, 7ffh, 0fffh
 qword 1fffh, 3fffh, 7fffh, 0ffffh
 qword 1ffffh, 3ffffh, 7ffffh, 0fffffh
 qword 1fffffh, 3fffffh, 7fffffh, 0ffffffh
 qword 1ffffffh, 3ffffffh, 7ffffffh, 0fffffffh
 qword 1fffffffh, 3fffffffh, 7fffffffh, 0ffffffffh

 qword 1ffffffffh, 03ffffffffh
 qword 7ffffffffh, 0fffffffffh

 qword 1fffffffffh, 03fffffffffh
 qword 7fffffffffh, 0ffffffffffh

 qword 1ffffffffffh, 03ffffffffffh
 qword 7ffffffffffh, 0fffffffffffh

 qword 1fffffffffffh, 03fffffffffffh
 qword 7fffffffffffh, 0ffffffffffffh

 qword 1ffffffffffffh, 03ffffffffffffh
 qword 7ffffffffffffh, 0fffffffffffffh

 qword 1fffffffffffffh, 03fffffffffffffh
 qword 7fffffffffffffh, 0ffffffffffffffh

 qword 1ffffffffffffffh, 03ffffffffffffffh
 qword 7ffffffffffffffh, 0fffffffffffffffh

 qword 1fffffffffffffffh, 03fffffffffffffffh
 qword 7fffffffffffffffh, 0ffffffffffffffffh

720 Chapter 12

Val2Merge qword 12h, 1eh, 5555h, 1200h, 120h
LenInBits byte 5, 9, 16, 16, 12
StartPosn byte 7, 4, 4, 12, 18

MergeInto qword 0ffffffffh, 0, 12345678h
 qword 11111111h, 0f0f0f0fh

 include getTitle.inc
 include print.inc

 .code

; mergeBits(Val2Merge, MergeWith, Start, Length):
; Length (LenInBits[i]) value is passed in DL.
; Start (StartPosn[i]) is passed in CL.
; Val2Merge (Val2Merge[i]) and MergeWith (MergeInto[i])
; are passed in RBX and RAX.

; mergeBits result is returned in RAX.

mergeBits proc
 push rbx
 push rcx
 push rdx
 push r8
 movzx edx, dl ; Zero-extends to RDX
 mov rdx, MaskByLen[rdx * 8]
 shl rdx, cl
 not rdx
 shl rbx, cl
 and rax, rdx
 or rax, rbx
 pop r8
 pop rdx
 pop rcx
 pop rbx
 ret
mergeBits endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

; The following loop calls mergeBits as
; follows:

; mergeBits(Val2Merge[i], MergeInto[i],
; StartPosn[i], LenInBits[i]);

Bit Manipulation 721

; Where "i" runs from 4 down to 0.

; Index of the last element in the arrays:

 mov r10, (sizeof LenInBits) - 1
testLoop:

; Fetch the Val2Merge element and write
; its value to the display while it is handy.

 mov rdx, Val2Merge[r10 * 8]
 call print
 byte "merge(%x, ", 0
 mov rbx, rdx

; Fetch the MergeInto element and write
; its value to the display.

 mov rdx, MergeInto[r10 * 8]
 call print
 byte "%x, ", 0
 mov rax, rdx

; Fetch the StartPosn element and write
; its value to the display.

 movzx edx, StartPosn[r10 * 1] ; Zero-extends to RDX
 call print
 byte "%d, ", 0
 mov rcx, rdx

; Fetch the LenInBits element and write
; its value to the display.

 movzx edx, LenInBits[r10 * 1] ; Zero-extends to RDX
 call print
 byte "%d) = ", 0

; Call mergeBits(Val2Merge, MergeInto,
; StartPosn, LenInBits)

 call mergeBits

; Display the function result (returned
; in RAX). For this program, the results
; are always 32 bits, so it prints only
; the LO 32 bits of RAX:

 mov edx, eax
 call print
 byte "%x", nl, 0

; Repeat for each element of the array.

 dec r10

722 Chapter 12

 jns testLoop

allDone: leave
 pop rdi
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 12-1: Inserting bits where the bit string length and starting position are variables

Here’s the build command and output for the program in Listing 12-1.
Because this program accesses arrays directly (rather than loading their
addresses into registers, which obfuscates the code), this program must
be built with the LARGEADDRESSAWARE:NO flag, hence the use of the sbuild.bat
batch file (see the description of sbuild.bat in “Large Address Unaware
Applications” in Chapter 3):

C:\>sbuild listing12-1

C:\>echo off
 Assembling: listing12-1.asm
c.cpp

C:\>listing12-1
Calling Listing 12-1:
merge(120, f0f0f0f, 18, 12) = 4830f0f
merge(1200, 11111111, 12, 16) = 11200111
merge(5555, 12345678, 4, 16) = 12355558
merge(1e, 0, 4, 9) = 1e0
merge(12, ffffffff, 7, 5) = fffff97f
Listing 12-1 terminated

Each entry in the MaskByLen table (in Listing 12-1) contains the number
of 1 bits specified by the index into the table. Using the mergeBits Length
parameter value as an index into this table fetches a value that has as many
1 bits as the Length value. The mergeBits function fetches an appropriate
mask, shifts it to the left so that the LO bit of this run of 1s matches the
starting position of the field into which we want to insert the data, and then
inverts the mask and uses the inverted value to clear the appropriate bits in
the destination operand.

To extract a bit string from a larger operand, all you have to do is mask
out the unwanted bits and then shift the result until the LO bit of the bit
string is in bit 0 of the destination operand. For example, to extract the
4-bit field starting at bit position 5 in EBX and leave the result in EAX, you
could use the following code:

mov eax, ebx ; Copy data to destination
and eax, 111100000b ; Strip unwanted bits
shr eax, 5 ; Right-justify to bit position 0

Bit Manipulation 723

If you do not know the bit string’s length and starting position when
you’re writing the program, you can still extract the desired bit string. The
code is similar to insertion (though a little simpler). Assuming you have the
Length and Start values we used when inserting a bit string, you can extract
the corresponding bit string by using the following code (assuming source
= EBX and dest = EAX):

movzx edx, Length
lea r8, MaskByLen ; Table from Listing 12-1
mov rdx, [r8][rdx * 8]
mov cl, StartingPosition
mov rax, rbx
shr rax, cl
and rax, rdx

The examples up to this point all assume that the bit string appears
completely within a quad-word (or smaller) object. This will always be the
case if the bit string is less than or equal to 64 bits in length. However, if the
length of the bit string plus its starting position (modulo 8) within an object
is greater than 64, the bit string will cross a quad-word boundary within the
object.

Extracting such bit strings requires up to three operations: one opera-
tion to extract the start of the bit string (up to the first quad-word boundary),
an operation that copies whole quad words (assuming the bit string is so long
that it consumes several quad words), and a final operation that copies leftover
bits in the last quad word at the end of the bit string. The actual implementa-
tion of this operation is left as an exercise for you.

 12.5 BMI1 Instructions to Extract Bits and Create Bit Masks
If your CPU supports the BMI1 (bit manipulation instructions, set 1) instruc-
tion set extensions,2 you can use the bextr (bit extraction) instruction to
extract bits from a 32- or 64-bit general-purpose register. This instruction
has the following syntax:

bextr regdest, regsrc, regctrl
bextr regdest, memsrc, regctrl

The operands must all be the same size and must be 32- or 64-bit regis-
ters (or memory locations).

The bextr instruction encodes two parameters into regctrl:

•	 Bits 0 to 7 of regctrl specify a starting bit position in the source operand
(this must be a value in the range 0 to 31 for 32-bit operands and 0 to
63 for 64-bit operands).

•	 Bits 8 to 15 of regctrl specify the number of bits to extract from the
source operand.

2. See Listing 11-2 in Chapter 11 to see how to check for the presence of the BMI1 and BMI2
instruction set extensions.

724 Chapter 12

The bextr instruction will extract the specified bits from regsrc or memsrc
and store those bits (shifted down to bit 0) in regdest. As a general rule, you
should attempt to use RAX and EAX, RBX and EBX, RCX and ECX, or
RDX and EDX as the ctrl register because you can easily manipulate the
starting and length values by using the AH and AL, BH and BL, CH and
CL, and DH and DL 8-bit registers. Listing 12-2 provides a quick demon-
stration of the bextr instruction.3

; Listing 12-2

; Demonstrate extracting bit strings from a register.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 12-2", 0

 include getTitle.inc
 include print.inc

; Here is the "asmMain" function.

 .code
 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

; >>>> Unique code for various listings:

 mov rax, 123456788abcdefh
 mov bl, 4
 mov bh, 16

 bextr rdx, rax, rbx

 call print
 byte "Extracted bits: %x", nl, 0

; <<<< End of unique code.

allDone: leave
 pop rdi
 pop rsi

3. This listing contains some common code that other listings in this chapter will share. The
code unique to this listing appears between the ; >>>> and ; <<<< comments.

Bit Manipulation 725

 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 12-2: bextr instruction example

Listing 12-2 produces the following output:

C:\>build listing12-2

C:\>echo off
 Assembling: listing12-2.asm
c.cpp

C:\>listing12-2
Calling Listing 12-2:
Extracted bits: bcde
Listing 12-2 terminated

The BMI1 instruction set extension also includes an instruction that
extracts the lowest-numbered set bit in a register: blsi (extract lowest set iso-
lated bit). The syntax for this instruction is as follows:

blsi regdest, regsrc
blsi regdest, memsrc

The operands must be the same size and can be either 32 or 64 bits.
This instruction locates the lowest set bit in the source operand (register
or memory). It copies that bit to the destination register and zeroes out
all other bits in the destination. If the source value is 0, blsi copies 0 to
the destination register and sets the zero and carry flags. Listing 12-3 is
a simple demonstration of this instruction (note that I’ve eliminated the
common code from Listing 12-2).

; >>>> Unique code for various listings.

mov r8, 12340000h
blsi edx, r8

call print
byte "Extracted bit: %x", nl, 0

; <<<< End of unique code.

Listing 12-3: Simple demonstration of the blsi instruction

Inserting this into a shell sample program and running it produces the
following output:

Extracted bit: 40000

726 Chapter 12

The BMI1 andn instruction is useful in conjunction with blsi. The andn
(and not) instruction has the following generic syntax:

andn regdest, regsrc1, regsrc2
andn regdest, regsrc1, memsrc2

The operands must all be the same size and must be 32 or 64 bits. This
instruction logically ANDs an inverted copy of the value in regsrc1 with the
third operand (the src2 operand) and stores the result into the regdest operand.

You can use the andn instruction immediately after a blsi instruction to
remove the lowest-numbered bit from blsi’s source operand after extract-
ing it. Listing 12-4 demonstrates this operation (as usual, omitting the
common code).

; >>>> Unique code for various listings.

mov r8, 12340000h
blsi edx, r8
andn r8, rdx, r8

; Output value 1 is in RDX (extracted bit),
; output value 2 in R8 (value with deleted bit).

call print
byte "Extracted bit: %x, result: %x", nl, 0

; <<<< End of unique code.

Listing 12-4: Extracting and removing the lowest set bit in an operand

Running this code produces the following output:

Extracted bit: 40000, result: 12300000

Extracting the LO bit and keeping the remaining bits (as was done with
the blsi and andn instructions in Listing 12-4) are such a common operation
that Intel created an instruction to specifically handle this task: blsr (reset
lowest set bit). Here’s its generic syntax:

blsr regdest, regsrc
blsr regdest, memsrc

Both operands must be the same size and must be either 32 or 64 bits.
This instruction gets the data from the source operand, sets the lowest-
numbered set bit to 0, and copies the result to the destination register. If
the source operand contains 0, this instruction copies 0 to the destination
and sets the carry flag.

Listing 12-5 demonstrates the usage of this instruction.

; >>>> Unique code for various listings.

mov r8, 12340000h
blsr edx, r8

Bit Manipulation 727

; Output value 1 is in RDX (extracted bit), resulting value.

call print
byte "Value with extracted bit: %x", nl, 0

; <<<< End of unique code.

Listing 12-5: blsr instruction example

Here’s the output from this code fragment (after inserting it into a test
program shell):

Value with extracted bit: 12300000

Another useful BMI1 instruction is blsmsk. This instruction creates
a bit mask by searching for the lowest-numbered set bit. Then it creates a
bit mask consisting of all 1 bits up to and including the lowest set bit. The
blsmsk instruction sets the remaining bits to 0. If the original value was 0,
blsmsk sets all the bits in the destination register to 1 and sets the carry flag.
Here’s the generic syntax for blsmsk:

blsmsk regdest, regsrc
blsmsk regdest, memsrc

Listing 12-6 is a sample code fragment and the output it will produce.

; >>>> Unique code for various listings.

mov r8, 12340000h
blsmsk edx, r8

; Output value 1 is in RDX (mask).

call print
byte "Mask: %x", nl, 0

; <<<< End of unique code.

Listing 12-6: blsmsk example

Here is the sample output:

Mask: 7ffff

Especially note that the mask the blsmsk instruction produces includes
a 1 bit in the bit position holding the lowest-numbered set bit in the source
file. Often, you will actually want a bit mask containing 1 bits up to, but not
including, the lowest-numbered set bit. This is easy to achieve using the blsi
and dec instructions, as shown in Listing 12-7.

; >>>> Unique code for various listings.

mov r8, 12340000h
blsi rdx, r8
dec rdx

728 Chapter 12

; Output value 1 is in RDX (mask).

call print
byte "Mask: %x", nl, 0

; <<<< End of unique code.

Listing 12-7: Creating a bit mask that doesn’t include the lowest-numbered set bit

Here’s the output:

Mask: 3ffff

The last of the BMI1 instructions is tzcnt (trailing zero count). This
instruction has the following generic syntax:

tzcnt regdest, regsrc
tzcnt regdest, memsrc

As usual, the operands must both be the same size. The tzcnt instruc-
tion is unique among the BMI1 instructions insofar as it allows 16-, 32-, and
64-bit operands.

The tzcnt instruction counts the number of LO 0 bits in the source
(starting at the LO bit and working up toward the HO bit). It stores the 0 bit
count into the destination register. Conveniently, the count of 0 bits is also
the bit index of the first set bit in the source operand. This instruction sets
the carry flag if the source operand is 0 (in which case it also sets the desti-
nation register to the size of the operands).

To search for and extract 0 bits with bextr, blsi, blsr, and blsmsk, invert
the source operand before executing these instructions. Likewise, to count
the number of trailing set bits with tzcnt, first invert the source operand.4

If you use bextr, blsi, blsr, blsmsk, tzcnt, or andn in your program, don’t
forget to test for the presence of the BMI1 instruction set extensions. Not
all x86-64 CPUs support these instructions.

 12.6 Coalescing Bit Sets and Distributing Bit Strings
Inserting and extracting bit sets are only a little different from inserting
and extracting bit strings if the shape of the bit set you’re inserting (or
resulting bit set you’re extracting) is the same as the shape of the bit set in
the main object. The shape of a bit set is the distribution of the bits in the
set, ignoring the starting bit position of the set. A bit set that includes bits 0,
4, 5, 6, and 7 has the same shape as that of a bit set that includes bits 12, 16,
17, 18, and 19 because the distribution of the bits is the same.

The code to insert or extract this bit set is nearly identical to that of
the previous section; the only difference is the mask value you use. For

4. Certain AMD processors include instructions for these operations. See the AMD literature
for more details.

Bit Manipulation 729

example, to insert this bit set starting at bit 0 in EAX into the correspond-
ing bit set starting at position 12 in EBX, you could use the following code:

and ebx, not 11110001000000000000b ; Mask out destination bits
shl eax, 12 ; Move source bits into position
or ebx, eax ; Merge the bit set into EBX

However, suppose you have 5 bits in bit positions 0 through 4 in EAX
and want to merge them into bits 12, 16, 17, 18, and 19 in EBX. Somehow
you have to distribute the bits in EAX prior to logically ORing the values
into EBX. Given that this particular bit set is made of two runs of 1 bits, the
process is somewhat simplified. The following code distributes the bits in a
sneaky fashion:

and ebx, not 11110001000000000000b
and eax, 11110001000000000000b ; Mask out destination bits
shl eax, 2 ; Spread out bits: 1 to 4 goes to 3 to 6 and 0 goes to 2
btr eax, 2 ; Bit 2 -> carry and then clear bit 2
rcl eax, 13 ; Shift in carry and put bits into final position
or ebx, eax ; Merge the bit set into EBX

This trick with the btr (bit test and reset) instruction worked well because we
had only 1 bit out of place in the original source operand. Alas, had the bits
all been in the wrong location relative to one another, this scheme wouldn’t be
an efficient solution. We’ll see a more general solution in just a moment.

Extracting this bit set and collecting (coalescing) the bits into a bit string
is not quite as easy. However, we still have some sneaky tricks we can pull.
Consider the following code that extracts the bit set from EBX and places
the result into bits 0 to 4 of EAX:

mov eax, ebx
and eax, 11110001000000000000b ; Strip unwanted bits
shr eax, 5 ; Put bit 12 into bit 7, and so on
shr ah, 3 ; Move bits 11 to 14 to 8 to 11
shr eax, 7 ; Move down to bit 0

This code moves (original) bit 12 into bit position 7, the HO bit of AL. At
the same time, it moves bits 16 to 19 down to bits 11 to 14 (bits 3 to 6 of AH).
Then the code shifts bits 3 to 6 in AH down to bit 0. This positions the HO
bits of the bit set so that they are adjacent to the bit remaining in AL. Finally,
the code shifts all the bits down to bit 0. Again, this is not a general solution,
but it shows a clever way to attack this problem if you think about it carefully.

The preceding coalescence and distribution algorithms apply only to
their specific bit sets. A generalized solution (perhaps one that lets you
specify a mask, then distributes or coalesces the bits accordingly) is going to
be a bit more difficult. The following code demonstrates how to distribute
the bits in a bit string according to the values in a bit mask:

; EAX - Originally contains a value into which we
; insert bits from EBX.
; EBX - LO bits contain the values to insert into EAX.

730 Chapter 12

; EDX - Bitmap with 1s indicating the bit positions in
; EAX to insert.
; CL - Scratchpad register.

 mov cl, 32 ; Count number of bits we rotate
 jmp DistLoop

CopyToEAX:
 rcr ebx, 1 ; Don't use SHR, must preserve Z-flag
 rcr eax, 1
 jz Done
DistLoop: dec cl
 shr edx, 1
 jc CopyToEAX
 ror eax, 1 ; Keep current bit in EAX
 jnz DistLoop

Done: ror eax, cl ; Reposition remaining bits

If we load EDX with 11001001b, this code will copy bits 0 to 3 to bits 0,
3, 6, and 7 in EAX. Notice the short-circuit test that checks whether we’ve
exhausted the values in EDX (by checking for a 0 in EDX). The rotate
instructions do not affect the zero flag, but the shift instructions do. Hence,
the preceding shr instruction will set the zero flag when there are no more
bits to distribute (when EDX becomes 0).

The general algorithm for coalescing bits is a tad more efficient than
general distribution. Here’s the code that will extract bits from EBX via the
bit mask in EDX and leave the result in EAX:

; EAX - Destination register.
; EBX - Source register.
; EDX - Bitmap with 1s representing bits to copy to EAX.
; EBX and EDX are not preserved.

 xor eax, eax ; Clear destination register
 jmp ShiftLoop

ShiftInEAX:
 rcl ebx, 1 ; EBX to EAX
 rcl eax, 1
ShiftLoop:
 shl edx, 1 ; Check to see if we need to copy a bit
 jc ShiftInEAX ; If carry set, go copy the bit
 rcl ebx, 1 ; Current bit is uninteresting, skip it
 jnz ShiftLoop ; Repeat as long as there are bits in EDX

This sequence also takes advantage of a sneaky trait of the shift and
rotate instructions: the shift instructions affect the zero flag, whereas the
rotate instructions do not. Therefore, the shl edx, 1 instruction sets the
zero flag when EDX becomes 0 (after the shift). If the carry flag was also
set, the code will make one additional pass through the loop in order to
shift a bit into EAX, but the next time the code shifts EDX 1 bit to the left,

Bit Manipulation 731

EDX is still 0 and so the carry will be clear. On this iteration, the code falls
out of the loop.

Another way to coalesce bits is via table lookup. By grabbing a byte of
data at a time (so your tables don’t get too large), you can use that byte’s
value as an index into a lookup table that coalesces all the bits down to
bit 0. Finally, you can merge the bits at the low end of each byte together.
This might produce a more efficient coalescing algorithm in certain cases.
The implementation is left to you.

 12.7 Coalescing and Distributing Bit Strings Using BMI2
Instructions
Intel’s BMI2 (bit manipulation instructions, set 2)5 instruction set extensions
include a handy set of instructions you can use to insert or extract arbitrary bit
sets: pdep (parallel bits deposit) and pext (parallel bits extract). If these instructions
are available on your CPU, they can handle many of the tasks presented with
non-BMI instructions in this chapter. They are powerful instructions indeed.

These instructions have the following syntax:

pdep regdest, regsrc, regmask
pdep regdest, regsrc, memmask
pext regdest, regsrc, regmask
pext regdest, regsrc, memmask

All operands must be the same size and must be 32 or 64 bits.
The pext instruction extracts an arbitrary bit string from the source

(second) register and coalesces those bits to contiguous bit locations starting
at bit 0 in the destination register. The third operand, the mask, controls
which bits pext extracts from the source.

The mask operand contains 1 bits in the bit positions that pext will
extract from the source register. Figure 12-4 shows how this bit mask works.
For each 1 bit in the mask operand, the pext instruction copies the corre-
sponding bit in the source register to the next available bit position (starting
from bit 0) in the destination register.

0101001

...

1100000

regsrc

reg/memmask

regdest

Figure 12-4: Bit mask for pext instruction

5. See Listing 11-2 in Chapter 11 to see how to check for the presence of the BMI1 and BMI2
instruction set extensions.

732 Chapter 12

Listing 12-8 is a sample program fragment and the output it produces
demonstrating the pext instruction (as usual, this listing eliminates the
common code).

; >>>> Unique code for various listings.

mov r8d, 12340000h
mov r9d, 0F0f000Fh
pext edx, r8d, r9d

; Output value 1 is in RDX (mask).

call print
byte "Extracted: %x", nl, 0

; <<<< End of unique code.
--
Extracted: 240

Listing 12-8: pext instruction example

The pdep instruction does the converse of pext. It takes the contiguous
set of bits starting with the LO bit of the source register operand and dis-
tributes those bits throughout the destination register by using the 1 bits in
the mask operand to determine placement, as shown in Figure 12-5. The
pdep instruction sets all other bits in the destination register to 0.

01010011

...

100000

regdest

reg/memmask

regsrc

Figure 12-5: pdep instruction operation

Listing 12-9 is an example of the pdep instruction and the output it
produces.

mov r8d, 1234h
mov r9d, 0F0FF00Fh
pdep edx, r8d, r9d

; Output value 1 is in RDX (mask).

call print
byte "Distributed: %x", nl, 0
--
Distributed: 1023004

Listing 12-9: pdep instruction example

Bit Manipulation 733

If you use the pdep or pext instructions in your program, don’t forget to
test for the presence of the BMI2 instruction set extensions. Not all x86-64
CPUs support these instructions. See Listing 11-2 in Chapter 11 to see how
to check for the presence of the BMI2 instruction set extensions.

 12.8 Packed Arrays of Bit Strings
Though far less efficient, it is quite possible to create arrays of elements
whose size is not a multiple of 8 bits. The drawback is that calculating the
“address” of an array element and manipulating that array element involves
a lot of extra work. In this section, we’ll take a look at a few examples of
packing and unpacking array elements in an array whose elements are an
arbitrary number of bits long.

Why would you want arrays of bit objects? The answer is simple: space. If an
object consumes only 3 bits, you can get 2.67 times as many elements into the
same space if you pack the data rather than allocating a whole byte for each
object. For very large arrays, this can be a substantial savings. Of course, the
cost of this space savings is speed: you have to execute extra instructions to
pack and unpack the data, thus slowing down access to the data.

The calculation for locating the bit offset of an array element in a large
block of bits is almost identical to the standard array access:

element_address_in_bits =
 base_address_in_bits + index * element_size_in_bits

Once you calculate the element’s address in bits, you need to convert
it to a byte address (because we have to use byte addresses when accessing
memory) and extract the specified element. Because the base address of an
array element (almost) always starts on a byte boundary, we can use the fol-
lowing equations to simplify this task:

byte_of_1st_bit =
 base_address + (index * element_size_in_bits) / 8

offset_to_1st_bit =
 (index * element_size_in_bits) % 8

For example, suppose we have an array of 200 three-bit objects that we
declare as follows:

 .data
AO3Bobjects byte (200 * 3)/8 + 2 dup (?) ; "+2" handles truncation

The constant expression in the preceding dimension reserves space for
enough bytes to hold 600 bits (200 elements, each 3 bits long). As the com-
ment notes, the expression adds 2 extra bytes at the end to ensure we don’t
lose any odd bits6 as well as to allow us to access 1 byte beyond the end of
the array (when storing data to the array).

6. That won’t happen in this example because 600 is evenly divisible by 8, but in general you
can’t count on this; 2 extra bytes usually won’t hurt things.

734 Chapter 12

Now suppose you want to access the ith 3-bit element of this array. You
can extract these bits by using the following code:

; Extract the ith group of 3 bits in AO3Bobjects
; and leave this value in EAX.

xor ecx, ecx ; Put i / 8 remainder here
mov eax, i ; Get the index into the array
lea rax, [rax + rax * 2] ; RAX := RAX * 3 (3 bits/element)
shrd rcx, rax, 3 ; RAX / 8 -> RAX and RAX mod 8 -> RCX
 ; (HO bits)
shr rax, 3 ; Remember, shrd doesn't modify EAX
rol rcx, 3 ; Put remainder into LO 3 bits of RCX

; Okay, fetch the word containing the 3 bits we want to
; extract. We have to fetch a word because the last bit or two
; could wind up crossing the byte boundary (that is, bit offset 6
; and 7 in the byte).

lea r8, AO3Bobjects
mov ax, [r8][rax * 1]
shr ax, cl ; Move bits down to bit 0
and eax, 111b ; Remove the other bits (incl HO RAX)

Inserting an element into the array is a bit more difficult. In addition
to computing the base address and bit offset of the array element, you also
have to create a mask to clear out the bits in the destination where you’re
going to insert the new data. Listing 12-10 inserts the LO 3 bits of EAX into
the ith element of the AO3Bobjects array.

; Listing 12-10

; Creating a bit mask with blsi and dec.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 12-10", 0

Masks equ this word
 word not 0111b, not 00111000b
 word not 000111000000b, not 1110b
 word not 01110000b, not 001110000000b
 word not 00011100b, not 11100000b

 .data
i dword 5
AO3Bobjects byte (200*3)/8 + 2 dup (?) ; "+2" handles truncation

Bit Manipulation 735

 include getTitle.inc
 include print.inc

 .code

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

 mov eax, 7 ; Value to store

 mov ebx, i ; Get the index into the array
 mov ecx, ebx ; Use LO 3 bits as index
 and ecx, 111b ; into Masks table
 lea r8, Masks
 mov dx, [r8][rcx * 2] ; Get bit mask

; Convert index into the array into a bit index.
; To do this, multiply the index by 3:

 lea rbx, [rbx + rbx * 2]

; Divide by 8 to get the byte index into EBX
; and the bit index (the remainder) into ECX:

 shrd ecx, ebx, 3
 shr ebx, 3
 rol ecx, 3

; Grab the bits and clear those we're inserting.

 lea r8, AO3Bobjects
 and dx, [r8][rbx * 1]

; Put our 3 bits in their proper location.

 shl ax, cl

; Merge bits into destination.

 or dx, ax

; Store back into memory.

 mov [r8][rbx * 1], dx

736 Chapter 12

 mov edx, dword ptr AO3Bobjects
 call print
 byte "value:%x", nl, 0

allDone: leave
 pop rdi
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 12-10: Storing the value 7 (111b) into an array of 3-bit elements

Inserting the code in Listing 12-10 into a shell assembly file produces
the following output:

value:38000

The print statement prints the first 32 bits of AO3Bobjects. Because each
element is 3 bits, the array looks like

000 000 000 000 000 111 000 000 000 000 00 ...

where bit 0 is the leftmost bit. Flipping the 32 bits around to make them
more readable, and grouping them in blocks of 4 bits (to make it easy to
convert to hexadecimal), we get

0000 0000 0000 0011 1000 0000 0000 0000

which is 38000h.
Listing 12-10 uses a lookup table to generate the masks needed to clear

out the appropriate position in the array. Each element of this array contains
all 1s except for three 0s in the position we need to clear for a given bit offset
(note the use of the not operator to invert the constants in the table).

 12.9 Searching for a Bit
A common bit operation is to locate the end of a run of bits. A special case of
this operation is to locate the first (or last) set or clear the bit in a 16-, 32-, or
64-bit value. In this section, we’ll explore ways to handle this special case.

The term first set bit means the first bit in a value, scanning from bit 0
toward the high-order bit, which contains a 1. A similar definition exists for
the first clear bit. The last set bit is the first bit in a value, scanning from the
high-order bit toward bit 0, which contains a 1. A similar definition exists
for the last clear bit.

One obvious way to scan for the first or last bit is to use a shift instruc-
tion in a loop and count the number of iterations before you shift out a 1
(or 0) into the carry flag. The number of iterations specifies the position.

Bit Manipulation 737

Here’s some sample code that checks for the first set bit in EAX and returns
that bit position in ECX:

 mov ecx, -32 ; Count off the bit positions in ECX
TstLp: shr eax, 1 ; Check to see if current bit
 ; position contains a 1
 jc Done ; Exit loop if it does
 inc ecx ; Bump up our bit counter by 1
 jnz TstLp ; Exit if we execute this loop 32 times

Done: add cl, 32 ; Adjust loop counter so it holds
 ; the bit position

; At this point, CL contains the bit position of the
; first set bit. CL contains 32 if EAX originally
; contained 0 (no set bits).

The only thing tricky about this code is that it runs the loop counter
from –32 up to 0 rather than 32 down to 0. This makes it slightly easier to
calculate the bit position after the loop terminates.

The drawback to this particular loop is that it’s expensive. This loop
repeats as many as 32 times, depending on the original value in EAX. If the
values you’re checking often have lots of 0s in the LO bits of EAX, this code
runs rather slowly.

Searching for the first (or last) set bit is such a common operation that
Intel added a couple of instructions specifically to accelerate this process.
These instructions are bsf (bit scan forward) and bsr (bit scan reverse). Their
syntax is as follows:

bsr destreg, regsrc
bsr destreg, memsrc
bsf destreg, regsrc
bsf destreg, memsrc

The source and destination operands must be the same size (16, 32, or
64 bits). The destination operand has to be a register. The source operand
can be a register or a memory location.

The bsf instruction scans for the first set bit (starting from bit position
0) in the source operand. The bsr instruction scans for the last set bit in the
source operand by scanning from the HO bit toward the LO bit. If these
instructions find a bit that is set in the source operand, they clear the zero
flag and put the bit position into the destination register. If the source reg-
ister contains 0 (that is, there are no set bits), then these instructions set the
zero flag and leave an indeterminate value in the destination register. You
should test the zero flag immediately after the execution of these instruc-
tions to validate the destination register’s value. Here’s an example:

mov ebx, SomeValue ; Value whose bits we want to check
bsf eax, ebx ; Put position of first set bit in EAX
jz NoBitsSet ; Branch if SomeValue contains 0

738 Chapter 12

mov FirstBit, eax ; Save location of first set bit
 .
 .
 .

You use the bsr instruction in an identical fashion except that it com-
putes the bit position of the last set bit in an operand (the first set bit it
finds when scanning from the HO bit toward the LO bit).

The x86-64 CPUs do not provide instructions to locate the first bit
containing a 0. However, you can easily scan for a 0 bit by first inverting the
source operand (or a copy of the source operand if you must preserve the
source operand’s value) and then searching for the first 1 bit; this corre-
sponds to the first 0 bit in the original operand value.

The bsf and bsr instructions are complex x86-64 instructions and may be
slower than others. In some circumstances, it may be faster to locate the first
set bit by using discrete instructions. However, because the execution time of
these instructions varies widely from CPU to CPU, you should test the perfor-
mance of these instructions prior to using them in time-critical code.

Note that the bsf and bsr instructions do not affect the source operand.
A common operation is to extract (and clear) the first or last set bit you find
in an operand. If the source operand is in a register, you can use the btr (or
btc) instruction to clear the bit after you’ve found it. Here’s some code that
achieves this result:

 bsf ecx, eax ; Locate first set bit in EAX
 jz noBitFound ; If we found a bit, clear it

 btr eax, ecx ; Clear the bit we just found

noBitFound:

At the end of this sequence, the zero flag indicates whether we found a
bit (note that btr doesn’t affect the zero flag).

Because the bsf and bsr instructions support only 16-, 32-, and 64-bit
operands, you will have to compute the first bit position of an 8-bit oper-
and a little differently. There are a couple of reasonable approaches. First,
you can zero-extend an 8-bit operand to 16 or 32 bits and then use the bsf
or bsr instruction. Another alternative is to create a lookup table in which
each entry contains the number of bits in the value you use as an index into
the table; then you can use the xlat instruction to “compute” the first bit
position in the value (you will have to handle the value 0 as a special case).
Another solution is to use the shift algorithm appearing at the beginning of
this section; for an 8-bit operand, this is not an entirely inefficient solution.

You can use bsf and bsr to determine the size of a run of bits, assum-
ing that you have a single run of bits in your operand. Simply locate the
first and last bits in the run (as in the previous example) and then com-
pute the difference (plus 1) of the two values. Of course, this scheme is
valid only if there are no intervening 0s between the first and last set bits
in the value.

Bit Manipulation 739

 12.10 Counting Bits
The last example in the previous section demonstrates a specific case of
a very general problem: counting bits. Unfortunately, that example has a
severe limitation: it counts only a single run of 1 bits appearing in the source
operand. This section discusses a more general solution to this problem.

Hardly a week goes by that someone doesn’t ask on one of the internet
newsgroups how to count the number of bits in a register operand. This is
a common request, undoubtedly because many assembly language course
instructors assign this task as a project to their students as a way to teach
them about the shift and rotate instructions, as follows:

; BitCount1:

; Counts the bits in the EAX register,
; returning the count in EBX.

 mov cl, 32 ; Count the 32 bits in EAX
 xor ebx, ebx ; Accumulate the count here
CntLoop: shr eax, 1 ; Shift bit out of EAX and into carry
 adc bl, 0 ; Add the carry into the EBX register
 dec cl ; Repeat 32 times
 jnz CntLoop

The “trick” is that this code uses the adc instruction to add the value
of the carry flag into the BL register. Because the count is going to be less
than 32, the result will fit comfortably into BL.

Tricky code or not, this instruction sequence is not particularly fast. The
preceding loop always executes 32 times, so this code sequence executes 130
instructions (four instructions per iteration plus two extra instructions).

For a more efficient solution, use the popcnt instruction (population count,
introduced in the SSE 4.1 instruction set), which counts the number of 1 bits
in the source operand and stores the value into the destination operand:

popcnt regdest, regsrc
popcnt regdest, memsrc

The operands must be the same size and must be 16, 32, or 64 bits.

 12.11 Reversing a Bit String
Another common programming project instructors assign, and a useful
function in its own right, is a program that reverses the bits in an operand.
This program swaps the LO bit with the HO bit, bit 1 with the next-to-HO
bit, and so on. The typical solution an instructor expects is the following:

; Reverse the 32 bits in EAX, leaving the result in EBX:

 mov cl, 32 ; Move current bit in EAX to
RvsLoop: shr eax, 1 ; the carry flag

740 Chapter 12

 rcl ebx, 1 ; Shift the bit back into
 ; EBX, backward
 dec cl
 jnz RvsLoop

As with the previous examples, this code suffers from repeating the
loop 32 times, for a grand total of 129 instructions (for 32-bit operands,
so double that for 64-bit operands). By unrolling the loop, you can get it
down to 64 instructions, but this is still somewhat expensive.

The best solution to an optimization problem is often using a better
algorithm rather than attempting to tweak your code by trying to choose
faster instructions to speed it up. In the preceding section, for example, we
were able to speed up counting the bits in a string by substituting a more
complex algorithm for the simplistic “shift and count” algorithm. In the
preceding example, the trick is to do as much work as possible in parallel.

Suppose that all we wanted to do was swap the even and odd bits in a
32-bit value. We can easily swap the even and odd bits in EAX by using the
following code:

mov edx, eax ; Make a copy of the odd bits
shr eax, 1 ; Move the even bits to the odd positions
and edx, 55555555h ; Isolate the odd bits
and eax, 55555555h ; Isolate the even bits
shl edx, 1 ; Move the odd bits to even positions
or eax, edx ; Merge the bits and complete the swap

Swapping the even and odd bits takes us part of the way to reversing
all the bits in the number. After executing the preceding code sequence,
you can swap adjacent pairs of bits to swap the bits in all the nibbles in the
32-bit value by using the following code:

mov edx, eax ; Make a copy of the odd-numbered bit pairs
shr eax, 2 ; Move the even bit pairs to the odd position
and edx, 33333333h ; Isolate the odd pairs
and eax, 33333333h ; Isolate the even pairs
shl edx, 2 ; Move the odd pairs to the even positions
or eax, edx ; Merge the bits and complete the swap

After completing the preceding sequence, you swap the adjacent nib-
bles in the 32-bit register. Again, the only difference is the bit mask and the
length of the shifts. Here’s the code:

mov edx, eax ; Make a copy of the odd-numbered nibbles
shr eax, 4 ; Move the even nibbles to the odd position
and edx, 0f0f0f0fh ; Isolate the odd nibbles
and eax, 0f0f0f0fh ; Isolate the even nibbles
shl edx, 4 ; Move the odd pairs to the even positions
or eax, edx ; Merge the bits and complete the swap

You can probably see the pattern developing and can figure out that
in the next two steps you have to swap the bytes and then the words in this

Bit Manipulation 741

object. You can use code like the preceding example, but there is a better
way: use bswap. The bswap (byte swap) instruction uses the following syntax:

bswap reg32

The bswap instruction swaps bytes 0 and 3 and bytes 1 and 2 in the
specified 32-bit register, exactly what you want when reversing bits (and
when converting data between little-endian and big-endian data formats,
the principal use of this instruction). Rather than sticking in another 12
instructions to swap the bytes and then the words, you can simply use a
bswap eax instruction to complete the job after the preceding instructions.
The final code sequence is shown here:

mov edx, eax ; Make a copy of the odd bits in the data
shr eax, 1 ; Move the even bits to the odd positions
and edx, 55555555h ; Isolate the odd bits
and eax, 55555555h ; Isolate the even bits
shl edx, 1 ; Move the odd bits to the even positions
or eax, edx ; Merge the bits and complete the swap

mov edx, eax ; Make a copy of the odd-numbered bit pairs
shr eax, 2 ; Move the even bit pairs to the odd position
and edx, 33333333h ; Isolate the odd pairs
and eax, 33333333h ; Isolate the even pairs
shl edx, 2 ; Move the odd pairs to the even positions
or eax, edx ; Merge the bits and complete the swap

mov edx, eax ; Make a copy of the odd-numbered nibbles
shr eax, 4 ; Move the even nibbles to the odd position
and edx, 0f0f0f0fh ; Isolate the odd nibbles
and eax, 0f0f0f0fh ; Isolate the even nibbles
shl edx, 4 ; Move the odd pairs to the even positions
or eax,edx ; Merge the bits and complete the swap

bswap eax ; Swap the bytes and words

This algorithm requires only 19 instructions and executes much faster
than does the bit-shifting loop appearing earlier. Of course, this sequence
does consume a little more memory. If you’re trying to save memory rather
than clock cycles, the loop is probably a better solution.

 12.12 Merging Bit Strings
Another common bit string operation is producing a single bit string by
merging, or interleaving, bits from two different sources. The following
example code sequence creates a 32-bit string by merging alternate bits
from two 16-bit strings:

; Merge two 16-bit strings into a single 32-bit string.
; AX - Source for even-numbered bits.
; BX - Source for odd-numbered bits.

742 Chapter 12

; CL - Scratch register.
; EDX - Destination register.

 mov cl, 16
MergeLp: shrd edx, eax, 1 ; Shift a bit from EAX into EDX
 shrd edx, ebx, 1 ; Shift a bit from EBX into EDX
 dec cl
 jne MergeLp;

This particular example merges two 16-bit values together, alternat-
ing their bits in the result value. For a faster implementation of this code,
unroll the loop to eliminate half the instructions.

With a few slight modifications, we can merge four 8-bit values
together, or merge other bit sets from the source strings. For example,
the following code copies bits 0 to 5 from EAX, then bits 0 to 4 from
EBX, then bits 6 to 11 from EAX, then bits 5 to 15 from EBX, and finally
bits 12 to 15 from EAX:

shrd edx, eax, 6
shrd edx, ebx, 5
shrd edx, eax, 6
shrd edx, ebx, 11
shrd edx, eax, 4

Of course, if you have BMI2 instructions available, you can also use the
pextr instruction to extract various bits for insertion into another register.

 12.13 Extracting Bit Strings
We can also extract and distribute bits in a bit string among multiple desti-
nations. The following code takes the 32-bit value in EAX and distributes
alternate bits among the BX and DX registers:

 mov cl, 16 ; Count the loop iterations
ExtractLp: shr eax, 1 ; Extract even bits to (E)BX
 rcr ebx, 1
 shr eax, 1 ; Extract odd bits to (E)DX
 rcr edx, 1
 dec cl ; Repeat 16 times
 jnz ExtractLp
 shr ebx, 16 ; Need to move the results from the HO
 shr edx, 16 ; bytes of EBX and EDX to the LO bytes

This sequence executes 99 instructions (six inside the loop repeated 16
times plus three outside the loop). You can unroll the loop and pull other
tricks, but it’s probably not worth the added complexity when it’s all said
and done.

Bit Manipulation 743

If you have the BMI2 instruction set extensions available, you can also
use the pext instruction to do this job efficiently:

mov ecx, 55555555h ; Odd bit positions
pext edx, eax, ecx ; Put odd bits into EDX
mov ecx, 0aaaaaaaah ; Even bit positions
pext ebx, eax, ecx ; Put even bits into EBX

 12.14 Searching for a Bit Pattern
Another bit-related operation you may need is the ability to search for a par-
ticular bit pattern in a string of bits. For example, you might want to locate
the bit index of the first occurrence of 1011b starting at some particular
position in a bit string. In this section, we’ll explore some simple algorithms
to accomplish this task.

To search for a particular bit pattern, we need to know four things:

•	 The pattern to search for (the pattern)

•	 The length of the pattern we’re searching for

•	 The bit string that we’re going to search through (the source)

•	 The length of the bit string to search through

The basic idea behind the search is to create a mask based on the length
of the pattern and mask a copy of the source with this value. Then we can
directly compare the pattern with the masked source for equality. If they
are equal, you’re finished; if they’re not equal, increment a bit position
counter, shift the source one position to the right, and try again. You repeat
this operation length(source) - length(pattern) times. The algorithm fails if
it does not detect the bit pattern after this many attempts (because we will
have exhausted all the bits in the source operand that could match the pat-
tern’s length). Here’s a simple algorithm that searches for a 4-bit pattern
throughout the EBX register:

 mov cl, 28 ; 28 attempts because 32 - 4 = 28
 ; (len(src) - len(pat))
 mov ch, 1111b ; Mask for the comparison
 mov al, pattern ; Pattern to search for
 and al, ch ; Mask unnecessary bits in AL
 mov ebx, source ; Get the source value
ScanLp: mov dl, bl ; Copy the LO 4 bits of EBX
 and dl, ch ; Mask unwanted bits
 cmp al, dl ; See if we match the pattern
 jz Matched
 dec cl ; Repeat specified number of times
 shr ebx, 1
 jnz ScanLp

; Do whatever needs to be done if we failed to
; match the bit string.

744 Chapter 12

 jmp Done

Matched:

; If we get to this point, we matched the bit string.
; We can compute the position in the original source as 28 - CL.

Done:

Bit-string scanning is a special case of string matching. String matching
is a well-studied problem in computer science, and many of the algorithms
you can use for string matching are applicable to bit-string matching as
well. Such algorithms are beyond the scope of this chapter, but to give you a
preview of how this works, you compute a function (like xor or sub) between
the pattern and the current source bits and use the result as an index into a
lookup table to determine how many bits you can skip. Such algorithms let
you skip several bits rather than shifting only once for each iteration of the
scanning loop (as is done by the previous algorithm).

 12.15 For More Information
The AMD Athlon optimization guide contains useful algorithms for bit-
based computations. To learn more about bit-searching algorithms, pick
up a textbook on data structures and algorithms and study the section on
string-matching algorithms.

Probably the ultimate book on bit twiddling is Hacker’s Delight, Second
Edition, by Henry S. Warren (Addison-Wesley, 2012). While this book uses
the C programming language for examples, almost all the concepts apply
to assembly language programs as well.

 12.16 Test Yourself

1. What general instruction(s) would you use to clear bits in a register?

2. What instruction could you use to clear a bit, specified by bit number,
in a register?

3. What general instruction would you use to set bits in a register?

4. What instruction could you use to set a bit, specified by bit number, in
a register?

5. What general instruction would you use to invert bits in a register?

6. What instruction could you use to invert a bit, specified by bit number,
in a register?

7. What general instruction would you use to test a bit (or group of bits)
for 0 and 1 in a register?

8. What instruction could you use to test a single bit, specified by bit num-
ber, in a register?

Bit Manipulation 745

9. What single instruction could you use to extract and coalesce a set of bits?

10. What single instruction could you use to position and insert a set of bits
in a register?

11. What single instruction could you use to extract a bit substring from a
larger bit string?

12. What instruction allows you to search for the first set bit in a register?

13. What instruction allows you to search for the last set bit in a register?

14. How would you search for the first clear bit in a register?

15. How would you search for the last clear bit in a register?

16. What instruction can you use to count the number of bits in a register?

13
M A C R O S A N D T H E M A S M

C O M P I L E - T I M E L A N G U A G E

This chapter discusses the MASM compile-
time language, including the very important

macro expansion facilities. A macro is an identifier
that the assembler will expand into additional

text (often many lines of text), allowing you to abbreviate
large amounts of code with a single identifier. MASM’s
macro facility is actually a computer language inside a
computer language; that is, you can write short little programs inside a MASM
source file whose purpose is to generate other MASM source code to be
assembled by MASM.

This language inside a language, also known as a compile-time language,
consists of macros (the compile-time language equivalent of a procedure),
conditionals (if statements), loops, and other statements. This chapter cov-
ers many of the MASM compile-time language features and shows how you
can use them to reduce the effort needed to write assembly language code.

748 Chapter 13

 13.1 Introduction to the Compile-Time Language
MASM is actually two languages rolled into a single program. The runtime
language is the standard x86-64/MASM assembly language you’ve been read-
ing about in all the previous chapters. This is called the runtime language
because the programs you write execute when you run the executable file.
MASM contains an interpreter for a second language, the MASM compile-time
language (CTL). MASM source files contain instructions for both the MASM
CTL and the runtime program, and MASM executes the CTL program
during assembly (compilation). Once MASM completes assembly, the CTL
program terminates (see Figure 13-1).

MASM assembler
and compile-time
interpreter

Actions produced by
the interpretation of
the compile-time
language during
compilation

Executable file
Compile time

CTL
expansion/
execution

Runtime

Assembled
source
code

CTL output
assembled
by MASM

Actions produced by the executing object code
produced by the assembler

Figure 13-1: Compile-time versus runtime execution

The CTL application is not a part of the runtime executable that MASM
emits, although the CTL application can write part of the runtime program
for you, and, in fact, this is the major purpose of the CTL. Using automatic
code generation, the CTL gives you the ability to easily and elegantly emit
repetitive code. By learning how to use the MASM CTL and applying it prop-
erly, you can develop assembly language applications as rapidly as high-level
language applications (even faster because MASM’s CTL lets you create very
high-level-language constructs).

 13.2 The echo and .err Directives
You may recall that Chapter 1 began with the typical first program most
people write when learning a new language, the “Hello, world!” program.
Listing 13-1 provides the basic “Hello, world!” program written in the MASM
compile-time language.

; Listing 13-1

; CTL "Hello, world!" program.

Macros and the MASM Compile-Time Language 749

echo Listing 13-1: Hello, world!
end

Listing 13-1: The CTL “Hello, world!” program

The only CTL statement in this program is the echo statement.1 The end
statement is needed just to keep MASM happy.

The echo statement displays the textual representation of its argument
list during the assembly of a MASM program. Therefore, if you compile the
preceding program with the command

ml64 /c listing13-1.asm

the MASM assembler will immediately print the following text:

Listing 13-1: Hello, world!

Other than displaying the text associated with the echo parameter list,
the echo statement has no effect on the assembly of the program. It is invalu-
able for debugging CTL programs, displaying the progress of the assembly,
and displaying assumptions and default actions that take place during
assembly.

Though assembly language calls to print also emit text to the standard
output, there is a big difference between the following two groups of state-
ments in a MASM source file:

echo "Hello World"

call print
byte "Hello World", nl,0

The first statement prints "Hello World" (and a newline) during the
assembly process and has no effect on the executable program. The last
two lines don’t affect the assembly process (other than the emission of
code to the executable file). However, when you run the executable file,
the second set of statements prints the string Hello World followed by a
newline sequence.

The .err directive, like echo, will display a string to the console dur-
ing assembly, though this must be a text string (delimited by < and >).
The .err statement displays the text as part of a MASM error diagnostic.
Furthermore, the .err statement increments the error count, and this will
cause MASM to stop the assembly (without assembling or linking) after pro-
cessing the current source file. You would normally use the .err statement to
display an error message during assembly if your CTL code discovers some-
thing that prevents it from creating valid code. For example:

.err <Statement must have exactly one operand>

1. %out is a synonym for echo (just in case you see %out in any MASM source files).

750 Chapter 13

 13.3 Compile-Time Constants and Variables
Just as the runtime language does, the compile-time language supports
constants and variables. You declare compile-time constants by using the
textequ or equ directives. You declare compile-time variables by using the
= directive (compile-time assignment statement). For example:

inc_by equ 1
ctlVar = 0
ctlVar = ctlVar + inc_by

 13.4 Compile-Time Expressions and Operators
The MASM CTL supports constant expressions in the CTL assignment
statement. See “MASM Constant Declarations” in Chapter 4 for a discus-
sion of constant expressions (which are also the CTL expressions and
operators).

In addition to the operators and functions appearing in that chapter,
MASM includes several additional CTL operators, functions, and directives
you will find useful. The following subsections describe these.

13.4.1 The MASM Escape (!) Operator
The first operator is the ! operator. When placed in front of another sym-
bol, this operator tells MASM to treat that character as text rather than as
a special symbol. For example, !; creates a text constant consisting of the
semicolon character, rather than a comment that causes MASM to ignore
all text after the ; symbol (for C/C++ programmers, this is similar to the
backslash escape character, \, in a string constant).

13.4.2 The MASM Evaluation (%) Operator
The second useful CTL operator is %. The percent operator causes MASM
to evaluate the expression following it and replace that expression with its
value. For example, consider the following code sequence:

num10 = 10
text10 textequ <10>
tn11 textequ %num10 + 1

If you assemble this sequence in an assembly language source file and
direct MASM to produce an assembly listing, it will report the following for
these three symbols:

num10 Number 0000000Ah
text10 Text 10
tn11 Text 11

Macros and the MASM Compile-Time Language 751

The num10 is properly reported as a numeric value (decimal 10), text10
as a text symbol (containing the string 10), and tn11 as a text symbol (as
you would expect, because this code sequence uses the textequ directive to
define it). However, rather than containing the string %num10 + 1, MASM
evaluates the expression num10 + 1 to produce the numeric value 11, which
MASM then converts to text data. (By the way, to put a percent sign in a text
string, use the text sequence <!%>.)

If you place the % operator in the first column of a source line, MASM
will translate all numeric expressions on that line to textual form. This is
handy with the echo directive. It causes echo to display the value of numeric
equates rather than simply displaying the equate names.

13.4.3 The catstr Directive
The catstr function has the following syntax:

identifier catstr string1, string2, ...

The identifier is an (up to this point) undefined symbol. The string1 and
string2 operands are textual data surrounded by < and > symbols. This state-
ment stores the concatenation of the two strings into identifier. Note that
identifier is a text object, not a string object. If you specify the identifier in
your code, MASM will substitute the text string for the identifier and try to
process that text data as though it were part of your source code input.

The catstr statement allows two or more operands separated by com-
mas. The catstr directive will concatenate the text values in the order they
appear in the operand field. The following statement generates the textual
data Hello, World!:

helloWorld catstr <Hello>, <, >, <World!!>

Two exclamation marks are necessary in this example, because ! is an
operator telling MASM to treat the next symbol as text rather than as an
operator. With only one ! symbol, MASM thinks that you’re attempting to
include a > symbol as part of the string and reports an error (because there
is no closing >). Putting !! in the text string tells MASM to treat the second
! symbol as a text character.

13.4.4 The instr Directive
The instr directive searches for the presence of one string within another.
The syntax for the directive is

identifier instr start, source, search

where identifier is a symbol into which MASM will put the offset of the
search string within the source string. The search begins at position start
within source. Unconventionally, the first character in source has the

752 Chapter 13

position 1 (not 0). The following example searches for World within the
string Hello World (starting at character position 1, which is the index of the
H character):

WorldPosn instr 1, <Hello World>, <World>

This statement defines WorldPosn as a number with the value 7 (as the
string World is at position 7 in Hello World if you start counting from position 1).

13.4.5 The sizestr Directive
The sizestr directive computes the length of a string.2 The syntax for the
directive is

identifier sizestr string

where identifier is the symbol into which MASM will store the string’s
length, and string is the string literal whose length this directive computes.
As an example,

hwLen sizestr <Hello World>

defines the symbol hwLen as a number and sets it to the value 11.

13.4.6 The substr Directive
The substr directive extracts a substring from a larger string. The syntax for
this directive is

identifier substr source, start, len

where identifier is the symbol that MASM will create (type TEXT, initialized
with the substring characters), source is the source string from which MASM
will extract the substring, start is the starting position in the string to begin
the extraction, and len is the length of the substring to extract. The len
operand is optional; if it is absent, MASM will assume you want to use the
remainder of the string (starting at position start) for the substring. Here’s
an example that extracts Hello from the string Hello World:

hString substr <Hello World>, 1, 5

 13.5 Conditional Assembly (Compile-Time Decisions)
MASM’s compile-time language provides an if statement, if, that lets you
make decisions at assembly time. The if statement has two main purposes.
The traditional use of if is to support conditional assembly, allowing you to
include or exclude code during an assembly, depending on the status of

2. If you’re wondering, MASM already uses the length reserved word for other purposes.

Macros and the MASM Compile-Time Language 753

various symbols or constant values in your program. The second use is to
support the standard if-statement decision-making process in the MASM
compile-time language. This section discusses these two uses for the MASM
if statement.

The simplest form of the MASM compile-time if statement uses the fol-
lowing syntax:

if constant_boolean_expression
 Text
endif

At compile time, MASM evaluates the expression after the if. This must
be a constant expression that evaluates to an integer value. If the expres-
sion evaluates to true (nonzero), MASM continues to process the text in
the source file as though the if statement were not present. However, if the
expression evaluates to false (zero), MASM treats all the text between the
if and the corresponding endif clause as though it were a comment (that is,
it ignores this text), as shown in Figure 13-2.

if(constant_boolean_expression)

MASM compiles this code if
the expression is true. Otherwise,
MASM treats this code like
a comment.

endif

Figure 13-2: Operation of a MASM
compile-time if statement

The identifiers in a compile-time expression must all be constant identi-
fiers or a MASM compile-time function call (with appropriate parameters).
Because MASM evaluates these expressions at assembly time, they cannot
contain runtime variables.

The MASM if statement supports optional elseif and else clauses that
behave in an intuitive fashion. The complete syntax for the if statement
looks like the following:

if constant_boolean_expression1
 Text
elseif constant_boolean_expression2
 Text
else
 Text
endif

If the first Boolean expression evaluates to true, MASM processes the
text up to the elseif clause. It then skips all text (that is, treats it like a com-
ment) until it encounters the endif clause. MASM continues processing the
text after the endif clause in the normal fashion.

754 Chapter 13

If the first Boolean expression evaluates to false, MASM skips all the
text until it encounters an elseif, else, or endif clause. If it encounters an
elseif clause (as in the preceding example), MASM evaluates the Boolean
expression associated with that clause. If it evaluates to true, MASM pro-
cesses the text between the elseif and the else clauses (or to the endif
clause if the else clause is not present). If, during the processing of this text,
MASM encounters another elseif or, as in the preceding example, an else
clause, then MASM ignores all further text until it finds the correspond-
ing endif. If both the first and second Boolean expressions in the previous
example evaluate to false, MASM skips their associated text and begins pro-
cessing the text in the else clause.

You can create a nearly infinite variety of if statement sequences by
including zero or more elseif clauses and optionally supplying the else clause.

A traditional use of conditional assembly is to develop software that
you can easily configure for several environments. For example, the fcomip
instruction makes floating-point comparisons easy, but this instruction is
available only on Pentium Pro and later processors. To use this instruction
on the processors that support it and fall back to the standard floating-
point comparison on the older processors, most engineers use conditional
assembly to embed the separate sequences in the same source file (instead
of writing and maintaining two versions of the program). The following
example demonstrates how to do this:

; Set true (1) to use FCOMIxx instrs.

PentProOrLater = 0
 .
 .
 .
 if PentProOrLater

 fcomip st(0), st(1) ; Compare ST1 to ST0 and set flags

 else

 fcomp ; Compare ST1 to ST0
 fstsw ax ; Move the FPU condition code bits
 sahf ; into the FLAGS register

 endif

As currently written, this code fragment will compile the three-instruction
sequence in the else clause and ignore the code between the if and else
clauses (because the constant PentProOrLater is false). By changing the value of
PentProOrLater to true, you can tell MASM to compile the single fcomip instruc-
tion rather than the three-instruction sequence.

Though you need to maintain only a single source file, conditional
assembly does not let you create a single executable that runs efficiently on
all processors. When using this technique, you will still have to create two
executable programs (one for Pentium Pro and later processors, one for

Macros and the MASM Compile-Time Language 755

the earlier processors) by compiling your source file twice: during the first
assembly, you must set the PentProOrLater constant to false; during the sec-
ond assembly, you must set it to true.

If you are familiar with conditional assembly in other languages, such
as C/C++, you may be wondering if MASM supports a statement like C’s
#ifdef statement. The answer is yes, it does. Consider the following modifi-
cation to the preceding code that uses this directive:

; Note: uncomment the following line if you are compiling this
; code for a Pentium Pro or later CPU.

; PentProOrLater = 0 ; Value and type are irrelevant
 .
 .
 .
ifdef PentProOrLater

 fcomip st(0), st(1) ; Compare ST1 to ST0 and set flags

else

 fcomp ; Compare ST1 to ST0
 fstsw ax ; Move the FPU condition code bits
 sahf ; into the FLAGS register

endif

Another common use of conditional assembly is to introduce debug-
ging and testing code into your programs. A typical debugging technique
that many MASM programmers use is to insert print statements at strategic
points throughout their code; this enables them to trace through their code
and display important values at various checkpoints.

A big problem with this technique, however, is that they must remove
the debugging code prior to completing the project. Two further problems
are as follows:

•	 Programmers often forget to remove some debugging statements, and
this creates defects in the final program.

•	 After removing a debugging statement, these programmers often dis-
cover that they need that same statement to debug a different problem
at a later time. Hence, they are constantly inserting and removing the
same statements over and over again.

Conditional assembly can provide a solution to this problem. By defin-
ing a symbol (say, debug) to control debugging output in your program, you
can activate or deactivate all debugging output by modifying a single line of
source code. The following code fragment demonstrates this:

; Set to true to activate debug output.

debug = 0

756 Chapter 13

 .
 .
 .
 if debug

 echo *** DEBUG build

 mov edx, i
 call print
 byte "At point A, i=%d", nl, 0

 else

 echo *** RELEASE build

 endif

As long as you surround all debugging output statements with an if
statement like the preceding one, you don’t have to worry about debugging
output accidentally appearing in your final application. By setting the debug
symbol to false, you can automatically disable all such output. Likewise, you
don’t have to remove all your debugging statements from your programs after
they’ve served their immediate purpose. By using conditional assembly, you
can leave these statements in your code because they are so easy to deactivate.
Later, if you decide you need to view this same debugging information dur-
ing assembly, you can reactivate it by setting the debug symbol to true.

Although program configuration and debugging control are two of
the more common, traditional uses for conditional assembly, don’t forget
that the if statement provides the basic conditional statement in the MASM
CTL. You will use the if statement in your compile-time programs the same
way you would use an if statement in MASM or another language. Later
sections in this chapter present lots of examples of using the if statement in
this capacity.

 13.6 Repetitive Assembly (Compile-Time Loops)
MASM’s while..endm, for..endm, and forc..endm statements provide compile-
time loop constructs.3 The while statement tells MASM to process the same
sequence of statements repetitively during assembly. This is handy for con-
structing data tables as well as providing a traditional looping structure for
compile-time programs.

The while statement uses the following syntax:

while constant_boolean_expression
 Text
endm

3. endm stands for end macro, in case you’re wondering. MASM considers all CTL looping
instructions variants of the MASM macro facility. irp and irpc are synonyms for for and
forc, respectively.

Macros and the MASM Compile-Time Language 757

When MASM encounters the while statement during assembly, it evalu-
ates the constant Boolean expression. If the expression evaluates to false,
MASM will skip over the text between the while and the endm clauses (the
behavior is similar to the if statement if the expression evaluates to false). If
the expression evaluates to true, MASM will process the statements between
the while and endm clauses and then “ jump back” to the start of the while
statement in the source file and repeat this process, as shown in Figure 13-3.

while(constant_boolean_expression)

MASM repetitively compiles this code
as long as the expression is true.
It effectively inserts multiple copies
of this statement sequence into your
source file (the exact number of copies
depends on the value of the loop control
expression).

endm

Figure 13-3: MASM compile-time while
statement operation

To understand how this process works, consider the program in
Listing 13-2.

; Listing 13-2

; CTL while loop demonstration program.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 13-2", 0

 .data
ary dword 2, 3, 5, 8, 13

 include getTitle.inc
 include print.inc

 .code

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

758 Chapter 13

i = 0
 while i LT lengthof ary ; 5

 mov edx, i ; This is a constant!
 mov r8d, ary[i * 4] ; Index is a constant
 call print
 byte "array[%d] = %d", nl, 0

i = i + 1
 endm

allDone: leave
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 13-2: while..endm demonstration

Here’s the build command and program output for Listing 13-2:

C:\>build listing13-2

C:\>echo off
 Assembling: listing13-2.asm
c.cpp

C:\>listing13-2
Calling Listing 13-2:
array[0] = 2
array[1] = 3
array[2] = 5
array[3] = 8
array[4] = 13
Listing 13-2 terminated

The while loop repeats five times during assembly. On each repetition
of the loop, the MASM assembler processes the statements between the
while and endm directives. Therefore, the preceding program is really equiva-
lent to the code fragment shown in Listing 13-3.

.

.

.
mov edx, 0 ; This is a constant!
mov r8d, ary[0] ; Index is a constant
call print
byte "array[%d] = %d", nl, 0

mov edx, 1 ; This is a constant!
mov r8d, ary[4] ; Index is a constant
call print
byte "array[%d] = %d", nl, 0

Macros and the MASM Compile-Time Language 759

mov edx, 2 ; This is a constant!
mov r8d, ary[8] ; Index is a constant
call print
byte "array[%d] = %d", nl, 0

mov edx, 3 ; This is a constant!
mov r8d, ary[12] ; Index is a constant
call print
byte "array[%d] = %d", nl, 0

mov edx, 4 ; This is a constant!
mov r8d, ary[16] ; Index is a constant
call print
byte "array[%d] = %d", nl, 0

Listing 13-3: Program equivalent to the code in Listing 13-2

As you can see in this example, the while statement is convenient for
constructing repetitive-code sequences, especially for unrolling loops.

MASM provides two forms of the for..endm loop. These two loops take
the following general form:

for identifier, <arg1, arg2, ..., argn>
 .
 .
 .
endm

forc identifier, <string>
 .
 .
 .
endm

The first form of the for loop (plain for) repeats the code once for each
of the arguments specified between the < and > brackets. On each repetition
of the loop, it sets identifier to the text of the current argument: on the first
iteration of the loop, identifier is set to arg1, and on the second iteration
it is set to arg2, and so on, until the last iteration, when it is set to argn. For
example, the following for loop will generate code that pushes the RAX,
RBX, RCX, and RDX registers onto the stack:

for reg, <rax, rbx, rcx, rdx>
push reg
endm

This for loop is equivalent to the following code:

push rax
push rbx
push rcx
push rdx

760 Chapter 13

The forc compile-time loop repeats the body of its loop for each charac-
ter appearing in the string specified by the second argument. For example,
the following forc loop generates a hexadecimal byte value for each charac-
ter in the string:

 forc hex, <0123456789ABCDEF>
hexNum catstr <0>,<hex>,<h>
 byte hexNum
 endm

The for loop will turn out to be a lot more useful than forc. Nevertheless,
forc is handy on occasion. Most of the time when you’re using these loops,
you’ll be passing them a variable set of arguments rather than a fixed string.
As you’ll soon see, these loops are handy for processing macro parameters.

 13.7 Macros (Compile-Time Procedures)
Macros are objects that a language processor replaces with other text during
compilation. Macros are great devices for replacing long, repetitive sequences
of text with much shorter sequences of text. In addition to the traditional role
that macros play (for example, #define in C/C++), MASM’s macros also serve
as the equivalent of a compile-time language procedure or function.

Macros are one of MASM’s main features. The following sections explore
MASM’s macro-processing facilities and the relationship between macros and
other MASM CTL control constructs.

 13.8 Standard Macros
MASM supports a straightforward macro facility that lets you define mac-
ros in a manner that is similar to declaring a procedure. A typical, simple
macro declaration takes the following form:

macro_name macro arguments
 Macro body
 endm

The following code is a concrete example of a macro declaration:

neg128 macro

 neg rdx
 neg rax
 sbb rdx, 0

 endm

Execution of this macro’s code will compute the two’s complement of
the 128-bit value in RDX:RAX (see the description of extended-precision
neg in “Extended-Precision Negation Operations” in Chapter 8).

Macros and the MASM Compile-Time Language 761

To execute the code associated with neg128, you specify the macro’s
name at the point you want to execute these instructions. For example:

mov rax, qword ptr i128
mov rdx, qword ptr i128[8]
neg128

This intentionally looks just like any other instruction; the original
purpose of macros was to create synthetic instructions to simplify assembly
language programming.

Though you don’t need to use a call instruction to invoke a macro,
from the point of view of your program, invoking a macro executes a
sequence of instructions just like calling a procedure. You could imple-
ment this simple macro as a procedure by using the following procedure
declaration:

neg128p proc

 neg rdx
 neg rax
 sbb rdx, 0
 ret

neg128p endp

The following two statements will both negate the value in RDX:RAX:

neg128
call neg128p

The difference between these two (the macro invocation versus the pro-
cedure call) is that macros expand their text inline, whereas a procedure
call emits a call to the corresponding procedure elsewhere in the text. That
is, MASM replaces the invocation neg128 directly with the following text:

neg rdx
neg rax
sbb rdx, 0

On the other hand, MASM replaces the procedure call neg128p with the
machine code for the call instruction:

call neg128p

You should choose macro versus procedure call based on efficiency.
Macros are slightly faster than procedure calls because you don’t execute
the call and corresponding ret instructions, but they can make your pro-
gram larger because a macro invocation expands to the text of the macro’s
body on each invocation. If the macro body is large and you invoke the
macro several times throughout your program, it will make your final
executable much larger. Also, if the body of your macro executes more than

762 Chapter 13

a few simple instructions, the overhead of a call and ret sequence has little
impact on the overall execution time of the code, so the execution time sav-
ings are nearly negligible. On the other hand, if the body of a procedure is
very short (like the preceding neg128 example), the macro implementation
can be faster and doesn’t expand the size of your program by much. A good
rule of thumb is as follows:

Use macros for short, time-critical program units. Use procedures
for longer blocks of code and when execution time is not as
critical.

Macros have many other disadvantages over procedures. Macros cannot
have local (automatic) variables, macro parameters work differently than
procedure parameters, macros don’t support (runtime) recursion, and mac-
ros are a little more difficult to debug than procedures (just to name a few
disadvantages). Therefore, you shouldn’t really use macros as a substitute
for procedures except when performance is absolutely critical.

 13.9 Macro Parameters
Like procedures, macros allow you to define parameters that let you supply
different data on each macro invocation, which lets you write generic mac-
ros whose behavior can vary depending on the parameters you supply. By
processing these macro parameters at compile time, you can write sophisti-
cated macros.

Macro parameter declaration syntax is straightforward. You supply a list
of parameter names as the operands in a macro declaration:

neg128 macro reg64HO, reg64LO

 neg reg64HO
 neg reg64LO
 sbb reg64HO, 0

 endm

When you invoke a macro, you supply the actual parameters as argu-
ments to the macro invocation:

neg128 rdx, rax

13.9.1 Standard Macro Parameter Expansion
MASM automatically associates the type text with macro parameters. This
means that during a macro expansion, MASM substitutes the text you
supply as the actual parameter everywhere the formal parameter name
appears. The semantics of pass by textual substitution are a little different
from pass by value or pass by reference, so exploring those differences here is
worthwhile.

Macros and the MASM Compile-Time Language 763

Consider the following macro invocations, using the neg128 macro from
the previous section:

neg128 rdx, rax
neg128 rbx, rcx

These two invocations expand into the following code:

; neg128 rdx, rax

 neg rdx
 neg rax
 sbb rdx, 0

; neg128 rbx, rcx

 neg rbx
 neg rcx
 sbb rbx, 0

Macro invocations do not make a local copy of the parameters (as pass
by value does), nor do they pass the address of the actual parameter to the
macro. Instead, a macro invocation of the form neg128 rdx, rax is equivalent
to the following:

reg64HO textequ <rdx>
reg64LO textequ <rax>

 neg reg64HO
 neg reg64LO
 sbb reg64HO, 0

The text objects immediately expand their string values inline, produc-
ing the former expansion for neg128 rdx, rax.

Macro parameters are not limited to memory, register, or constant oper-
ands as are instruction or procedure operands. Any text is fine as long as its
expansion is legal wherever you use the formal parameter. Similarly, formal
parameters may appear anywhere in the macro body, not just where mem-
ory, register, or constant operands are legal. Consider the following macro
declaration and sample invocations that demonstrate how you can expand a
formal parameter into a whole instruction:

chkError macro instr, jump, target

 instr
 jump target

 endm

 chkError <cmp eax, 0>, jnl, RangeError ; Example 1
 .
 .
 .

764 Chapter 13

 chkError <test bl, 1>, jnz, ParityError ; Example 2

; Example 1 expands to:

 cmp eax, 0
 jnl RangeError

; Example 2 expands to:

 test bl, 1
 jnz ParityError

We use the < and > brackets to treat the full cmp and test instructions as
a single string (normally, the comma in these instructions would split them
into two macro parameters).

In general, MASM assumes that all text between commas constitutes
a single macro parameter. If MASM encounters any opening bracketing
symbols (left parentheses, left braces, or left angle brackets), then it will
include all text up to the appropriate closing symbol, ignoring any commas
that may appear within the bracketing symbols. Of course, MASM does
not consider commas (and bracketing symbols) within a string constant as
the end of an actual parameter. So the following macro and invocation are
perfectly legal:

_print macro strToPrint

 call print
 byte strToPrint, nl, 0

 endm
 .
 .
 .
 _print "Hello, world!"

MASM treats the string Hello, world! as a single parameter because
the comma appears inside a literal string constant, just as your intuition
suggests.

You can run into some issues when MASM expands your macro param-
eters, because parameters are expanded as text, not values. Consider the
following macro declaration and invocation:

Echo2nTimes macro n, theStr
echoCnt = 0
 while echoCnt LT n * 2

 call print
 byte theStr, nl, 0

echoCnt = echoCnt + 1
 endm
 endm

Macros and the MASM Compile-Time Language 765

 .
 .
 .
 Echo2nTimes 3 + 1, "Hello"

This example displays Hello five times during assembly rather than the
eight times you might intuitively expect. This is because the preceding while
statement expands to

while echoCnt LT 3 + 1 * 2

The actual parameter for n is 3 + 1; because MASM expands this text
directly in place of n, you get an erroneous text expansion. At compile time
MASM computes 3 + 1 * 2 as the value 5 rather than as the value 8 (which
you would get if the MASM passed this parameter by value rather than by
textual substitution).

The common solution to this problem when passing numeric param-
eters that may contain compile-time expressions is to surround the formal
parameter in the macro with parentheses; for example, you would rewrite
the preceding macro as follows:

Echo2nTimes macro n, theStr
echoCnt = 0
 while echoCnt LT (n) * 2

 call print
 byte theStr, nl, 0

echoCnt = echoCnt + 1
 endm ; while
 endm ; macro

Now, the invocation expands to the following code that produces the
intuitive result:

while echoCnt LT (3 + 1) * 2
call print
byte theStr, nl, 0
endm

If you don’t have control over the macro definition (perhaps it’s part
of a library module you use, and you can’t change the macro definition
because doing so could break existing code), there is another solution to
this problem: use the MASM % operator before the argument in the macro
invocation so that the CTL interpreter evaluates the expression before
expanding the parameters. For example:

Echo2nTimes %3 + 1, "Hello"

This will cause MASM to properly generate eight calls to the print pro-
cedure (and associated data).

766 Chapter 13

13.9.2 Optional and Required Macro Parameters
As a general rule, MASM treats macro arguments as optional arguments. If
you define a macro that specifies two arguments and invoke that argument
with only one argument, MASM will not (normally) complain about the
invocation. Instead, it will simply substitute the empty string for the expan-
sion of the second argument. In some cases, this is acceptable and possibly
even desirable.

However, suppose you left off the second parameter in the neg128 macro
given earlier. That would compile to a neg instruction with a missing operand
and MASM would report an error; for example:

neg128 macro arg1, arg2 ; Line 6
 neg arg1 ; Line 7
 neg arg2 ; Line 8
 sbb arg1, 0 ; Line 9
 endm ; Line 10
 ; Line 11
 neg128 rdx ; Line 12

Here’s the error that MASM reports:

listing14.asm(12) : error A2008:syntax error : in instruction
 neg128(2): Macro Called From
 listing14.asm(12): Main Line Code

The (12) is telling us that the error occurred on line 12 in the source
file. The neg128(2) line is telling us that the error occurred on line 2 of
the neg128 macro. It’s a bit difficult to see what is actually causing the
problem here.

One solution is to use conditional assembly inside the macro to test for
the presence of both parameters. At first, you might think you could use
code like this:

neg128 macro reg64HO, reg64LO

 if reg64LO eq <>
 .err <neg128 requires 2 operands>
 endif

 neg reg64HO
 neg reg64LO
 sbb reg64O, 0
 endm
 .
 .
 .
 neg128 rdx

Macros and the MASM Compile-Time Language 767

Unfortunately, this fails for a couple of reasons. First of all, the eq oper-
ator doesn’t work with text operands. MASM will expand the text operands
before attempting to apply this operator, so the if statement in the preced-
ing example effectively becomes

 if eq

because MASM substitutes the empty string for both the operands around
the eq operator. This, of course, generates a syntax error. Even if there were
non-blank textual operands around the eq operator, this would still fail
because eq expects numeric operands. MASM solves this issue by introducing
several additional conditional if statements intended for use with text oper-
ands and macro arguments. Table 13-1 lists these additional if statements.

Table 13-1: Text-Handling Conditional if Statements

Statement Text operand(s) Meaning

ifb* arg If blank: true if arg evaluates to an empty string.

ifnb arg If not blank: true if arg evaluates to a non-empty
string.

ifdif arg1, arg2 If different: true if arg1 and arg2 are different
(case-sensitive).

ifdifi arg1, arg2 If different: true if arg1 and arg2 are different
(case-insensitive).

ifidn arg1, arg2 If identical: true if arg1 and arg2 are exactly the same
(case-sensitive).

ifidni arg2, arg2 If identical: true if arg1 and arg2 are exactly the same
(case-insensitive).

* ifb arg is shorthand for ifidn <arg>, <>.

You use these conditional if statements exactly like the standard if state-
ment. You can also follow these if statements with an elseif or else clause,
but there are no elseifb, elseifnb, . . . , variants of these if statements (only a
standard elseif with a Boolean expression may follow these statements).

The following snippet demonstrates how to use the ifb statement to
ensure that the neg128 macro has exactly two arguments. There is no need
to check whether reg64HO is also blank; if reg64HO is blank, reg64LO will also be
blank, and the ifb statement will report the appropriate error:

neg128 macro reg64HO, reg64LO

 ifb <reg64LO>
 .err <neg128 requires 2 operands>
 endif

768 Chapter 13

 neg reg64HO
 neg reg64LO
 sbb reg64HO, 0
 endm

Be very careful about using ifb in your programs. It is easy to pass in a
text symbol to a macro and wind up testing whether the name of that sym-
bol is blank rather than the text itself. Consider the following:

symbol textequ <>
 neg128 rax, symbol ; Generates an error

The neg128 invocation has two arguments, and the second one is not
blank, so the ifb directive is happy with the argument list. However, inside the
macro when neg128 expands reg64LO after the neg instruction, the expansion is
the empty string, producing an error (which is what the ifb was supposed to
prevent).

A different way to handle missing macro arguments is to explicitly tell
MASM that an argument is required with the :req suffix on the macro defi-
nition line. Consider the following definition for the neg128 macro:

neg128 macro reg64HO:req, reg64LO:req
 neg reg64HO
 neg reg64LO
 sbb reg64HO, 0
 endm

With the :req option present, MASM reports the following if you are
missing one or more of the macro arguments:

listing14.asm(12) : error A2125:missing macro argument

13.9.3 Default Macro Parameter Values
One way to handle missing macro arguments is to define default values for
those arguments. Consider the following definition for the neg128 macro:

neg128 macro reg64HO:=<rdx>, reg64LO:=<rax>
 neg reg64HO
 neg reg64LO
 sbb reg64HO, 0
 endm

The := operator tells MASM to substitute the text constant to the right
of the operator for the associated macro argument if an actual value is not
present on the macro invocation line. Consider the following two invoca-
tions of neg128:

neg128 ; Defaults to "RDX, RAX" for the args
neg128 rbx ; Uses RBX:RAX for the 128-bit register pair

Macros and the MASM Compile-Time Language 769

13.9.4 Macros with a Variable Number of Parameters
It is possible to tell MASM to allow a variable number of arguments in a
macro invocation:

varParms macro varying:vararg

 Macro body

 endm
 .
 .
 .
 varParms 1
 varParms 1, 2
 varParms 1, 2, 3
 varParms

Within the macro, MASM will create a text object of the form <arg1,
arg2, ..., argn> and assign this text object to the associated parameter
name (varying, in the preceding example). You can use the MASM for loop
to extract the individual values of the varying argument. For example:

varParms macro varying:vararg
 for curArg, <varying>
 byte curArg
 endm ; End of FOR loop
 endm ; End of macro

 varParms 1
 varParms 1, 2
 varParms 1, 2, 3
 varParms <5 dup (?)>

Here’s the listing output for an assembly containing this example
source code:

 00000000 .data
 varParms macro varying:vararg
 for curArg, <varying>
 byte curArg
 endm ; End of FOR loop
 endm ; End of macro

 varParms 1
 00000000 01 2 byte 1
 varParms 1, 2
 00000001 01 2 byte 1
 00000002 02 2 byte 2
 varParms 1, 2, 3
 00000003 01 2 byte 1
 00000004 02 2 byte 2

770 Chapter 13

 00000005 03 2 byte 3
 varParms <5 dup (?)>
 00000006 00000005 [2 byte 5 dup (?)
 00
]

A macro can have, at most, one vararg parameter. If a macro has more
than one parameter and also has a vararg parameter, the vararg parameter
must be the last argument.

13.9.5 The Macro Expansion (&) Operator
Inside a macro, you can use the & operator to replace a macro name (or
other text symbol) with its actual value. This operator is active anywhere,
even with string literals. Consider the following examples:

expand macro parm
 byte '&parm', 0
 endm

 .data
 expand a

The macro invocation in this example expands to the following code:

byte 'a', 0

If, for some reason, you need the string '&parm' to be emitted within a
macro (that has parm as one of its parameters), you will have to work around
the expansion operator. Note that '!&parm' will not escape the & operator.
One solution that works in this specific case is to rewrite the byte directive:

expand macro parm
 byte '&', 'parm', 0
 endm

Now the & operator is not causing the expansion of parm inside a string.

 13.10 Local Symbols in a Macro
Consider the following macro declaration:

jzc macro target

 jnz NotTarget
 jc target
NotTarget:
 endm

Macros and the MASM Compile-Time Language 771

This macro simulates an instruction that jumps to the specified target
location if the zero flag is set and the carry flag is set. Conversely, if either
the zero flag or the carry flag is clear, this macro transfers control to the
instruction immediately following the macro invocation.

There is a serious problem with this macro. Consider what happens if
you use this macro more than once in your program:

jzc Dest1
 .
 .
 .
jzc Dest2
 .
 .
 .

The preceding macro invocations expand to the following code:

 jnz NotTarget
 jc Dest1
NotTarget:
 .
 .
 .
 jnz NotTarget
 jc Dest2
NotTarget:
 .
 .
 .

These two macro invocations both emit the same label, NotTarget, dur-
ing macro expansion. When MASM processes this code, it will complain
about a duplicate symbol definition.

MASM’s solution to this problem is to allow the use of local symbols
within a macro. Local macro symbols are unique to a specific invocation
of a macro. You must explicitly tell MASM which symbols must be local by
using the local directive:

macro_name macro optional_parameters
 local list_of_local_names
 Macro body
 endm

The list_of_local_names is a sequence of one or more MASM identifiers
separated by commas. Whenever MASM encounters one of these names in
a particular macro invocation, it automatically substitutes a unique name
for that identifier. For each macro invocation, MASM substitutes a different
name for the local symbol.

772 Chapter 13

You can correct the problem with the jzc macro by using the following
macro code:

jzc macro target
 local NotTarget

 jnz NotTarget
 jc target
NotTarget:

 endm

Now whenever MASM processes this macro, it will automatically associ-
ate a unique symbol with each occurrence of NotTarget. This will prevent the
duplicate symbol error that occurs if you do not declare NotTarget as a local
symbol.

MASM generates symbols of the form ??nnnn, where nnnn is a (unique)
four-digit hexadecimal number, for each local symbol. So, if you see symbols
such as ??0000 in your assembly listings, you know where they came from.

A macro definition can have multiple local directives, each with its
own list of local names. However, if you have multiple local statements in a
macro, they should all immediately follow the macro directive.

N O T E Unlike local symbols in a procedure, you do not attach a type to a local macro symbol.
The local directive in a macro declaration accepts only a list of identifiers; the type of
the symbols will always be text.

 13.11 The exitm Directive
The MASM exitm directive (which may appear only within a macro) tells
MASM to immediately terminate the processing of the macro. MASM will
ignore any additional lines of text within the macro. If you think of a macro
as a procedure, exitm is the return statement.

The exitm directive is useful in a conditional assembly sequence. Perhaps
after checking for the presence (or absence) of certain macro arguments,
you might want to stop processing the macro to avoid additional errors from
MASM. For example, consider the earlier neg128 macro:

neg128 macro reg64HO, reg64LO

 ifb <reg64LO>
 .err <neg128 requires 2 operands>
 exitm
 endif

 neg reg64HO
 neg reg64LO
 sbb reg64HO, 0
 endm

Macros and the MASM Compile-Time Language 773

Without the exitm directive inside the conditional assembly, this macro
would attempt to assemble the neg reg64LO instruction, generating another
error because reg64LO expands to the empty string.

 13.12 MASM Macro Function Syntax
Originally, MASM’s macro design allowed programmers to create substi-
tute mnemonics. A programmer could use a macro to replace a machine
instruction or other statement (or sequence of statements) in an assembly
language source file. Macros could create only whole lines of output text in
the source file. This prevented programmers from using macro invocation
such as the following:

mov rax, some_macro_invocation(arguments)

Today, MASM supports additional syntax that allows you to create macro
functions. A MASM macro function definition looks exactly like a normal
macro definition with one addition: you use an exitm directive with a textual
argument to return a function result from the macro. Consider the upperCase
macro function in Listing 13-4.

; Listing 13-4

; CTL while loop demonstration program.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 13-4", 0

; upperCase macro function.

; Converts text argument to a string, converting
; all lowercase characters to uppercase.

upperCase macro theString
 local resultString, thisChar, sep
resultStr equ <> ; Initialize function result with ""
sep textequ <> ; Initialize separator char with ""

 forc curChar, theString

; Check to see if the character is lowercase.
; Convert it to uppercase if it is, otherwise
; output it to resultStr as is. Concatenate the
; current character to the end of the result string
; (with a ", " separator, if this isn't the first
; character appended to resultStr).

774 Chapter 13

 if ('&curChar' GE 'a') and ('&curChar' LE 'z')
resultStr catstr resultStr, sep, %'&curChar'-32
 else
resultStr catstr resultStr, sep, %'&curChar'
 endif

; First time through, sep is the empty string. For all
; other iterations, sep is the comma separator between
; values.

sep textequ <, >
 endm ; End for

 exitm <resultStr>
 endm ; End macro

; Demonstration of the upperCase macro function:

 .data
chars byte "Demonstration of upperCase"
 byte "macro function:"
 byte upperCase(<abcdEFG123>), nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

 lea rcx, chars ; Prints characters converted to uppercase
 call printf

allDone: leave
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 13-4: Sample macro function

Macros and the MASM Compile-Time Language 775

Whenever you invoke a MASM macro function, you must always follow
the macro name with a pair of parentheses enclosing the macro’s argu-
ments. Even if the macro has no arguments, an empty pair of parentheses
must be present. This is how MASM differentiates standard macros and
macro functions.

Earlier versions of MASM included functions for directives such as
sizestr (using the name @sizestr). Recent versions of MASM have removed
these functions. However, you can easily write your own macro functions to
replace these missing functions. Here’s a quick replacement for the @sizestr
function:

; @sizestr - Replacement for the MASM @sizestr function
; that Microsoft removed from MASM.

@sizestr macro theStr
 local theLen
theLen sizestr <theStr>
 exitm <&theLen>
 endm

The & operator in the exitm directive forces the @sizestr macro to
expand the text associated with theLen local symbol inside the < and > string
delimiters before returning the value to whomever invoked the macro
function. Without the & operator, the @sizestr macro will return text of the
form ??0002 (the unique symbol MASM creates for the local symbol theLen).

 13.13 Macros as Compile-Time Procedures and Functions
Although programmers typically use macros to expand to a sequence of
machine instructions, there is absolutely no requirement that a macro body
contain any executable instructions. Indeed, many macros contain only
compile-time language statements (for example, if, while, for, = assign-
ments, and the like). By placing only compile-time language statements in
the body of a macro, you can effectively write compile-time procedures and
functions using macros.

The following unique macro is a good example of a compile-time func-
tion that returns a string result:

unique macro
 local theSym
 exitm <theSym>
 endm

Whenever your code references this macro, MASM replaces the macro
invocation with the text theSym. MASM generates unique symbols such as
??0000 for local macro symbols. Therefore, each invocation of the unique
macro will generate a sequence of symbols such as ??0000, ??0001, ??0002, and
so forth.

776 Chapter 13

 13.14 Writing Compile-Time “Programs”
The MASM compile-time language allows you to write short programs that
write other programs—in particular, to automate the creation of large or
complex assembly language sequences. The following subsections provide
simple examples of such compile-time programs.

13.14.1 Constructing Data Tables at Compile Time
Earlier, this book suggested that you could write programs to generate
large, complex lookup tables for your assembly language programs (see the
discussion of tables in “Generating Tables” in Chapter 10). Chapter 10 pro-
vides C++ programs that generate tables to paste into assembly programs.
In this section, we will use the MASM compile-time language to construct
data tables during assembly of the program that uses the tables.

One common use for the compile-time language is to build ASCII charac-
ter lookup tables for alphabetic case manipulation with the xlat instruction at
runtime. Listing 13-5 demonstrates how to construct an uppercase conversion
table and a lowercase conversion table.4 Note the use of a macro as a compile-
time procedure to reduce the complexity of the table-generating code.

; Listing 13-5

; Creating lookup tables with macros.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 13-5", 0
fmtStr1 byte "testString converted to UC:", nl
 byte "%s", nl, 0

fmtStr2 byte "testString converted to LC:", nl
 byte "%s", nl, 0

testString byte "This is a test string ", nl
 byte "Containing UPPERCASE ", nl
 byte "and lowercase chars", nl, 0

emitChRange macro start, last
 local index, resultStr
index = start
 while index lt last
 byte index

4. On modern processors, using a lookup table is probably not the most efficient way to con-
vert between alphabetic cases. However, this is just an example of filling in the table using
the compile-time language. The principles are correct, even if the code is not exactly the
best it could be.

Macros and the MASM Compile-Time Language 777

index = index + 1
 endm
 endm

; Lookup table that will convert lowercase
; characters to uppercase. The byte at each
; index contains the value of that index,
; except for the bytes at indexes "a" to "z".
; Those bytes contain the values "A" to "Z".
; Therefore, if a program uses an ASCII
; character's numeric value as an index
; into this table and retrieves that byte,
; it will convert the character to uppercase.

lcToUC equ this byte
 emitChRange 0, 'a'
 emitChRange 'A', %'Z'+1
 emitChRange %'z'+1, 0ffh

; As above, but this table converts uppercase
; to lowercase characters.

UCTolc equ this byte
 emitChRange 0, 'A'
 emitChRange 'a', %'z'+1
 emitChRange %'Z'+1, 0ffh

 .data

; Store the destination strings here:

toUC byte 256 dup (0)
TOlc byte 256 dup (0)

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rdi
 push rsi
 push rbp
 mov rbp, rsp

778 Chapter 13

 sub rsp, 56 ; Shadow storage

; Convert the characters in testString to uppercase:

 lea rbx, lcToUC
 lea rsi, testString
 lea rdi, toUC
 jmp getUC

toUCLp: xlat
 mov [rdi], al
 inc rsi
 inc rdi
getUC: mov al, [rsi]
 cmp al, 0
 jne toUCLp

; Display the converted string:

 lea rcx, fmtStr1
 lea rdx, toUC
 call printf

; Convert the characters in testString to lowercase:

 lea rbx, UCTolc
 lea rsi, testString
 lea rdi, TOlc
 jmp getLC

toLCLp: xlat
 mov [rdi], al
 inc rsi
 inc rdi
getLC: mov al, [rsi]
 cmp al, 0
 jne toLCLp

; Display the converted string:

 lea rcx, fmtStr2
 lea rdx, TOlc
 call printf

allDone: leave
 pop rsi
 pop rdi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 13-5: Generating case-conversion tables with the compile-time language

Macros and the MASM Compile-Time Language 779

Here’s the build command and sample output for the program in
Listing 13-5:

C:\>build listing13-5

C:\>echo off
 Assembling: listing13-5.asm
c.cpp

C:\>listing13-5
Calling Listing 13-5:
testString converted to UC:
THIS IS A TEST STRING
CONTAINING UPPERCASE
AND LOWERCASE CHARS

testString converted to LC:
this is a test string
containing uppercase
and lowercase chars

Listing 13-5 terminated

13.14.2 Unrolling Loops
Chapter 7 points out that you can unroll loops to improve the perfor-
mance of certain assembly language programs. However, this requires a
lot of extra typing, especially if you have many loop iterations. Fortunately,
MASM’s compile-time language facilities, especially the while loop, come to
the rescue. With a small amount of extra typing plus one copy of the loop
body, you can unroll a loop as many times as you please.

If you simply want to repeat the same code sequence a certain number
of times, unrolling the code is especially trivial. All you have to do is wrap
a MASM while..endm loop around the sequence and count off the specified
number of iterations. For example, if you wanted to print Hello World 10
times, you could encode this as follows:

count = 0
while count LT 10
 call print
 byte "Hello World", nl, 0

count = count + 1
endm

Although this code looks similar to a high-level language while loop,
remember the fundamental difference: the preceding code simply consists
of 10 straight calls to print in the program. Were you to encode this using
an actual loop, there would be only one call to print and lots of additional
logic to loop back and execute that single call 10 times.

Unrolling loops becomes slightly more complicated if any instructions
in that loop refer to the value of a loop control variable or another value,

780 Chapter 13

which changes with each iteration of the loop. A typical example is a loop
that zeroes the elements of an integer array:

 xor eax, eax ; Set EAX and RBX to 0
 xor rbx, rbx
 lea rcx, array
whlLp: cmp rbx, 20
 jae loopDone
 mov [rcx][rbx * 4], eax
 inc rbx
 jmp whlLp

loopDone:

In this code fragment, the loop uses the value of the loop control vari-
able (in RBX) to index into array. Simply copying mov [rcx][ebx * 4], eax
20 times is not the proper way to unroll this loop. You must substitute an
appropriate constant index in the range 0 to 76 (the corresponding loop
indices, times 4) in place of rbx * 4 in this example. Correctly unrolling
this loop should produce the following code sequence:

mov [rcx][0 * 4], eax
mov [rcx][1 * 4], eax
mov [rcx][2 * 4], eax
mov [rcx][3 * 4], eax
mov [rcx][4 * 4], eax
mov [rcx][5 * 4], eax
mov [rcx][6 * 4], eax
mov [rcx][7 * 4], eax
mov [rcx][8 * 4], eax
mov [rcx][9 * 4], eax
mov [rcx][10 * 4], eax
mov [rcx][11 * 4], eax
mov [rcx][12 * 4], eax
mov [rcx][13 * 4], eax
mov [rcx][14 * 4], eax
mov [rcx][15 * 4], eax
mov [rcx][16 * 4], eax
mov [rcx][17 * 4], eax
mov [rcx][18 * 4], eax
mov [rcx][19 * 4], eax

 You can easily do this using the following compile-time code sequence:

iteration = 0
while iteration LT 20
 mov [rcx][iteration * 4], eax
 iteration = iteration + 1
endm

If the statements in a loop use the loop control variable’s value, it is pos-
sible to unroll such loops only if those values are known at compile time.
You cannot unroll loops when user input (or other runtime information)
controls the number of iterations.

Macros and the MASM Compile-Time Language 781

Of course, if the code sequence loaded RCX with the address of array
immediately prior to this loop, you could also use the following while loop
to save the use of the RCX register:

iteration = 0
while iteration LT 20
 mov array[iteration * 4], eax
 iteration = iteration + 1
endm

N O T E This macro expansion still uses the PC-relative addressing mode, so you don’t have to
use the LARGEADDRESSAWARE:NO option.

 13.15 Simulating HLL Procedure Calls
Calling procedures (functions) in assembly language is a real chore. Loading
registers with parameters, pushing values onto the stack, and other activi-
ties are a complete distraction. High-level language procedure calls are far
more readable and easier to write than the same calls to an assembly lan-
guage function. Macros provide a good mechanism to call procedures and
functions in a high-level-like manner.

13.15.1 HLL-Like Calls with No Parameters
Of course, the most trivial example is a call to an assembly language proce-
dure that has no arguments at all:

someProc macro
 call _someProc
 endm

_someProc proc
 .
 .
 .
_someProc endp
 .
 .
 .
 someProc ; Call the procedure

This simple example demonstrates a couple of conventions this book
will use for calling procedures via macro invocation:

•	 If the procedure and all calls to the procedure occur within the same
source file, place the macro definition immediately before the procedure
to make it easy to find. (Chapter 15 discusses the placement of the macro
if you call the procedure from several different source files.)

•	 If you would normally name the procedure someProc, change the proce-
dure’s name to _someProc and then use someProc as the macro name.

782 Chapter 13

While the advantage to using a macro invocation of the form someProc
versus a call to the procedure using call someProc might seem somewhat
dubious, keeping all procedure calls consistent (by using macro invocations
for all of them) helps make your programs more readable.

13.15.2 HLL-Like Calls with One Parameter
The next step up in complexity is to call a procedure with a single param-
eter. Assuming you’re using the Microsoft ABI and passing the parameter in
RCX, the simplest solution is something like the following:

someProc macro parm1
 mov rcx, parm1
 call _someProc
 endm
 .
 .
 .
 someProc Parm1Value

This macro works well if you’re passing a 64-bit integer by value. If the
parameter is an 8-, 16-, or 32-bit value, you would swap CL, CX, or ECX for
RCX in the mov instruction.5

If you’re passing the first argument by reference, you would swap an lea
instruction for the mov instruction in this example. As reference parameters
are always 64-bit values, the lea instruction would usually take this form:

lea rcx, parm1

Finally, if you’re passing a real4 or real8 value as the parameter, you’d swap
one of the following instructions for the mov instruction in the previous macro:

movss xmm0, parm1 ; Use this for real4 parameters
movsd xmm0, parm1 ; Use this for real8 parameters

As long as the actual parameter is a memory variable or an appropriate
integer constant, this simple macro definition works quite well, covering a
very large percentage of the real-world cases.

For example, to call the C Standard Library printf() function with a
single argument (the format string) using the current macro scheme, you’d
write the macro as follows:6

cprintf macro parm1
 lea rcx, parm1
 call printf
 endm

5. Some people will even use movzx ecx, parm1 for 8- or 16-bit values to ensure the HO bits of
ECX and RCX are all 0 upon entry into the procedure.

6. We don’t get to pick the name of the function here. We must call the printf function; we
cannot arbitrarily name it _printf in our code. Therefore, this macro uses the identifier
cprintf (for call printf).

Macros and the MASM Compile-Time Language 783

So you can invoke this macro as

cprintf fmtStr

where fmtStr is (presumably) the name of a byte object in your .data section
containing the printf format string.

For a more high-level-like syntax for our procedure calls, we should
allow something like the following:

cprintf "This is a printf format string"

Unfortunately, the way the macro is currently written, this will generate
the following (syntactically incorrect) statement:

lea rcx, "This is a printf format string"

We could modify this macro to allow this invocation by rewriting it as
follows:

cprintf macro parm1
 local fmtStr
 .data
fmtStr byte parm1, nl, 0
 .code
 lea rcx, fmtStr
 call printf
 endm

Invoking this macro by using a string constant as the argument
expands to the following code:

 .data
fmtStr byte "This is a printf format string", nl, 0
 .code
 lea rcx, fmtStr ; Technically, fmtStr will really be something
 call printf ; like ??0001

N O T E Inserting a .data segment into your code sequence is perfectly okay. When the .code
directive comes along, MASM will continue emitting the new object code at the pro-
gram counter offset in effect when it encounters the .data directive.

The only problem with this new form of the macro is that it no longer
accepts invocations such as

cprintf fmtStr

where fmtStr is a byte object in the .data section. We’d really like to have a
macro that can accept both forms.

784 Chapter 13

13.15.3 Using opattr to Determine Argument Types
The trick to this is the opattr operator (see Table 4-1 in Chapter 4). This
operator returns an integer value with certain bits set based on the type of
expression that follows. In particular, bit 2 will be set if the expression fol-
lowing is relocatable or otherwise references memory. Therefore, this bit
will be set if a variable such as fmtStr appears as the argument, and it will
be clear if you pass a string literal as the argument (opattr actually returns
the value 0 for string literals that are longer than 8 characters, just so you
know). Now consider the code in Listing 13-6.

; Listing 13-6

; opattr demonstration.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 13-6", 0

fmtStr byte nl, "Hello, World! #2", nl, 0

 .code
 externdef printf:proc

; Return program title to C++ program:

 public getTitle
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp

; cprintf macro:

; cprintf fmtStr
; cprintf "Format String"

cprintf macro fmtStrArg
 local fmtStr, attr, isConst

attr = opattr fmtStrArg
isConst = (attr and 4) eq 4
 if (attr eq 0) or isConst
 .data
fmtStr byte fmtStrArg, nl, 0
 .code
 lea rcx, fmtStr

 else

Macros and the MASM Compile-Time Language 785

 lea rcx, fmtStrArg

 endif
 call printf
 endm

atw = opattr "Hello World"
bin = opattr "abcdefghijklmnopqrstuvwxyz"

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rdi
 push rsi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

 cprintf "Hello World!"
 cprintf fmtStr

allDone: leave
 pop rsi
 pop rdi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 13-6: opattr operator in a macro

Here’s the build command and sample output for Listing 13-6:

C:\>build listing13-6

C:\>echo off
 Assembling: listing13-6.asm
c.cpp

C:\>listing13-6
Calling Listing 13-6:
Hello World!
Hello, World! #2
Listing 13-6 terminated

This cprintf macro is far from perfect. For example, the C/C++ printf()
function allows multiple arguments that this macro does not handle. But
this macro does demonstrate how to handle two different calls to printf
based on the type of the argument you pass cprintf.

786 Chapter 13

13.15.4 HLL-Like Calls with a Fixed Number of Parameters
Expanding the macro-calling mechanism from one parameter to two or
more (assuming a fixed number of parameters) is fairly easy. All you need
to do is add more formal parameters and handle those arguments in your
macro definition. Listing 13-7 is a modification of Listing 9-11 in Chapter 9
that uses macro invocations for calls to r10ToStr, e10ToStr, and some fixed
calls to printf (for brevity, as this is a very long program, only the macros
and a few invocations are included).

 .
 . ; About 1200 lines from Listing 9-10.
 .

; r10ToStr - Macro to create an HLL-like call for the
; _r10ToStr procedure.

; Parameters:

; r10 - Must be the name of a real4, real8, or
; real10 variable.
; dest - Must be the name of a byte buffer to hold
; string result.

; wdth - Output width for the string. Either an
; integer constant or a dword variable.

; dPts - Number of positions after the decimal
; point. Either an integer constant or
; a dword variable.

; fill - Fill char. Either a character constant
; or a byte variable.

; mxLen - Maximum length of output string. Either
; an integer constant or a dword variable.

r10ToStr macro r10, dest, wdth, dPts, fill, mxLen
 fld r10

; dest is a label associated with a string variable:

 lea rdi, dest

; wdth is either a constant or a dword var:

 mov eax, wdth

; dPts is either a constant or a dword var
; holding the number of decimal point positions:

 mov edx, dPts

Macros and the MASM Compile-Time Language 787

; Process fill character. If it's a constant,
; directly load it into ECX (which zero-extends
; into RCX). If it's a variable, then move with
; zero extension into ECX (which also zero-
; extends into RCX).

; Note: bit 2 from opattr is 1 if fill is
; a constant.

 if ((opattr fill) and 4) eq 4
 mov ecx, fill
 else
 movzx ecx, fill
 endif

; mxLen is either a constant or a dword var.

 mov r8d, mxLen
 call _r10ToStr
 endm

; e10ToStr - Macro to create an HLL-like call for the
; _e10ToStr procedure.

; Parameters:

; e10 - Must be the name of a real4, real8, or
; real10 variable.
; dest - Must be the name of a byte buffer to hold
; string result.

; wdth - Output width for the string. Either an
; integer constant or a dword variable.

; xDigs - Number of exponent digits.

; fill - Fill char. Either a character constant
; or a byte variable.

; mxLen - Maximum length of output string. Either
; an integer constant or a dword variable.

e10ToStr macro e10, dest, wdth, xDigs, fill, mxLen
 fld e10

; dest is a label associated with a string variable:

 lea rdi, dest

; wdth is either a constant or a dword var:

 mov eax, wdth

788 Chapter 13

; xDigs is either a constant or a dword var
; holding the number of decimal point positions:

 mov edx, xDigs

; Process fill character. If it's a constant,
; directly load it into ECX (which zero-extends
; into RCX). If it's a variable, then move with
; zero extension into ECX (which also zero-
; extends into RCX).

; Note: bit 2 from opattr is 1 if fill is
; a constant.

 if ((opattr fill) and 4) eq 4
 mov ecx, fill
 else
 movzx ecx, fill
 endif

; mxLen is either a constant or a dword var.

 mov r8d, mxLen
 call _e10ToStr
 endm

; puts - A macro to print a string using printf.

; Parameters:

; fmt - Format string (must be a byte
; variable or string constant).

; theStr - String to print (must be a
; byte variable, a register,
; or a string constant).

puts macro fmt, theStr
 local strConst, bool

 lea rcx, fmt

 if ((opattr theStr) and 2)

; If memory operand:

 lea rdx, theStr

 elseif ((opattr theStr) and 10h)

; If register operand:

 mov rdx, theStr

 else

Macros and the MASM Compile-Time Language 789

; Assume it must be a string constant.

 .data
strConst byte theStr, 0
 .code
 lea rdx, strConst

 endif

 call printf
 endm

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage

; F output:

 r10ToStr r10_1, r10str_1, 30, 16, '*', 32
 jc fpError
 puts fmtStr1, r10str_1

 r10ToStr r10_1, r10str_1, 30, 15, '*', 32
 jc fpError
 puts fmtStr1, r10str_1
 .
 . ; Similar code to Listing 9-10 with macro
 . ; invocations rather than procedure calls.
; E output:

 e10ToStr e10_1, r10str_1, 26, 3, '*', 32
 jc fpError
 puts fmtStr3, r10str_1

 e10ToStr e10_2, r10str_1, 26, 3, '*', 32
 jc fpError
 puts fmtStr3, r10str_1
 .
 . ; Similar code to Listing 9-10 with macro
 . ; invocations rather than procedure calls.

Listing 13-7: Macro call implementation for converting floating-point values to strings

Compare the HLL-like calls to these three functions against the origi-
nal procedure calls in Listing 9-11:

; F output:

fld r10_1
lea rdi, r10str_1

790 Chapter 13

mov eax, 30 ; fWidth
mov edx, 16 ; decimalPts
mov ecx, '*' ; Fill
mov r8d, 32 ; maxLength
call r10ToStr
jc fpError

lea rcx, fmtStr1
lea rdx, r10str_1
call printf

fld r10_1
lea rdi, r10str_1
mov eax, 30 ; fWidth
mov edx, 15 ; decimalPts
mov ecx, '*' ; Fill
mov r8d, 32 ; maxLength
call r10ToStr
jc fpError

lea rcx, fmtStr1
lea rdx, r10str_1
call printf
.
. ; Additional code from Listing 9-10.
.
; E output:

fld e10_1
lea rdi, r10str_1
mov eax, 26 ; fWidth
mov edx, 3 ; expDigits
mov ecx, '*' ; Fill
mov r8d, 32 ; maxLength
call e10ToStr
jc fpError

lea rcx, fmtStr3
lea rdx, r10str_1
call printf

fld e10_2
lea rdi, r10str_1
mov eax, 26 ; fWidth
mov edx, 3 ; expDigits
mov ecx, '*' ; Fill
mov r8d, 32 ; maxLength
call e10ToStr
jc fpError

lea rcx, fmtStr3
lea rdx, r10str_1
call printf

Macros and the MASM Compile-Time Language 791

.

. ; Additional code from Listing 9-10.

.

Clearly, the macro version is easier to read (and, as it turns out, easier
to debug and maintain too).

13.15.5 HLL-Like Calls with a Varying Parameter List
Some procedures expect a varying number of parameters; the C/C++ printf()
function is a good example. Some procedures, though they might support
only a fixed number of arguments, could be better written using a varying
argument list. For example, consider the print procedure that has appeared
throughout the examples in this book; its string parameter (which follows
the call to print in the code stream) is, technically, a single-string argument.
Consider the following macro implementation for a call to print:

print macro arg
 call _print
 byte arg, 0
 endm

You could invoke this macro as follows:

print "Hello, World!"

The only problem with this macro is that you will often want to supply
multiple arguments in its invocation, such as this:

print "Hello, World!", nl, "It's a great day!", nl

Unfortunately, this macro will not accept this list of parameters. However,
this seems like a natural use of the print macro, so it makes a lot of sense to
modify the print macro to handle multiple arguments and combine them as
a single string after the call to the _print function. Listing 13-8 provides such
an implementation.

; Listing 13-8

; HLL-like procedure calls with
; a varying parameter list.

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 13-8", 0

 .code
 externdef printf:proc

792 Chapter 13

 include getTitle.inc

; Note: don't include print.inc here
; because this code uses a macro for
; print.

; print macro - HLL-like calling sequence for the _print
; function (which is, itself, a shell for
; the printf function).

; If print appears on a line by itself (no; arguments),
; then emit a string consisting of a single newline
; character (and zero-terminating byte). If there are
; one or more arguments, emit each argument and append
; a single 0 byte after all the arguments.

; Examples:

; print
; print "Hello, World!"
; print "Hello, World!", nl

print macro arg1, optArgs:vararg
 call _print

 ifb <arg1>

; If print is used by itself, print a
; newline character:

 byte nl, 0

 else

; If we have one or more arguments, then
; emit each of them:

 byte arg1

 for oa, <optArgs>

 byte oa

 endm

; Zero-terminate the string.

 byte 0

 endif
 endm

_print proc
 push rax
 push rbx

Macros and the MASM Compile-Time Language 793

 push rcx
 push rdx
 push r8
 push r9
 push r10
 push r11

 push rbp
 mov rbp, rsp
 sub rsp, 40
 and rsp, -16

 mov rcx, [rbp + 72] ; Return address
 call printf

 mov rcx, [rbp + 72]
 dec rcx
skipTo0: inc rcx
 cmp byte ptr [rcx], 0
 jne skipTo0
 inc rcx
 mov [rbp + 72], rcx

 leave
 pop r11
 pop r10
 pop r9
 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
_print endp

p macro arg
 call _print
 byte arg, 0
 endm

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rdi
 push rsi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

 print "Hello world"
 print
 print "Hello, World!", nl

794 Chapter 13

allDone: leave
 pop rsi
 pop rdi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 13-8: Varying arguments’ implementation of print macro

Here’s the build command and output for the program in Listing 13-8:

C:\>build listing13-8

C:\>echo off
 Assembling: listing13-8.asm
c.cpp

C:\>listing13-8
Calling Listing 13-8:
Hello world
Hello, World!
Listing 13-8 terminated

With this new print macro, you can now call the _print procedure in an
HLL-like fashion by simply listing the arguments in the print invocation:

print "Hello World", nl, "How are you today?", nl

This will generate a byte directive that concatenates all the individual
string components.

Note, by the way, that it is possible to pass a string containing multiple
arguments to the original (single-argument) version of print. By rewriting
the macro invocation

print "Hello World", nl

as

print <"Hello World", nl>

you get the desired output. MASM treats everything between the < and >
brackets as a single argument. However, it’s a bit of a pain to have to con-
stantly put these brackets around multiple arguments (and your code is
inconsistent, as single arguments don’t require them). The print macro
implementation with varying arguments is a much better solution.

 13.16 The invoke Macro
At one time, MASM provided a special directive, invoke, that you could use
to call a procedure and pass it parameters (it worked with the proc directive

Macros and the MASM Compile-Time Language 795

to determine the number and type of parameters a procedure expected).
When Microsoft modified MASM to support 64-bit code, it removed the
invoke statement from the MASM language.

However, some enterprising programmers have written MASM mac-
ros to simulate the invoke directive in 64-bit versions of MASM. The invoke
macro not only is useful in its own right but also provides a great example
of how to write advanced macros to call procedures. For more informa-
tion on the invoke macro, visit https://www.masm32.com/ and download the
MASM32 SDK. This includes a set of macros (and other utilities) for 64-bit
programs, including the invoke macro.

 13.17 Advanced Macro Parameter Parsing
The previous sections provided examples of macro parameter processing
used to determine the type of a macro argument in order to determine the
type of code to emit. By carefully examining the attributes of an argument,
a macro can make various choices concerning how to deal with that argu-
ment. This section presents some more advanced techniques you can use
when processing macro arguments.

Clearly, the opattr compile-time operator is one of the most important
tools you can use when looking at macro arguments. This operator uses the
following syntax:

opattr expression

Note that a generic address expression follows opattr; you are not lim-
ited to a single symbol.

The opattr operator returns an integer value that is a bit mask speci-
fying the opattr attributes of the associated expression. If the expression
following opattr contains forward-referenced symbols or is an illegal
expression, opattr returns 0. Microsoft’s documentation indicates that
opattr returns the values shown in Table 13-2.

Table 13-2: opattr Return Values

Bit Meaning

0 There is a code label in the expression.

1 The expression is relocatable.

2 The expression is a constant expression.

3 The expression is uses direct (PC-relative) addressing.

4 The expression is a register.

5 The expression contains no undefined symbols (obsolete).

6 The expression is a stack-segment memory expression.

7 The expression references an external symbol.

(continued)

https://www.masm32.com/

796 Chapter 13

Bit Meaning

8–11 Language type*

Value Language

0 No language type

1 C

2 SYSCALL

3 STDCALL

4 Pascal

5 FORTRAN

6 BASIC
* 64-bit code generally doesn’t support a language type, so these bits are

usually 0.

Quite honestly, Microsoft’s documentation does not do the best job
explaining how MASM sets the bits. For example, consider the following
MASM statements:

codeLabel:
opcl = opattr codeLabel ; Sets opcl to 25h or 0010_0101b
opconst = opattr 0 ; Sets opconst to 36 or 0010_0100b

The opconst has bits 2 and 5 set, just as you would expect from Table 13-2.
However, opcl has bits 0, 2, and 5 set; 0 and 5 make sense, but bit 2 (the
expression is a constant expression) does not make sense. If, in a macro,
you were to test only bit 2 to determine if the operand is a constant (as, I
must admit, I have done in earlier examples in this chapter), you could get
into trouble when bit 2 is set and you assume that it is a constant.

Probably the wisest thing to do is to mask off bits 0 to 7 (or maybe just
bits 0 to 6) and compare the result against an 8-bit value rather than a
simple mask. Table 13-3 lists some common values you can test against.

Table 13-3: 8-Bit Values for opattr Results

Value Meaning

0 Undefined (forward-referenced) symbol or illegal expression

34 / 22h Memory access of the form [reg + const]

36 / 24h Constant

37 / 25h Code label (proc name or symbol with a : suffix) or offset code_label
form

38 / 26h Expression of the form offset label, where label is a variable in the
.data section

42 / 2Ah Global symbol (for example, symbol in .data section)

43 / 2Bh Memory access of the form [reg + code_label], where code_label is a
proc name or symbol with : suffix

Table 13-2: opattr Return Values (continued)

Macros and the MASM Compile-Time Language 797

Value Meaning

48 / 30h Register (general-purpose, MM, XMM, YMM, ZMM, floating-point/ST,
or other special-purpose register)

98 / 62h Stack-relative memory access (memory addresses of the form
[rsp + xxx] and [rbp + xxx])

165 / 0A5h External code symbol (37 / 25h with bit 7 set)

171 / ABh External data symbol (43 / 2Bh with bit 7 set)

Perhaps the biggest issue with opattr, as has already been pointed out, is
that it believes that constant expressions are integers that can fit into 64 bits.
This creates a problem for two important constant types: string literals (lon-
ger than 8 characters) and floating-point constants. opattr returns 0 for both.8

13.17.1 Checking for String Literal Constants
Although opattr won’t help us determine whether an operand is a string, we
can use MASM’s string-processing operations to test the first character of
an operand to see if it is a quote. The following code does just that:

; testStr is a macro function that tests its
; operand to see if it is a string literal.

testStr macro strParm
 local firstChar

 ifnb <strParm>
firstChar substr <strParm>, 1, 1

 ifidn firstChar,<!">

; First character was ", so assume it's
; a string.

 exitm <1>
 endif ; ifidn
 endif ; ifnb

; If we get to this point in the macro,
; we definitely do not have a string.

 exitm <0>
 endm

N O T E This macro looks only for a leading quote ("), but MASM strings can also be delim-
ited by apostrophes. I’ll leave it up to you to expand this macro to handle apostrophes
as well as quotes.

7. MASM will treat a sequence of one to eight characters as an integer value. So short strings
(eight characters or less) work fine as expressions.

798 Chapter 13

Consider the following two invocations of the testStr macro:

isAStr = testStr("String Literal")
notAStr = testStr(someLabel)

MASM will set the symbol isAStr to the value 1, and notAStr to the value 0.

13.17.2 Checking for Real Constants
Real constants are another literal type that MASM’s opattr operator doesn’t
support. Again, writing a macro to test for a real constant can resolve that
issue. Sadly, parsing real numbers isn’t as easy as checking for a string con-
stant: there is no single leading character that we can use to say, “Hey, we’ve
got a floating-point constant here.” The macro will have to explicitly parse
the operand character by character and validate it.

To begin with, here is a grammar that defines a MASM floating-point
constant:

Sign ::= (+|-)
Digit ::= [0-9]
Mantissa ::= (Digit)+ | '.' Digit)+ | (Digit)+ '.' Digit*
Exp ::= (e|E) Sign? Digit? Digit? Digit?
Real ::= Sign? Mantissa Exp?

A real number consists of an optional sign followed by a mantissa and
an optional exponent. A mantissa contains at least one digit; it can also
contain a decimal point with a digit to its left or right (or both). However, a
mantissa cannot consist of a decimal point by itself.

The macro function to test for a real constant should be callable as
follows:

isReal = getReal(some_text)

where some_text is the textual data we want to test to see if it’s a real con-
stant. The macro for getReal could be the following:

; getReal - Parses a real constant.

; Returns:
; true - If the parameter contains a syntactically
; correct real number (and no extra characters).
; false - If there are any illegal characters or
; other syntax errors in the numeric string.

getReal macro origParm
 local parm, curChar, result

; Make a copy of the parameter so we don't
; delete the characters in the original string.

parm textequ &origParm

Macros and the MASM Compile-Time Language 799

; Must have at least one character:

 ifb parm
 exitm <0>
 endif

; Extract the optional sign:

 if isSign(parm)
curChar textequ extract1st(parm) ; Skip sign char
 endif

; Get the required mantissa:

 if getMant(parm) eq 0
 exitm <0> ; Bad mantissa
 endif

; Extract the optional exponent:

result textequ getExp(parm)
 exitm <&result>

 endm ; getReal

Testing for real constants is a complex process, so it’s worthwhile to go
through this macro (and all subservient macros) step by step:

1. Make a copy of the original parameter string. During processing, getReal
will delete characters from the parameter string while parsing the string.
This macro makes a copy to prevent disturbing the original text string
passed in to it.

2. Check for a blank parameter. If the caller passes in an empty string, the
result is not a valid real constant and getReal must return false. It’s impor-
tant to check for the empty string right away because the rest of the code
makes the assumption that the string is at least one character long.

3. Call the getSign macro function. This function (its definition appears
a little later) returns true if the first character of its argument is a + or
- symbol; otherwise, it returns false.

4. If the first character is a sign character, invoke the extract1st macro:

curChar textequ extract1st(parm) ; Skip sign char

The extract1st macro returns the first character of its argument as the
function result (which this statement assigns to the curChar symbol) and
then deletes the first character of its argument. So if the original string
passed to getReal was +1, this statement puts + into curChar and deletes
the first character in parm (producing the string 1). The definition for
extract1st appears a little later in this section.

800 Chapter 13

getReal doesn’t actually use the sign character assigned to curChar. The
purpose of this extract1st invocation was strictly for the side effect of
deleting the first character in parm.

5. Invoke getMant. This macro function will return true if the prefix of its
string argument is a valid mantissa. It will return false if the mantissa
does not contain at least one numeric digit. Note that getMant will stop
processing the string on the first non-mantissa character it encounters
(including a second decimal point, if there are two or more decimal
points in the mantissa). The getMant function doesn’t care about illegal
characters; it leaves it up to getReal to look at the remaining characters
after the return from getMant to determine if the whole string is valid.
As a side effect, getMant deletes all leading characters from the param-
eter string that it processes.

6. Invoke the getExp macro function to process any (optional) trailing
exponent. The getExp macro is also responsible for ensuring that no
garbage characters follow (which results in a parse failure).

The isSign macro is fairly straightforward. Here’s its implementation:

; isSign - Macro function that returns true if the
; first character of its parameter is a
; "+" or "-".

isSign macro parm
 local FirstChar
 ifb <parm>
 exitm <0>
 endif

FirstChar substr parm, 1, 1
 ifidn FirstChar, <+>
 exitm <1>
 endif
 ifidn FirstChar, <->
 exitm <1>
 endif
 exitm <0>
 endm

This macro uses the substr operation to extract the first character from
the parameter and then compares this against the sign characters (+ or -).
It returns true if it is a sign character, and false otherwise.

The extract1st macro function removes the first character from the
argument passed to it and returns that character as the function result. As
a side effect, this macro function also deletes the first character from the
parameter passed to it. Here’s extract1st’s implementation:

extract1st macro parm
 local FirstChar
 ifb <%parm>

Macros and the MASM Compile-Time Language 801

 exitm <>
 endif
FirstChar substr parm, 1, 1
 if @sizestr(%parm) GE 2
parm substr parm, 2
 else
parm textequ <>
 endif

 exitm <FirstChar>
 endm

The ifb directive checks whether the parameter string is empty. If it is,
extract1st immediately returns the empty string without further modifica-
tion to its parameter.

Note the % operator before the parm argument. The parm argument actu-
ally expands to the name of the string variable holding the real constant.
This turns out to be something like ??0005 because of the copy made of the
original parameter in the getReal function. Were you to simply specify ifb
<parm>, the ifb directive would see <??0005>, which is not blank. Placing the
% operator before the parm symbol tells MASM to evaluate the expression
(which is just the ??0005 symbol) and replace it by the text it evaluates to
(which, in this case, is the actual string).

If the string is not blank, extract1st uses the substr directive to extract
the first character from the string and assigns this character to the FirstChar
symbol. The extract1st macro function will return this value as the function
result.

Next, the extract1st function has to delete the first character from the
parameter string. It uses the @sizestr function (whose definition appears
a little earlier in this chapter) to determine whether the character string
contains at least two characters. If so, extract1st uses the substr directive to
extract all the characters from the parameter, starting at the second char-
acter position. It assigns this substring back to the parameter passed in. If
extract1st is processing the last character in the string (that is, if @sizestr
returns 1), then the code cannot use the substr directive because the index
would be out of range. The else section of the if directive returns an empty
string if @sizestr returns a value less than 2.

The next getReal subservient macro function is getMant. This macro is
responsible for parsing the mantissa component of the floating-point con-
stant. The implementation is the following:

getMant macro parm
 local curChar, sawDecPt, rpt
sawDecPt = 0
curChar textequ extract1st(parm) ; Get 1st char
 ifidn curChar, <.> ; Check for dec pt
sawDecPt = 1
curChar textequ extract1st(parm) ; Get 2nd char
 endif

802 Chapter 13

; Must have at least one digit:

 if isDigit(curChar) eq 0
 exitm <0> ; Bad mantissa
 endif

; Process zero or more digits. If we haven't already
; seen a decimal point, allow exactly one of those.

; Do loop at least once if there is at least one
; character left in parm:

rpt = @sizestr(%parm)
 while rpt

; Get the 1st char from parm and see if
; it is a decimal point or a digit:

curChar substr parm, 1, 1
 ifidn curChar, <.>
rpt = sawDecPt eq 0
sawDecPt = 1
 else
rpt = isDigit(curChar)
 endif

; If char was legal, then extract it from parm:

 if rpt
curChar textequ extract1st(parm) ; Get next char
 endif

; Repeat as long as we have more chars and the
; current character is legal:

rpt = rpt and (@sizestr(%parm) gt 0)
 endm ; while

; If we've seen at least one digit, we've got a valid
; mantissa. We've stopped processing on the first
; character that is not a digit or the 2nd "." char.

 exitm <1>
 endm ; getMant

A mantissa must have at least one decimal digit. It can have zero or one
occurrence of a decimal point (which may appear before the first digit, at
the end of the mantissa, or in the middle of a string of digits). The getMant
macro function uses the local symbol sawDecPt to keep track of whether
it has seen a decimal point already. The function begins by initializing
sawDecPt to false (0).

A valid mantissa must have at least one character (because it must have
at least one decimal digit). So the next thing getMant does is extract the first

Macros and the MASM Compile-Time Language 803

character from the parameter string (and place this character in curChar). If
the first character is a period (decimal point), the macro sets sawDecPt to true.

The getMant function uses a while directive to process all the remaining
characters in the mantissa. A local variable, rpt, controls the execution of
the while loop. The code at the beginning of getMant sets rpt to true if the
first character is a period or a decimal digit. The isDigit macro function
tests the first character of its argument and returns true if it’s one of the
characters 0 to 9. The definition for isDigit will appear shortly.

If the first character in the parameter was a dot (.) or a decimal digit,
the getMant function removes that character from the beginning of the
string and executes the body of the while loop for the first time if the new
parameter string length is greater than zero.

The while loop grabs the first character from the current parameter
string (without deleting it just yet) and tests it against a decimal digit or a
. character. If it’s a decimal digit, the loop will remove that character from the
parameter string and repeat. If the current character is a period, the code
first checks whether it has already seen a decimal point (using sawDecPt).
If this is a second decimal point, the function returns true (later code will
deal with the second . character). If the code has not already seen a decimal
point, the loop sets sawDecPt to true and continues with the loop execution.

The while loop repeats as long as it sees decimal digits, a single decimal
point, or a string with length greater than zero. Once the loop completes,
the getMant function returns true. The only way getMant returns false is if it
does not see at least one decimal digit (either at the beginning of the string
or immediately after the decimal point at the beginning of the string).

The isDigit macro function is a brute-force function that tests its first
character against the 10 decimal digits. This function does not remove
any characters from its parameter argument. The source code for isDigit
is the following:

isDigit macro parm
 local FirstChar
 if @sizestr(%parm) eq 0
 exitm <0>
 endif

FirstChar substr parm, 1, 1
 ifidn FirstChar, <0>
 exitm <1>
 endif
 ifidn FirstChar, <1>
 exitm <1>
 endif
 ifidn FirstChar, <2>
 exitm <1>
 endif
 ifidn FirstChar, <3>
 exitm <1>
 endif
 ifidn FirstChar, <4>
 exitm <1>

804 Chapter 13

 endif
 ifidn FirstChar, <5>
 exitm <1>
 endif
 ifidn FirstChar, <6>
 exitm <1>
 endif
 ifidn FirstChar, <7>
 exitm <1>
 endif
 ifidn FirstChar, <8>
 exitm <1>
 endif
 ifidn FirstChar, <9>
 exitm <1>
 endif
 exitm <0>
 endm

The only thing worth commenting on is the % operator in @sizestr (for
reasons explained earlier).

Now we arrive at the last helper function appearing in getReal: the
getExp (get exponent) macro function. Here’s its implementation:

getExp macro parm
 local curChar

; Return success if no exponent present.

 if @sizestr(%parm) eq 0
 exitm <1>
 endif

; Extract the next character, return failure
; if it is not an "e" or "E" character:

curChar textequ extract1st(parm)
 if isE(curChar) eq 0
 exitm <0>
 endif

; Extract the next character:

curChar textequ extract1st(parm)

; If an optional sign character appears,
; remove it from the string:

 if isSign(curChar)
curChar textequ extract1st(parm) ; Skip sign char
 endif ; isSign

; Must have at least one digit:

 if isDigit(curChar) eq 0

Macros and the MASM Compile-Time Language 805

 exitm <0>
 endif

; Optionally, we can have up to three additional digits:

 if @sizestr(%parm) gt 0
curChar textequ extract1st(parm) ; Skip 1st digit
 if isDigit(curChar) eq 0
 exitm <0>
 endif
 endif

 if @sizestr(%parm) gt 0
curChar textequ extract1st(parm) ; Skip 2nd digit
 if isDigit(curChar) eq 0
 exitm <0>
 endif
 endif

 if @sizestr(%parm) gt 0
curChar textequ extract1st(parm) ; Skip 3rd digit
 if isDigit(curChar) eq 0
 exitm <0>
 endif
 endif

; If we get to this point, we have a valid exponent.

 exitm <1>
 endm ; getExp

Exponents are optional in a real constant. Therefore, the first thing
this macro function does is check whether it has been passed an empty
string. If so, it immediately returns success. Once again, the ifb <%parm>
directive must have the % operator before the parm argument.

If the parameter string is not empty, the first character in the string
must be an E or e character. This function returns false if this is not the case.
Checking for an E or e is done with the isE helper function, whose implemen-
tation is the following (note the use of ifidni, which is case-insensitive):

isE macro parm
 local FirstChar
 if @sizestr(%parm) eq 0
 exitm <0>
 endif

FirstChar substr parm, 1, 1
 ifidni FirstChar, <e>
 exitm <1>
 endif
 exitm <0>
 endm

806 Chapter 13

Next, the getExp function looks for an optional sign character. If it encoun-
ters one, it deletes the sign character from the beginning of the string.

At least one decimal digit, and at most four decimal digits, must follow
the e or E and sign characters. The remaining code in getExp handles that.

Listing 13-9 is a demonstration of the macro snippets appearing through-
out this section. Note that this is a pure compile-time program; all its activity
takes place while MASM assembles this source code. It does not generate any
executable machine code.

; Listing 13-9

; This is a compile-time program.
; It does not generate any executable code.

; Several useful macro functions:

; mout - Like echo, but allows "%" operators.

; testStr - Tests an operand to see if it
; is a string literal constant.

; @sizestr - Handles missing MASM function.

; isDigit - Tests first character of its
; argument to see if it's a decimal
; digit.

; isSign - Tests first character of its
; argument to see if it's a "+"
; or a "-" character.

; extract1st - Removes the first character
; from its argument (side effect)
; and returns that character as
; the function result.

; getReal - Parses the argument and returns
; true if it is a reasonable-
; looking real constant.

; Test strings and invocations for the
; getReal macro:

 Note: actual macro code appears in previous code snippets
 and has been removed from this listing for brevity

mant1 textequ <1>
mant2 textequ <.2>
mant3 textequ <3.4>
rv4 textequ <1e1>
rv5 textequ <1.e1>
rv6 textequ <1.0e1>
rv7 textequ <1.0e + 1>

Macros and the MASM Compile-Time Language 807

rv8 textequ <1.0e - 1>
rv9 textequ <1.0e12>
rva textequ <1.0e1234>
rvb textequ <1.0E123>
rvc textequ <1.0E + 1234>
rvd textequ <1.0E - 1234>
rve textequ <-1.0E - 1234>
rvf textequ <+1.0E - 1234>
badr1 textequ <>
badr2 textequ <a>
badr3 textequ <1.1.0>
badr4 textequ <e1>
badr5 textequ <1ea1>
badr6 textequ <1e1a>

% echo get_Real(mant1) = getReal(mant1)
% echo get_Real(mant2) = getReal(mant2)
% echo get_Real(mant3) = getReal(mant3)
% echo get_Real(rv4) = getReal(rv4)
% echo get_Real(rv5) = getReal(rv5)
% echo get_Real(rv6) = getReal(rv6)
% echo get_Real(rv7) = getReal(rv7)
% echo get_Real(rv8) = getReal(rv8)
% echo get_Real(rv9) = getReal(rv9)
% echo get_Real(rva) = getReal(rva)
% echo get_Real(rvb) = getReal(rvb)
% echo get_Real(rvc) = getReal(rvc)
% echo get_Real(rvd) = getReal(rvd)
% echo get_Real(rve) = getReal(rve)
% echo get_Real(rvf) = getReal(rvf)
% echo get_Real(badr1) = getReal(badr1)
% echo get_Real(badr2) = getReal(badr2)
% echo get_Real(badr3) = getReal(badr3)
% echo get_Real(badr4) = getReal(badr4)
% echo get_Real(badr5) = getReal(badr5)
% echo get_Real(badr5) = getReal(badr5)
 end

Listing 13-9: Compile-time program with test code for getReal macro

Here’s the build command and (compile-time) program output:

C:\>ml64 /c listing13-9.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing13-9.asm
get_Real(1) = 1
get_Real(.2) = 1
get_Real(3.4) = 1
get_Real(1e1) = 1
get_Real(1.e1) = 1
get_Real(1.0e1) = 1
get_Real(1.0e + 1) = 1

808 Chapter 13

get_Real(1.0e - 1) = 1
get_Real(1.0e12) = 1
get_Real(1.0e1234) = 1
get_Real(1.0E123) = 1
get_Real(1.0E + 1234) = 1
get_Real(1.0E - 1234) = 1
get_Real(-1.0E - 1234) = 1
get_Real(+1.0E - 1234) = 1
get_Real() = 0
get_Real(a) = 0
get_Real(1.1.0) = 0
get_Real(e1) = 0
get_Real(1ea1) = 0
get_Real(1ea1) = 0

13.17.3 Checking for Registers
Although the opattr operator provides a bit to tell you that its operand is an
x86-64 register, that’s the only information opattr provides. In particular,
opattr’s return value won’t tell you which register it has seen; whether it’s
a general-purpose, XMM, YMM, ZMM, MM, ST, or other register; or the
size of that register. Fortunately, with a little work on your part, you can
determine all this information by using MASM’s conditional assembly state-
ments and other operators.

To begin with, here’s a simple macro function, isReg, that returns 1
or 0 depending on whether its operand is a register. This is a simple shell
around the opattr operator that returns the setting of bit 4:

isReg macro parm
 local result
result textequ %(((opattr &parm) and 10h) eq 10h)
 exitm <&result>
 endm

While this function provides some convenience, it doesn’t really provide
any information that the opattr operator already provides. We want to know
what register appears in the operand as well as the size of that register.

Listing 13-10 (available online at http://artofasm.randallhyde.com/) pro-
vides a wide range of useful macro functions and equates for processing
register operands in your own macros. The following paragraphs describe
some of the more useful equates and macros.

Listing 13-10 contains a set of equates that map register names to
numeric values. These equates use symbols of the form regXXX, where XXX is
the register name (all uppercase). Examples include the following: regAL,
regSIL, regR8B, regAX, regBP, regR8W, regEAX, regEBP, regR8D, regRAX, regRSI, regR15,
regST, regST0, regMM0, regXMM0, and regYMM0.

There is also a special equate for the symbol regNone that represents a
non-register entity. These equates give numeric values in the range 1 to 117
to each of these symbols (regNone is given the value 0).

http://artofasm.randallhyde.com/

Macros and the MASM Compile-Time Language 809

The purpose behind all these equates (and, in general, assigning numeric
values to registers) is to make it easier to test for specific registers (or ranges of
registers) within your macros by using conditional assembly.

A useful set of macros appearing in Listing 13-10 converts textual forms
of the register names (that is, AL, AX, EAX, RAX, and so forth) to their
numeric form (regAL, regAX, regEAX, regRAX, and so on). The most generic
macro function to do this is whichReg(register). This function accepts a text
object and returns the appropriate regXXX value for that text. If the text
passed as an argument is not one of the valid general-purpose, FPU, MMX,
XMM, or YMM registers, whichReg returns the value regNone. Here are some
examples of calls to whichReg:

alVal = whichReg(al)
axTxt textequ <ax>
axVal = whichReg(axTxt)

aMac macro parameter
 local regVal
regVal = whichReg(parameter)
 if regVal eq regNone
 .err <Expected a register argument>
 exitm
 endif
 .
 .
 .
 endm

The whichReg macro function accepts any of the x86-64 general-purpose,
FPU, MMX, XMM, or YMM registers. In many situations, you might want to
limit the set of registers to a particular subset of these. Therefore, Listing 13-11
(also available online at http://artofasm.randallhyde.com/) provides the following
macro functions:

isGPReg(text) Returns a nonzero register value for any of the general-
purpose (8-, 16-, 32-, or 64-bit) registers. Returns regNone (0) if the argu-
ment is not one of these registers.

is8BitReg(text) Returns a nonzero register value for any of the
general-purpose 8-bit registers. Otherwise, it returns regNone (0).

is16BitReg(text) Returns a nonzero register value for any of the
general-purpose 16-bit registers. Otherwise, it returns regNone (0).

is32BitReg(text) Returns a nonzero register value for any of the
general-purpose 32-bit registers. Otherwise, it returns regNone (0).

is64BitReg(text) Returns a nonzero register value for any of the
general-purpose 64-bit registers. Otherwise, it returns regNone (0).

isFPReg(text) Returns a nonzero register value for any of the FPU
registers (ST, and ST(0) to ST(7)). Otherwise, it returns regNone (0).

isMMReg(text) Returns a nonzero register value for any of the MMX
registers (MM0 to MM7). Otherwise, it returns regNone (0).

http://artofasm.randallhyde.com/

810 Chapter 13

isXMMReg(text) Returns a nonzero register value for any of the XMM
registers (XMM0 to XMM15). Otherwise, it returns regNone (0).

isYMMReg(text) Returns a nonzero register value for any of the YMM
registers (YMM0 to YMM15). Otherwise, it returns regNone (0).

If you need other register classifications, it’s easy to write your own
macro functions to return an appropriate value. For example, if you want
to test whether a particular register is one of the Windows ABI parameter
registers (RCX, RDX, R8, or R9), you could create a macro function like the
following:

isWinParm macro theReg
 local regVal, isParm
regVal = whichReg(theReg)
isParm = (regVal eq regRCX) or (regVal eq regRDX)
isParm = isParm or (regVal eq regR8)
isParm = isParm or (regVal eq regR9)

 if isParm
 exitm <%regVal>
 endif
 exitm <%regNone>
 endm

If you’ve converted a register in text form to its numeric value, at some
point you might need to convert that numeric value back to text so you
can use that register as part of an instruction. The toReg(reg_num) macro in
Listing 13-10 accomplishes this. If you supply it a value in the range 1 to 117
(the numeric values for the registers), this macro will return the text that
corresponds to that register value. For example:

mov toReg(1), 0 ; Equivalent to mov al, 0

(Note that regAL = 1.)
If you pass regNone to the toReg macro, toReg returns an empty string.

Any value outside the range 0 to 117 will produce an undefined symbol
error message.

When working in macros, where you’ve passed a register as an argument,
you may find that you need to convert that register to a larger size (for example,
convert AL to AX, EAX, or RAX; convert AX to EAX or RAX; or convert EAX
to RAX). Listing 13-11 provides several macros to do the up conversion. These
macro functions accept a register number as their parameter input and pro-
duce a textual result holding the actual register name:

reg8To16 Converts an 8-bit general-purpose register to its 16-bit
equivalent8

reg8To32 Converts an 8-bit general-purpose register to its 32-bit
equivalent

8. Registers AH, BH, CH, and DH get converted to the same registers as AL, BL, CL, and DL,
respectively.

Macros and the MASM Compile-Time Language 811

reg8To64 Converts an 8-bit general-purpose register to its 64-bit
equivalent

reg16To32 Converts a 16-bit general-purpose register to its 32-bit
equivalent

reg16To64 Converts a 16-bit general-purpose register to its 64-bit
equivalent

reg32To64 Converts a 32-bit general-purpose register to its 64-bit
equivalent

Another useful macro function in Listing 13-10 is the regSize(reg_value)
macro. This function returns the size (in bytes) of the register value passed
as an argument. Here are some example calls:

alSize = regSize(regAL) ; Returns 1
axSize = regSize(regAX) ; Returns 2
eaxSize = regSize(regEAX) ; Returns 4
raxSize = regSize(regRAX) ; Returns 8
stSize = regSize(regST0) ; Returns 10
mmSize = regSize(regMM0) ; Returns 8
xmmSize = regSize(regXMM0) ; Returns 16
ymmSize = regSize(regYMM0) ; Returns 32

The macros and equates in Listing 13-10 come in handy when you are
writing macros to handle generic code. For example, suppose you want to cre-
ate a putInt macro that accepts an arbitrary 8-, 16-, or 32-bit register operand
and that will print that register’s value as an integer. You would like to be
able to pass any arbitrary (general-purpose) register and sign-extend it, if
necessary, before printing. Listing 13-12 is one possible implementation of
this macro.

; Listing 13-12

; Demonstration of putInt macro.

; putInt - This macro expects an 8-, 16-, or 32-bit
; general-purpose register argument. It will
; print the value of that register as an
; integer.

putInt macro theReg
 local regVal, sz
regVal = isGPReg(theReg)

; Before we do anything else, make sure
; we were actually passed a register:

 if regVal eq regNone
 .err <Expected a register>
 endif

; Get the size of the register so we can
; determine if we need to sign-extend its

812 Chapter 13

; value:

sz = regSize(regVal)

; If it was a 64-bit register, report an
; error:

 if sz gt 4
 .err 64-bit register not allowed
 endif

; If it's a 1- or 2-byte register, we will need
; to sign-extend the value into EDX:

 if (sz eq 1) or (sz eq 2)
 movsx edx, theReg

; If it's a 32-bit register, but is not EDX, we need
; to move it into EDX (don't bother emitting
; the instruction if the register is EDX;
; the data is already where we want it):

 elseif regVal ne regEDX
 mov edx, theReg
 endif

; Print the value in EDX as an integer:

 call print
 byte "%d", 0
 endm

 option casemap:none

nl = 10

 .const
ttlStr byte "Listing 13-12", 0

 Note: several thousand lines of code omitted here
 for brevity. This includes most of the text from
 Listing 13-11 plus the putInt macro

 .code

 include getTitle.inc
 include print.inc
 public asmMain
asmMain proc
 push rbx
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

Macros and the MASM Compile-Time Language 813

 call print
 byte "Value 1:", 0
 mov al, 55
 putInt al

 call print
 byte nl, "Value 2:", 0
 mov cx, 1234
 putInt cx

 call print
 byte nl, "Value 3:", 0
 mov ebx, 12345678
 putInt ebx

 call print
 byte nl, "Value 4:", 0
 mov edx, 1
 putInt edx
 call print
 byte nl, 0

allDone: leave
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 13-12: putInt macro function test program

Here’s the build command and sample output for Listing 13-12:

C:\>build listing13-12

C:\>echo off
 Assembling: listing13-12.asm
c.cpp

C:\>listing13-11
Calling Listing 13-12:
Value 1:55
Value 2:1234
Value 3:12345678
Value 4:1
Listing 13-12 terminated

Though Listing 13-12 is a relatively simple example, it should give you a
good idea of how you could make use of the macros in Listing 13-10.

13.17.4 Compile-Time Arrays
A compile-time constant array is an array that exists only at compile time—
data for the array does not exist at runtime. Sadly, MASM doesn’t provide

814 Chapter 13

direct support for this useful CTL data type. Fortunately, it’s possible to use
other MASM CTL features to simulate compile-time arrays.

This section considers two ways to simulate compile-time arrays: text
strings and a list of equates (one equate per array element). The list of
equates is probably the easiest implementation, so this section considers
that first.

In Listing 13-11 (available online), a very useful function converts all
the text in a string to uppercase (toUpper). The register macros use this
macro to convert register names to uppercase characters (so that register
name comparisons are case-insensitive). The toUpper macro is relatively
straightforward. It extracts each character of a string and checks whether
that character’s value is in the range a to z, and if it is, it uses that character’s
value as an index into an array (indexed from a to z) to extract the corre-
sponding array element value (which will have the values A to Z for each ele-
ment of the array). Here’s the toUpper macro:

; toUpper - Converts alphabetic characters to uppercase
; in a text string.

toUpper macro lcStr
 local result

; Build the result string in "result":

result textequ <>

; For each character in the source string,
; convert it to uppercase.

 forc eachChar, <lcStr>

; See if we have a lowercase character:

 if ('&eachChar' ge 'a') and ('&eachChar' le 'z')

; If lowercase, convert it to the symbol "lc_*" where "*"
; is the lowercase character. The equates below will map
; this character to uppercase:

eachChar catstr <lc_>,<eachChar>
result catstr result, &eachChar

 else

; If it wasn't a lowercase character, just append it
; to the end of the string:

result catstr result, <eachChar>

 endif
 endm ; forc

Macros and the MASM Compile-Time Language 815

 exitm result ; Return result string
 endm ; toUpper

The “magic” statements, which handle the array access, are these two
statements:

eachChar catstr <lc_>,<eachChar>
result catstr result, &eachChar

The eachChar catstr operation produces a string of the form lc_a, lc_b,
. . . , lc_z whenever this macro encounters a lowercase character. The result
catstr operation expands a label of the form lc_a, . . . , to its value and
concatenates the result to the end of the result string (which is a register
name). Immediately after the toUpper macro in Listing 13-11, you will find
the following equates:

lc_a textequ <A>
lc_b textequ
lc_c textequ <C>
lc_d textequ <D>
lc_e textequ <E>
lc_f textequ <F>
lc_g textequ <G>
lc_h textequ <H>
lc_i textequ <I>
lc_j textequ <J>
lc_k textequ <K>
lc_l textequ <L>
lc_m textequ <M>
lc_n textequ <N>
lc_o textequ <O>
lc_p textequ <P>
lc_q textequ <Q>
lc_r textequ <R>
lc_s textequ <S>
lc_t textequ <T>
lc_u textequ <U>
lc_v textequ <V>
lc_w textequ <W>
lc_x textequ <X>
lc_y textequ <Y>
lc_z textequ <Z>

Therefore, lc_a will expand to the character A, lc_b will expand to the
character B, and so forth. This sequence of equates forms the lookup table
(array) that toUpper uses. The array should be called lc_, and the index
into the array is the suffix of the array’s name (a to z). The toUpper macro
accesses element lc_[character] by appending character to lc_ and then
expanding the text equate lc_character (expansion happens by applying the &
operator to the eachChar string the macro produces).

816 Chapter 13

Note the following two things. First, the array index doesn’t have to be
an integer (or ordinal) value. Any arbitrary string of characters will suffice.9
Second, if you supply an index that isn’t within bounds (a to z), the toUpper
macro will attempt to expand a symbol of the form lc_xxxx that results in
an undefined identifier. Therefore, MASM will report an undefined symbol
error should you attempt to supply an index that is not within range. This
will not be an issue for the toUpper macro because toUpper validates the index
(using a conditional if statement) prior to constructing the lc_xxxx symbol.

Listing 13-11 also provides an example of another way to implement a
compile-time array: using a text string to hold array elements and using
substr to extract elements of the array from that string. The isXXBitReg macros
(is8BitReg, is16BitReg, and so forth) pass along a couple of arrays of data to the
more generic lookupReg macro. Here’s the is16BitReg macro:10

all16Regs catstr <AX>,
 <BX>,
 <CX>,
 <DX>,
 <SI>,
 <DI>,
 <BP>,
 <SP>,
 <R8W>,
 <R10W>,
 <R11W>,
 <R12W>,
 <R13W>,
 <R14W>,
 <R15W>

all16Lens catstr <2>, <0>, ; AX
 <2>, <0>, ; BX
 <2>, <0>, ; CX
 <2>, <0>, ; DX
 <2>, <0>, ; SI
 <2>, <0>, ; DI
 <2>, <0>, ; BP
 <2>, <0>, ; SP
 <3>, <0>, <0>, ; R8W
 <3>, <0>, <0>, ; R9W
 <4>, <0>, <0>, <0>, ; R10W
 <4>, <0>, <0>, <0>, ; R11W
 <4>, <0>, <0>, <0>, ; R12W
 <4>, <0>, <0>, <0>, ; R13W
 <4>, <0>, <0>, <0>, ; R14W
 <4>, <0>, <0>, <0> ; R15W

9. Technically, this type of data structure is a dictionary, or associative array. However, it serves
as a perfectly good array for our purposes.

10. This macro has a couple of slight modifications (using catstr rather than textequ) to make
it more readable within this book. Functionally, it is the same as the macro appearing in
the actual source code.

Macros and the MASM Compile-Time Language 817

is16BitReg macro parm
 exitm lookupReg(parm, all16Regs, all16Lens)
 endm ; is16BitReg

The all16Regs string is a list of register names (all concatenated together
into one string). The lookupReg macro will search for a user-supplied register
(parm) in this string of register names by using the MASM instr directive. If
instr does not find the register in the list of names, parm is not a valid 16-bit
register and instr returns the value 0. If it does locate the string held by parm
in all16Regs, then instr returns the (nonzero) index into all16Regs where the
match occurs. By itself, a nonzero index does not indicate that lookupReg has
found a valid 16-bit register. For example, if the user supplies PR as a regis-
ter name, the instr directive will return a nonzero index into the all16Regs
string (the index of the last character of the SP register, with the R coming
from the first character of the R8W register name). Likewise, if the caller
passes the string R8 to is16BitReg, the instr directive will return the index to
the first character of the R8W entry, but R8 is not a valid 16-bit register.

Although instr can reject a register name (by returning 0), additional
validation is necessary if instr returns a nonzero value; this is where the
all16Lens array comes in. The lookupReg macro uses the index that instr returns
as an index into the all16Lens array. If the entry is 0, the index into all16Regs
is not a valid register index (it’s an index to a string that is not at the start of a
register name). If the index into all16Lens points at a nonzero value, lookupReg
compares this value against the length of the parm string. If they are equal,
parm holds an actual 16-bit register name; if they are not equal, parm is too
long or too short and is not a valid 16-bit register name. Here’s the full
lookupReg macro:

; lookupReg - Given a (suspected) register and a lookup table, convert
; that register to the corresponding numeric form.

lookupReg macro theReg, regList, regIndex
 local regUpper, regConst, inst, regLen, indexLen

; Convert (possible) register to uppercase:

regUpper textequ toUpper(theReg)
regLen sizestr <&theReg>

; Does it exist in regList? If not, it's not a register.

inst instr 1, regList, ®Upper
 if inst ne 0

regConst substr ®Index, inst, 1
 if ®Const eq regLen

; It's a register (in text form). Create an identifier of
; the form "regXX" where "XX" represents the register name.

818 Chapter 13

regConst catStr <reg>,regUpper

 ifdef ®Const

; Return "regXX" as function result. This is the numeric value
; for the register.

 exitm regConst
 endif
 endif
 endif

; If the parameter string wasn't in regList, then return
; "regNone" as the function result:

 exitm <regNone>
 endm ; lookupReg

Note that lookupReg also uses the register value constants (regNone, regAL,
regBL, and so on) as an associative compile-time array (see the regConst
definitions).

 13.18 Using Macros to Write Macros
One advanced use of macros is to have a macro invocation create one or more
new macros. If you nest a macro declaration inside another macro, invoking
that (enclosing) macro will expand the enclosed macro definition and define
that macro at that point. Of course, if you invoke the outside (enclosing)
macro more than once, you could wind up with a duplicate macro definition
unless you take care in the construction of the new macro (that is, by assign-
ing it a new name with each new invocation of the outside macro). In a few
cases, being able to generate macros on the fly can be useful.

Consider the compile-time array examples from the previous section.
If you want to create a compile-time array by using the multiple equates
method, you will have to manually define equates for all the array elements
before you can use that array. This can be tedious, especially if the array
has a large number of elements. Fortunately, it’s easy to create a macro to
automate this process for you.

The following macro declaration accepts two arguments: the name of
an array to create and the number of elements to put into the array. This
macro generates a list of definitions (using the = directive, rather than the
textequ directive) with each element initialized to 0:

genArray macro arrayName, elements
 local index, eleName, getName

; Loop over each element of the array:

index = 0
 while index lt &elements

Macros and the MASM Compile-Time Language 819

; Generate a textequ statement to define a single
; element of the array, for example:

; aryXX = 0

; where "XX" is the index (0 to (elements - 1)).

eleName catstr <&arrayName>,%index,< = 0>

; Expand the text just created with the catstr directive.

 eleName

; Move on to next array index:

index = index + 1
 endm ; while

 endm ; genArray

For example, the following macro invocation creates 10 array elements,
named ary0 to ary9:

genArray ary, 10

You can access the array elements directly by using the names ary0, ary1,
ary2, . . . , ary9. If you want to access these array elements programmatically
(perhaps in a compile-time while loop), you would have to use the catstr
directive to create a text equate that has the array name (ary) concatenated
with the index. Wouldn’t it be more convenient to have a macro function
that creates this text equate for you? It’s easy enough to write a macro that
does this:

ary_get macro index
 local element
element catstr <ary>,%index
 exitm <element>
 endm

With this macro, you can easily access elements of the ary array by using
the macro invocation ary_get(index). You could also write a macro to store a
value into a specified element of the ary array:

ary_set macro index, value
 local assign
assign catstr <ary>, %index, < = >, %value
 assign
 endm

These two macros are so useful, you’d probably want to include them
with each array you create with the genArray macro. So why not have the

820 Chapter 13

genArray macro write these macros for you? Listing 13-13 provides an imple-
mentation of genArray that does exactly this.

; Listing 13-13

; This is a compile-time program.
; It does not generate any executable code.

 option casemap:none

genArray macro arrayName, elements
 local index, eleName, getName

; Loop over each element of the array:

index = 0
 while index lt &elements

; Generate a textequ statement to define a single
; element of the array, for example:

; aryXX = 0

; where "XX" is the index (0 to (elements - 1)).

eleName catstr <&arrayName>,%index,< = 0>

; Expand the text just created with the catstr directive:

 eleName

; Move on to next array index:

index = index + 1
 endm ; while

; Create a macro function to retrieve a value from
; the array:

getName catstr <&arrayName>,<_get>

getName macro theIndex
 local element
element catstr <&arrayName>,%theIndex
 exitm <element>
 endm

; Create a macro to assign a value to
; an array element.

setName catstr <&arrayName>,<_set>

setName macro theIndex, theValue
 local assign
assign catstr <&arrayName>, %theIndex, < = >, %theValue

Macros and the MASM Compile-Time Language 821

 assign
 endm

 endm ; genArray

; mout - Replacement for echo. Allows "%" operator
; in operand field to expand text symbols.

mout macro valToPrint
 local cmd
cmd catstr <echo >, <valToPrint>
 cmd
 endm

; Create an array ("ary") with ten elements:

 genArray ary, 10

; Initialize each element of the array to
; its index value:

index = 0
 while index lt 10
 ary_set index, index
index = index + 1
 endm

; Print out the array values:

index = 0
 while index lt 10

value = ary_get(index)
 mout ary[%index] = %value
index = index + 1
 endm

 end

Listing 13-13: A macro that writes another pair of macros

Here’s the build command and sample output for the compile-time pro-
gram in Listing 13-13:

C:\>ml64 /c /Fl listing13-13.asm
Microsoft (R) Macro Assembler (x64) Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: listing13-13.asm
ary[0] = 0
ary[1] = 1
ary[2] = 2
ary[3] = 3
ary[4] = 4
ary[5] = 5

822 Chapter 13

ary[6] = 6
ary[7] = 7
ary[8] = 8
ary[9] = 9

 13.19 Compile-Time Program Performance
When writing compile-time programs, keep in mind that MASM is inter-
preting these programs during assembly. This can have a huge impact on
the time it takes MASM to assemble your source files. Indeed, it is quite pos-
sible to create infinite loops that will cause MASM to (seemingly) hang up
during assembly. Consider the following trivial example:

true = 1
 while true
 endm

Any attempt to assemble a MASM source file containing this sequence
will lock up the system until you press CTRL-C (or use another mechanism
to abort the assembly process).

Even without infinite loops, it is easy to create macros that take a con-
siderable amount of time to process. If you use such macros hundreds (or
even thousands) of times in a source file (as is common for some complex
print-type macros), it could take a while for MASM to process your source
files. Be aware of this (and be patient if MASM seems to hang up—it could
simply be your compile-time programs taking a while to do their job).

If you think a compile-time program has entered an infinite loop, the
echo directive (or macros like mout, appearing throughout this chapter) can
help you track down the infinite loop (or other bugs) in your compile-time
programs.

 13.20 For More Information
Although this chapter has spent a considerable amount of time describ-
ing various features of MASM’s macro support and compile-time language
features, the truth is this chapter has barely described what’s possible with
MASM. Sadly, Microsoft’s documentation all but ignores the macro facili-
ties of MASM. Probably the best place to learn about advanced macro pro-
gramming with MASM is the MASM32 forum at http://www.masm32.com/
board/index.php.

Although it is an older book, covering MASM version 6, The Waite Group’s
Microsoft Macro Assembler Bible by Nabajyoti Barkakati and this author
(Sams, 1992) does go into detail about the use of MASM’s macro facilities
(as well as other directives that are poorly documented these days). Also,
the MASM 6.x manual can still be found online at various sites. While this
manual is woefully outdated with respect to the latest versions of MASM

http://www.masm32.com/board/index.php
http://www.masm32.com/board/index.php

Macros and the MASM Compile-Time Language 823

(it does not, for example, cover any of the 64-bit instructions or addressing
modes), it does a decent job of describing MASM’s macro facilities and many of
MASM’s directives. Just keep in mind when reading the older documentation
that Microsoft has disabled many features that used to be present in MASM.

 13.21 Test Yourself
1. What does CTL stand for?

2. When do CTL programs execute?

3. What directive would you use to print a message (not an error) during
assembly?

4. What directive would you use to print an error message during
assembly?

5. What directive would you use to create a CTL variable?

6. What is the MASM macro escape character operator?

7. What does the MASM % operator do?

8. What does the MASM macro & operator do?

9. What does the catstr directive do?

10. What does the MASM instr directive do?

11. What does the sizestr directive do?

12. What does the substr directive do?

13. What are the main (four) conditional assembly directives?

14. What directives could you use to create compile-time loops?

15. What directive would you use to extract the characters from a MASM
text object in a loop?

16. What directives do you use to define a macro?

17. How do you invoke a macro in a MASM source file?

18. How do you specify macro parameters in a macro declaration?

19. How do you specify that a macro parameter is required?

20. How do you specify that a macro parameter is optional?

21. How do you specify a variable number of macro arguments?

22. Explain how you can manually test whether a macro parameter is
present (without using the :req suffix).

23. How can you define local symbols in a macro?

24. What directive would you use (generally inside a conditional assembly
sequence) to immediately terminate macro expansion without process-
ing any additional statements in the macro?

25. How would you return a textual value from a macro function?

26. What operator could you use to test a macro parameter to see if it is a
machine register versus a memory variable?

14
T H E S T R I N G I N S T R U C T I O N S

A string is a collection of values stored in
contiguous memory locations. The x86-64

CPUs can process four types of strings: byte
strings, word strings, double-word strings, and

quad-word strings.
The x86-64 microprocessor family supports several instructions specifi-

cally designed to cope with strings. They can move strings, compare strings,
search for a specific value within a string, initialize a string to a fixed value,
and do other primitive operations on strings. The x86-64’s string instruc-
tions are also useful for assigning and comparing arrays, tables, and records,
and they may speed up your array-manipulation code considerably. This
chapter explores various uses of the string instructions.

826 Chapter 14

 14.1 The x86-64 String Instructions
All members of the x86-64 family support five string instructions: movsx,
cmpsx, scasx, lodsx, and stosx.1 (x = b, w, d, or q for byte, word, double word, or
quad word, respectively; this book generally drops the x suffix when talk-
ing about these string instructions in a general sense.) Moving, comparing,
scanning, loading, and storing are the primitives on which you can build
most other string operations.

The string instructions operate on blocks (contiguous linear arrays) of
memory. For example, the movs instruction moves a sequence of bytes from
one memory location to another, the cmps instruction compares two blocks
of memory, and the scas instruction scans a block of memory for a particular
value. The source and destination blocks (and any other values an instruc-
tion needs) are not provided as explicit operands, however. Instead, the
string instructions use specific registers as operands:

•	 RSI (source index) register

•	 RDI (destination index) register

•	 RCX (count) register

•	 AL, AX, EAX, and RAX registers

•	 The direction flag in the FLAGS register

For example, the movs (move string) instruction copies RCX elements
from the source address specified by RSI to the destination address speci-
fied by RDI. Likewise, the cmps instruction compares the string pointed at by
RSI, of length RCX, to the string pointed at by RDI.

The sections that follow describe how to use these five instructions,
starting with a prefix that makes the instructions do what you’d expect:
repeat their operation for each value in the string pointed to by RSI.2

14.1.1 The rep, repe, repz, and the repnz and repne Prefixes
By themselves, the string instructions do not operate on strings of data. For
example, the movs instruction will only copy a single byte, word, double word,
or quad word. The repeat prefixes tell the x86-64 to do a multi-byte string
operation—specifically, to repeat a string operation up to RCX times.3

The syntax for the string instructions with repeat prefixes is as follows:

rep prefix:
 rep movsx (x is b, w, d, or q)

1. The x86-64 processor supports two additional string instructions: ins, which inputs strings
of data from an input port, and outs, which outputs strings of data to an output port. We do
not consider these because they are privileged instructions, and you cannot execute them
in a standard 64-bit OS application.

2. MASM overloads the meanings of the movsd and cmpsd instructions. With no operands, these
are the move string double and compare string double instructions; with operands, they are the
move scalar double and compare scalar double instructions.

3. The exceptions are the cmps and scas instructions, which repeat at most the number of times
specified in the RCX register.

The String Instructions 827

 rep stosx

repe prefix: (Note: repz is a synonym for repe)
 repe cmpsx
 repe scasx

repne prefix: (Note: repnz is a synonym for repne)
 repne cmpsx
 repne scasx

You don’t normally use the repeat prefixes with the lods instruction.
The rep prefix tells the CPU to “repeat this operation the number of

times specified by the RCX register.” The repe prefix says to “repeat this oper-
ation while the comparison is equal, or up to the number of times specified
by RCX (whichever condition fails first).” The repne prefix’s action is “repeat
this operation while the comparison is not equal, or up to the number of
times specified by RCX.” As it turns out, you’ll use repe for most character
string comparisons; repne is used mainly with the scasx instructions to locate a
specific character within a string (such as a zero-terminating byte).

You can use repeat prefixes to process entire strings with a single instruc-
tion. You can use the string instructions, without the repeat prefix, as string
primitive operations to synthesize more powerful string operations.

14.1.2 The Direction Flag
The direction flag in the FLAGS register controls how the CPU processes strings.
If the direction flag is clear, the CPU increments RSI and RDI after operat-
ing on each string element. For example, executing movs will move the byte,
word, double word, or quad word at RSI to RDI and then increment RSI and
RDI by 1, 2, 4, or 8 (respectively). When specifying the rep prefix before this
instruction, the CPU increments RSI and RDI for each element in the string
(the count in RCX specifies the number of elements). At completion, the RSI
and RDI registers will be pointing at the first item beyond the strings.

If the direction flag is set, the x86-64 decrements RSI and RDI after it
processes each string element (again, RCX specifies the number of string ele-
ments for a repeated string operation). Afterward, the RSI and RDI registers
will be pointing at the first byte, word, or double word before the strings.

You can change the direction flag’s value by using the cld (clear direction
flag) and std (set direction flag) instructions.

The Microsoft ABI requires that the direction flag be clear upon entry
into a (Microsoft ABI–compliant) procedure. Therefore, if you set the direc-
tion flag within a procedure, you should always clear that flag when you are
finished using it (and especially before calling any other code or returning
from the procedure).

14.1.3 The movs Instruction
The movs instruction uses the following syntax:

movsb
movsw
movsd

828 Chapter 14

movsq
rep movsb
rep movsw
rep movsd
rep movsq

The movsb (move string, bytes) instruction fetches the byte at address RSI,
stores it at address RDI, and then increments or decrements the RSI and RDI
registers by 1. If the rep prefix is present, the CPU checks RCX to see whether
it contains 0. If not, it moves the byte from RSI to RDI and decrements the
RCX register. This process repeats until RCX becomes 0. If RCX contains 0
upon initial execution, the movsb instruction will not copy any data bytes.

The movsw (move string, words) instruction fetches the word at address RSI,
stores it at address RDI, and then increments or decrements RSI and RDI by 2.
If there is a rep prefix, the CPU repeats this procedure RCX times.

The movsd instruction operates in a similar fashion on double words. It
increments or decrements RSI and RDI by 4 after each data movement.

Finally, the movsq instruction does the same thing on quad words. It
increments or decrements RSI and RDI by 8 after each data movement.

For example, this code segment copies 384 bytes from CharArray1 to
CharArray2:

CharArray1 byte 384 dup (?)
CharArray2 byte 384 dup (?)
 .
 .
 .
 cld
 lea rsi, CharArray1
 lea rdi, CharArray2
 mov rcx, lengthof(CharArray1) ; = 384
 rep movsb

If you substitute movsw for movsb, the preceding code will move 384 words
(768 bytes) rather than 384 bytes:

WordArray1 word 384 dup (?)
WordArray2 word 384 dup (?)
 .
 .
 .
 cld
 lea rsi, WordArray1
 lea rdi, WordArray2
 mov rcx, lengthof(WordArray1) ; = 384
 rep movsw

Remember, the RCX register contains the element count, not the byte
count; fortunately, the MASM lengthof operator returns the number of
array elements (words), not the number of bytes.

If you’ve set the direction flag before executing a movsq, movsb, movsw,
or movsd instruction, the CPU decrements the RSI and RDI registers after
moving each string element. This means that the RSI and RDI registers must

The String Instructions 829

point at the last element of their respective strings before executing a movsb,
movsw, movsd, or movsq instruction. For example:

CharArray1 byte 384 dup (?)
CharArray2 byte 384 dup (?)
 .
 .
 .
 std
 lea rsi, CharArray1[lengthof(CharArray1) - 1]
 lea rdi, CharArray2[lengthof(CharArray1) - 1]
 mov rcx, lengthof(CharArray1);
 rep movsb
 cld

Although sometimes processing a string from tail to head is useful (see
“Comparing Extended-Precision Integers” on page 834), generally you’ll
process strings in the forward direction. For one class of string operations,
being able to process strings in both directions is mandatory: moving
strings when the source and destination blocks overlap. Consider what hap-
pens in the following code:

CharArray1 byte ?
CharArray2 byte 384 dup (?)
 .
 .
 .
 cld
 lea rsi, CharArray1
 lea rdi, CharArray2
 mov rcx, lengthof(CharArray2);
 rep movsb

This sequence of instructions treats CharArray1 and CharArray2 as a pair
of 384-byte strings. However, the last 383 bytes in the CharArray1 array over-
lap the first 383 bytes in the CharArray2 array. Let’s trace the operation of
this code byte by byte.

When the CPU executes the movsb instruction, it does the following:

1. Copies the byte at RSI (CharArray1) to the byte pointed at by RDI
(CharArray2).

2. Increments RSI and RDI, and decrements RCX by 1. Now the RSI regis-
ter points at CharArray1 + 1 (which is the address of CharArray2), and the
RDI register points at CharArray2 + 1.

3. Copies the byte pointed at by RSI to the byte pointed at by RDI. However,
this is the byte originally copied from location CharArray1. So, the movsb
instruction copies the value originally in location CharArray1 to both loca-
tions CharArray2 and CharArray2 + 1.

4. Again increments RSI and RDI, and decrements RCX.
5. Copies the byte from location CharArray1 + 2 (CharArray2 + 1) to location

CharArray2 + 2. Once again, this is the value that originally appeared in
location CharArray1.

830 Chapter 14

Each repetition of the loop copies the next element in CharArray1 to the
next available location in the CharArray2 array. Pictorially, it looks something
like Figure 14-1. The result is that the movsb instruction replicates X through-
out the string.

First move operation

Second move operation

Third move operation

Fourth move operation

n th move operation

A B C D E F G H I J K L

X X B C D E F G H I J K L

X X C D E F G H I J K L

X X X X D E F G H I J K L

X X X X X X X X X X X L

X

X

X

Figure 14-1: Copying data between two
overlapping arrays (forward direction)

If you really want to move one array into another when they overlap like
this, you should move each element of the source string to the destination
string, starting at the end of the two strings, as shown in Figure 14-2.

X A B C D E F G H I J K L

X A B C D E F G H I J K K

X A B C D E F G H I J J K

X A B C D E F G H I I J K

X A A B C D E F G H I J K

First move operation

Second move operation

Third move operation

Fourth move operation

n th move operation

Figure 14-2: Using a backward copy to
copy data in overlapping arrays

The String Instructions 831

Setting the direction flag and pointing RSI and RDI at the end of the
strings will allow you to (correctly) move one string to another when the two
strings overlap and the source string begins at a lower address than the des-
tination string. If the two strings overlap and the source string begins at a
higher address than the destination string, clear the direction flag and point
RSI and RDI at the beginning of the two strings.

If the two strings do not overlap, you can use either technique to move
the strings around in memory. Generally, operating with the direction flag
clear is the easiest.

You shouldn’t use the movsx instruction to fill an array with a single byte,
word, double-word, or quad-word value. Another string instruction, stos, is
much better for this purpose.

If you are moving a large number of bytes from one array to another,
the copy operation will be faster if you can use the movsq instruction rather
than the movsb instruction. If the number of bytes you wish to move is an
even multiple of 8, this is a trivial change; just divide the number of bytes
to copy by 8, load this value into RCX, and then use the movsq instruction.
If the number of bytes is not evenly divisible by 8, you can use the movsq
instruction to copy all but the last 1, 2, . . . , 7 bytes of the array (that is, the
remainder after you divide the byte count by 8). For example, if you want
to efficiently move 4099 bytes, you can do so with the following instruction
sequence:

 lea rsi, Source
 lea rdi, Destination
 mov rcx, 512 ; Copy 512 qwords = 4096 bytes
 rep movsq
 movsw ; Copy bytes 4097 and 4098
 movsb ; Copy the last byte

Using this technique to copy data never requires more than four movsx
instructions because you can copy 1, . . . , 7 bytes with no more than one
(each) of the movsb, movsw, and movsd instructions. The preceding scheme is
most efficient if the two arrays are aligned on quad-word boundaries. If not,
you might want to move the movsb, movsw, or movsd instruction (or all three)
before or after the movsq instruction so that movsq works with quad-word–
aligned data.

If you do not know the size of the block you are copying until the program
executes, you can still use code like the following to improve the performance
of a block move of bytes:

 lea rsi, Source
 lea rdi, Destination
 mov rcx, Length
 shr rcx, 3 ; Divide by 8
 jz lessThan8 ; Execute movsq only if 8 or more bytes

 rep movsq ; Copy the qwords

832 Chapter 14

lessThan8:
 mov rcx, Length
 and rcx, 111b ; Compute (Length mod 8)
 jz divisibleBy8 ; Execute movsb only if # of bytes/8 <> 0

 rep movsb ; Copy the remaining 1 to 7 bytes

divisibleBy8:

On many computer systems, the movsq instruction provides about the
fastest way to copy bulk data from one location to another. While there are,
arguably, faster ways to copy data on certain CPUs, ultimately the memory
bus performance is the limiting factor, and the CPUs are generally much
faster than the memory bus. Therefore, unless you have a special system,
writing fancy code to improve memory-to-memory transfers is probably a
waste of time.

Also, Intel has improved the performance of the movsx instructions on
later processors so that movsb operates as efficiently as movsw, movsd, and movsq
when copying the same number of bytes. On these later processors, it may
be more efficient to use movsb to copy the specified number of bytes rather
than go through all the complexity outlined previously.

The bottom line is this: if the speed of a block move matters to you, try
it several different ways and pick the fastest (or the simplest, if they all run
the same speed, which is likely).

14.1.4 The cmps Instruction
The cmps instruction compares two strings. The CPU compares the value
referenced by RDI to the value pointed at by RSI. RCX contains the number
of elements in the source string when using the repe or repne prefix to com-
pare entire strings. Like the movs instruction, MASM allows several forms of
this instruction:

cmpsb
cmpsw
cmpsd
cmpsq

repe cmpsb
repe cmpsw
repe cmpsd
repe cmpsq

repne cmpsb
repne cmpsw
repne cmpsd
repne cmpsq

Without a repeat prefix, the cmps instruction subtracts the value at loca-
tion RDI from the value at RSI and updates the flags according to the result

The String Instructions 833

(which it discards). After comparing the two locations, cmps increments or
decrements the RSI and RDI registers by 1, 2, 4, or 8 (for cmpsb, cmpsw, cmpsd,
and cmpsq, respectively). cmps increments the RSI and RDI registers if the
direction flag is clear and decrements them otherwise.

Remember, the value in the RCX register determines the number of ele-
ments to process, not the number of bytes. Therefore, when using cmpsw, RCX
specifies the number of words to compare. Likewise, for cmpsd and cmpsq,
RCX contains the number of double and quad words to process.

The repe prefix compares successive elements in a string as long as they
are equal and RCX is greater than 0. The repne prefix does the same as long
the elements are not equal.

After the execution of repne cmps, either the RCX register is 0 (in which
case the two strings are totally different), or the RCX contains the num-
ber of elements compared in the two strings until a match is found. While
this form of the cmps instruction isn’t particularly useful for comparing
strings, it is useful for locating the first pair of matching items in a couple
of byte, word, or double-word arrays.

14.1.4.1 Comparing Character Strings

Character strings are usually compared using lexicographical ordering, the
standard alphabetical ordering you’ve grown up with. We compare corre-
sponding elements until encountering a character that doesn’t match or
the end of the shorter string. If a pair of corresponding characters does
not match, compare the two strings based on that single character. If the
two strings match up to the length of the shorter string, compare their
length. The two strings are equal if and only if their lengths are equal and
each corresponding pair of characters in the two strings is identical. The
length of a string affects the comparison only if the two strings are identical
up to the length of the shorter string. For example, Zebra is less than Zebras
because it is the shorter of the two strings; however, Zebra is greater than
AAAAAAAAAAH! even though Zebra is shorter.

For (ASCII) character strings, use the cmpsb instruction in the following
manner:

1. Clear the direction flag.

2. Load the RCX register with the length of the smaller string.

3. Point the RSI and RDI registers at the first characters in the two strings
you want to compare.

4. Use the repe prefix with the cmpsb instruction to compare the strings on
a byte-by-byte basis.

N O T E Even if the strings contain an even number of characters, you cannot use the cmpsw or
cmpsd instructions, because they do not compare strings in lexicographical order.

5. If the two strings are equal, compare their lengths.

834 Chapter 14

The following code compares a couple of character strings:

 cld
 mov rsi, AdrsStr1
 mov rdi, AdrsStr2
 mov rcx, LengthSrc
 cmp rcx, LengthDest
 jbe srcIsShorter ; Put the length of the
 ; shorter string in RCX
 mov rcx, LengthDest

srcIsShorter:
 repe cmpsb
 jnz notEq ; If equal to the length of the
 ; shorter string, cmp lengths
 mov rcx, LengthSrc
 cmp rcx, LengthDest

notEq:

If you’re using bytes to hold the string lengths, you should adjust this
code appropriately (that is, use a movzx instruction to load the lengths
into RCX).

14.1.4.2 Comparing Extended-Precision Integers

You can also use the cmps instruction to compare multi-word integer values
(that is, extended-precision integer values). Because of the setup required
for a string comparison, this isn’t practical for integer values less than six or
eight double words in length, but for large integer values, it’s excellent.

Unlike with character strings, we cannot compare integer strings by
using lexicographical ordering. When comparing strings, we compare the
characters from the least significant byte to the most significant byte.
When comparing integers, we must compare the values from the most sig-
nificant byte, word, or double word down to the least significant. So, to com-
pare two 32-byte (256-bit) integer values, use the following code:

 std
 lea rsi, SourceInteger[3 * 8]
 lea rdi, DestInteger[3 * 8]
 mov rcx, 4
repe cmpsq
 cld

This code compares the integers from their most significant qword
down to the least significant qword. The cmpsq instruction finishes when
the two values are unequal or upon decrementing RCX to 0 (implying
that the two values are equal). Once again, the flags provide the result
of the comparison.

The String Instructions 835

14.1.5 The scas Instruction
The scas (scan string) instruction is used to search for a particular element
within a string—for example, to quickly scan for a 0 throughout another string.

Unlike the movs and cmps instructions, scas requires only a destination
string (pointed at by RDI). The source operand is the value in the AL (scasb),
AX (scasw), EAX (scasd), or RAX (scasq) register. The scas instruction com-
pares the value in the accumulator (AL, AX, EAX, or RAX) against the value
pointed at by RDI and then increments (or decrements) RDI by 1, 2, 4, or 8.
The CPU sets the flags according to the result of the comparison.

The scas instructions take the following forms:

scasb
scasw
scasd
scasq

repe scasb
repe scasw
repe scasd
repe scasq

repne scasb
repne scasw
repne scasd
repne scasq

With the repe prefix, scas scans the string, searching for an element that
does not match the value in the accumulator. When using the repne prefix,
scas scans the string, searching for the first element that is equal to the
value in the accumulator. This is counterintuitive, because repe scas actually
scans through the string while the value in the accumulator is equal to the
string operand, and repne scas scans through the string while the accumula-
tor is not equal to the string operand.

Like the cmps and movs instructions, the value in the RCX register speci-
fies the number of elements, not bytes, to process when using a repeat prefix.

14.1.6 The stos Instruction
The stos instruction stores the value in the accumulator at the location
specified by RDI. After storing the value, the CPU increments or decre-
ments RDI depending on the state of the direction flag. Although the stos
instruction has many uses, its primary use is to initialize arrays and strings
to a constant value. For example, if you have a 256-byte array that you want
to clear out with 0s, use the following code:

 cld
 lea rdi, DestArray
 mov rcx, 32 ; 32 quad words = 256 bytes
 xor rax, rax ; Zero out RAX
rep stosq

836 Chapter 14

This code writes 32 quad words rather than 256 bytes because a single
stosq operation is faster (on some older CPUs) than four stosb operations.

The stos instructions take eight forms:

stosb
stosw
stosd
stosq

rep stosb
rep stosw
rep stosd
rep stosq

The stosb instruction stores the value in the AL register into the specified
memory location(s), stosw stores the AX register into the specified memory
location(s), stosd stores EAX into the specified location(s), and stosq stores
RAX into the specified location(s). With the rep prefix, this process repeats
the number of times specified by the RCX register.

If you need to initialize an array with elements that have different values,
you cannot (easily) use stos.

14.1.7 The lods Instruction
The lods instruction copies the byte, word, double word, or quad word
pointed at by RSI into the AL, AX, EAX, or RAX register, after which it
increments or decrements the RSI register by 1, 2, 4, or 8. Use lods to fetch
bytes (lodsb), words (lodsw), double words (lodsd), or quad words (lodsq)
from memory for further processing.

Like stos, the lods instructions take eight forms:

lodsb
lodsw
lodsd
lodsq

rep lodsb
rep lodsw
rep lodsd
rep lodsq

You will probably never use a repeat prefix with this instruction, because
the accumulator register will be overwritten each time lods repeats. At the
end of the repeat operation, the accumulator will contain the last value read
from memory.4

4. The repeat prefixes appear here simply because they are allowed. They’re not very useful,
but they are allowed. About the only use for this form of the instruction is to “touch” items
in the cache so they are preloaded into the cache. However, there are better ways to accom-
plish this.

The String Instructions 837

14.1.8 Building Complex String Functions from lods and stos
You can use the lods and stos instructions to generate any particular string
operation. For example, suppose you want a string operation that converts
all the uppercase characters in a string to lowercase. You could use the fol-
lowing code:

 mov rsi, StringAddress ; Load string address into RSI
 mov rdi, rsi ; Also point RDI here
 mov rcx, stringLength ; Presumably, this was precomputed
 jrcxz skipUC ; Don't do anything if length is 0
rpt:
 lodsb ; Get the next character in the string
 cmp al, 'A'
 jb notUpper
 cmp al, 'Z'
 ja notUpper
 or al, 20h ; Convert to lowercase
notUpper:
 stosb ; Store converted char into string
 dec rcx
 jnz rpt ; Zero flag is set when RCX is 0
skipUC:

The rpt loop fetches the byte at the location specified by RSI, tests
whether it is an uppercase character, converts it to lowercase if it is (leaving
it unchanged if it is not), stores the resulting character at the location speci-
fied by RDI, and then repeats this process the number of times specified by
the value in RCX.

Because the lods and stos instructions use the accumulator as an
intermediary location, you can use any accumulator operation to quickly
manipulate string elements. This could be something as simple as a toLower
(or toUpper) function or as complex as data encryption. You might even use
this instruction sequence to compute a hash, checksum, or CRC value while
moving data from one string to another. Any operation you would do on a
string on a character-by-character basis while moving the string data around
is a candidate.

 14.2 Performance of the x86-64 String Instructions
In the early x86-64 processors, the string instructions provided the most
efficient way to manipulate strings and blocks of data. However, these
instructions are not part of Intel’s RISC Core instruction set and can be
slower (though more compact) than if you did the same operations with
discrete instructions. Intel has optimized movs and stos on later processors
so that they operate as rapidly as possible, but the other string instructions
can be fairly slow.

As always, it’s a good idea to implement performance-critical algorithms
by using different algorithms (with and without the string instructions) and
comparing their performance to determine which solution to use. Because

838 Chapter 14

the string instructions run at different speeds relative to other instructions
depending on which processor you’re using, try your experiments on the
processors where you expect your code to run.

N O T E On most processors, the movs instruction is faster than the corresponding discrete
instructions. Intel has worked hard to keep movs optimized because so much
performance-critical code uses it.

 14.3 SIMD String Instructions
The SSE4.2 instruction set extensions include four powerful instructions
for manipulating character strings. These instructions were first introduced
in 2008, so some computers in use today still might not support them.
Always use cpuid to determine if these instructions are available before
attempting to use them in wide-distribution commercial applications (see
“Using cpuid to Differentiate Instruction Sets” in Chapter 11).

The four SSE4.2 instructions that process text and string fragments are
as follows:

PCMPESTRI Packed compare explicit-length strings, return index

PCMPESTRM Packed compare explicit-length strings, return mask

PCMPISTRI Packed compare implicit-length strings, return index

PCMPISTRM Packed compare implicit-length strings, return mask

Implicit-length strings use a sentinel (trailing) byte to mark the end of the
string, specifically, a zero-terminating byte (or word, in the case of Unicode
characters). Explicit-length strings are those for which you supply a string length.

Instructions that produce an index return the index of the first (or last)
matching occurrence within the source string. Instructions that return a bit
mask return an array of 0 or (all) 1 bits that mark each occurrence of the
match within the two input strings.

The packed compare string instructions are among the most complex
in the x86-64 instruction set. The syntax for these instructions is

pcmpXstrY xmmsrc1, xmmsrc2/memsrc2, imm8
vpcmpXstrY xmmsrc1, xmmsrc2/memsrc2, imm8

where X is E or I, and Y is I or M. Both forms use 128-bit operands (no 256-bit
YMM registers for the v-prefixed form in this case), and, unlike most SSE
instructions, the (v)pcmpXstrY instructions allow memory operands that are
not aligned on a 16-byte boundary (they would be nearly useless for their
intended operation if they required 16-byte-aligned memory operands).

The (v)pcmpXstrY instructions compare corresponding bytes or words in
a pair of XMM registers, combine the results of the individual comparisons
into a vector (bit mask), and return the results for all the comparisons. The
imm8 operand controls various comparison attributes as described in “Type
of Comparison” on the following page.

The String Instructions 839

14.3.1 Packed Compare Operand Sizes
Bits 0 and 1 of the immediate operand specify the size and type of the string
elements. The elements can be bytes or words, or they can be treated as
unsigned or signed values for the comparison (see Table 14-1).

Bit 0 specifies word (Unicode) or byte (ASCII) operands. Bit 1 speci-
fies whether the operands are signed or unsigned. Generally, for character
strings, you use unsigned comparisons. However, in certain situations (or
when processing strings of integers rather than characters), you may want
to specify signed comparisons.

Table 14-1: Packed Compare imm8 Bits 0 and 1

Bit(s) Bit value Meaning

0–1 00 Both source operands contain 16 unsigned bytes.

01 Both source operands contain 8 unsigned words.

10 Both source operands contain 16 signed bytes.

11 Both source operands contain 8 signed words.

14.3.2 Type of Comparison
Bits 2 and 3 of the immediate operand specify how the instruction will
compare the two strings. There are four comparison types, which test
characters from one string against the set of characters in the second,
test characters from one string against a range of characters, do a straight
string comparison, or search for a substring within another string (see
Table 14-2).

Table 14-2: Packed Compare imm8 Bits 2 and 3

Bit(s) Bit value Meaning

2–3 00 Equal any: compares each character in the second source string
against a set of characters appearing in the first source operand.

01 Ranges: compares each value in the second source operand
against a set of ranges specified by the first source operand.

10 Equal each: compares each corresponding element for equality
(character-by-character comparison of the two operands).

11 Equal ordered: searches for the substring specified by the first
operand within the string specified by the second operand.

Bits 2 to 3 specify the type of comparison to perform (the aggregate
operation in Intel terminology). Equal each (10b) is probably the easiest com-
parison to understand. The packed compare instruction will compare each
corresponding character in the string (up to the length of the string—more
on that later) and set a Boolean flag for the result of the comparison of
each byte or word in the string, as shown in Figure 14-3. This is comparable
to the operation of the C/C++ memcmp() or strcmp() functions.

840 Chapter 14

15 14 13 12 11 10
Byte

XMMsrc1

Byte-by-byte comparison (equal each)

XMM/mem

Result

9 8 7 6 5 4 3 2 1 0

Figure 14-3: Equal each aggregate comparison operation

The equal any comparison compares each byte in the second source
operand to see whether it is any of the characters found in the first source
operand (XMMsrc2/memsrc2). For example, if XMMsrc1 contains the string
abcdefABCDEF (and four 0 bytes), and XMMsrc2/memsrc2 contains 12AF89C0, the
resulting comparison would yield 00101100b (1s in the character positions cor-
responding to the A, F, and C characters). Also note that the first character (1)
maps to bit 0, and the A and F characters map to bits 2 and 3. This is similar to
the strspn() and strcspn() functions in the C Standard Library.

The equal ordered comparison searches for each occurrence of the string
in XMMsrc1 that can be found in the XMMsrc2/memsrc2 operand. For example,
if the XMMsrc2/memsrc2 operand contains the string never need shine and the
XMMsrc1 operand has the string ne (padded with 0s), then the equal ordered
comparison produces the vector 0100000001000001b. This is similar to the
strstr() function in the C Standard Library.

The ranges comparison aggregate operation breaks the entries in the
XMMsrc1 operand into pairs (at even and odd indexes in the register). The
first element (byte or word) specifies a lower bound, and the second entry
specifies an upper bound. The XMMsrc1 register supports up to eight byte
ranges or four word ranges (if you need fewer ranges, pad the remaining
pairs with 0s). This aggregate operation compares each character in the
XMMsrc2/memsrc2 operand against each of these ranges and stores true in
the resultant vector if the character is within one of the specified ranges
(inclusive) and false if it is outside all of these ranges.

14.3.3 Result Polarity
Bits 4 and 5 of the immediate operand specify the result polarity (see
Table 14-3). This chapter will fully discuss the meaning of these bits in a
moment (some additional commentary is necessary).

Table 14-3: Packed Compare imm8
Bits 4 and 5

Bit(s) Bit value Meaning

4–5 00 Positive polarity

01 Negative polarity

10 Positive masked

11 Negative masked

The String Instructions 841

14.3.4 Output Processing
Bit 6 of the immediate operand specifies the instruction result (see
Table 14-4). The packed compare instructions do not use bit 7; it should
always be 0.

Table 14-4: Packed Compare imm8 Bit 6 (and 7)

Bit(s) Bit value Meaning

6 0 (v)pcomXstri only, the index returned in ECX is the first result.
(v)pcomXstrm only, the mask appears in the LO bits of XMM0
with zero extension to 128 bits.

1 (v)pcomXstri only, the index returned in ECX is the last result.
(v)pcomXstrm only, expand the bit mask into a byte or word mask.

7 0 This bit is reserved and should always be 0.

The (v)pcmpestrm and (v)pcmpistrm instructions produce a bit-mask result
and store it into the XMM0 register (this is fixed—the CPU does not deter-
mine this by the operands to these instructions). If bit 6 of the imm8 operand
contains a 0, these two instructions pack this bit mask into 8 or 16 bits and
store them into the LO 8 (or 16) bits of XMM0, zero-extending that value
through the upper bits of XMM0. If imm8 bit 6 contains a 1, these instruc-
tions will store the bit mask (all 1 bits per byte or word) throughout the
XMM0 register.5

The (v)pcmpestri and (v)pcmpistri instructions produce an index result
and return this value in the ECX register.6 If bit 6 of the imm8 operand contains
a 0, these two instructions return the index of the LO set bit in the result bit
mask (that is, the first matching comparison). If bit 6 of the imm8 operand is 1,
these instructions return the index of the highest-order set bit in the resultant
bit mask (that is, the last matching comparison). If there are no set bits in the
result bit mask, these instructions return 16 (for byte comparisons) or 8 (for
word comparisons) in the ECX register. Although these instructions internally
generate a bit mask result in order to calculate the index, they do not over-
write the XMM0 register (as do the (v)pcmpestrm and (v)pcmpistrm instructions).

14.3.5 Packed String Compare Lengths
The (v)pcmpXstrY instructions have a 16-byte (XMM register size) comparison
limit. This is true even on AVX processors with 32-byte YMM registers. To
compare larger strings requires executing multiple (v)pcmpXstrY instructions.

The (v)pcmpistri and (v)pcmpistrm instructions use an implicit string
length. The strings appear in the XMM registers or memory with the first
character (if any) appearing in the LO byte followed by the remaining

5. Byte comparisons will require 16 bits or 16 bytes, while word comparisons will require
8 bits or 8 bytes to hold the bit mask.

6. Zero-extended into RCX; that is, the upper 32 bits of RCX will contain 0 after the packed
compare instructions that produce an index value.

842 Chapter 14

characters in the string. The strings end with a zero-terminating byte or
word. If there are more than 16 characters (if byte strings, or 8 characters if
word strings), then the register (or 128-bit memory) size delimits the string.

The (v)pcmpestri and (v)pcmpestrm instructions use explicitly supplied
string lengths. The RAX and EAX registers specify the string length for
the string appearing in XMMsrc1, and the RDX and EDX registers specify the
string length for the string appearing in XMMsrc2/memsrc2. If the string length
is greater than 16 (for byte strings) or 8 (for word strings), the instruction satu-
rates the length at 16 or 8. Also, the (v)pcmpestri and (v)pcmpestrm instructions
take the absolute value of the length, so –1 to –16 is equivalent to 1 to 16.

The reason the explicit-length instructions saturate the length to 16
(or 8) is to allow a program to process larger strings in a loop. By processing
16 bytes (or 8 words) at a time in a loop and decrementing the overall string
length (from some large value down to 0), the packed string operations
will operate on 16 or 8 characters per loop iteration until the very last loop
iteration. At that point, the instructions will process the remaining (total
length mod 16 or 8) characters in the string.

The reason the explicit-length instructions take the absolute value of
the length is to allow code that processes large strings to either decrement
the loop counter (from a large positive value) to 0 or increment the loop
counter (from a negative value) toward 0, whichever is more convenient for
the program.

Whenever the length (implicit or explicit) is less than 16 (for bytes) or 8
(for words), certain characters in the XMM register (or 128-bit memory loca-
tion) will be invalid. Specifically, every character after the zero-terminating
character (for implicit-length strings) or beyond the count in RAX and EAX
or RDX and EDX will be invalid. Regardless of the presence of invalid char-
acters, the packed compare instructions still produce an intermediate bit
vector result by comparing all characters in the string.

Because the string lengths of the two input strings (in XMMsrc1 and
XMMsrc2/memsrc2) are not necessarily equal, there are four possible situa-
tions: src1 and src2 are both invalid, exactly one of the two source operands
is invalid (and the other is valid, so there are two cases here), or both are
valid. Depending on which operands are valid or invalid, the packed
compare instructions may force the result to true or false. Table 14-5 lists
how these instructions force results, based on the type of comparison
(aggregate operation) specified by the imm8 operand.

Table 14-5: Comparison Result When Source 1 and Source 2 Are
Valid or Invalid

Src1 Src2 Equal any Ranges Equal each Equal ordered

Invalid Invalid Force false Force false Force true Force true

Invalid Valid Force false Force false Force false Force true

Valid Invalid Force false Force false Force false Force false

Valid Valid Result Result Result Result

The String Instructions 843

To understand the entries in this table, you must consider each com-
parison type individually.

The equal any comparison checks whether each character appearing in
src2 appears anywhere in the set of characters specified by src1. If a char-
acter in src1 is invalid, that means the instructions are comparing against
a character that is not in the set; in this situation, you want to return false
(regardless of src2’s validity). If src1 is valid but src2 is invalid, you’re at (or
beyond) the end of the string; that’s not a valid comparison, so equal any
also forces a false result in this situation.

The ranges comparison is also (in a sense) comparing a source string
(src2) against a set of characters (specified by the ranges in src1). Therefore,
the packed compare instructions force false if either (or both) operands are
invalid for the same reasons as equal any comparisons.

The equal each comparison is the traditional string comparison opera-
tion, comparing the string in src2 to the string in src1. If the corresponding
character in both strings is invalid, you’ve moved beyond the end of both
strings. The packed compare instructions force the result to true in this sit-
uation because these instructions are, effectively, comparing empty strings
at this point (and empty strings are equal). If a character in one string is
valid but the corresponding character in the other string is invalid, you’re
comparing actual characters against an empty string, which is always not
equal; hence, the packed string comparison instructions force a false result.

The equal ordered operation searches for the substring XMMsrc1 within
the larger string XMMsrc2/memsrc2. If you’ve gone beyond the end of both
strings, you’re comparing empty strings (and one empty string is always a
substring of another empty string), so the packed comparison instructions
return a true result. If you’ve reached the end of the string in src1 (the sub-
string to search for), the result is true even if there are more characters in
src2; hence, the packed comparisons return true in this situation. However,
if you’ve reached the end of the src2 string but not the end of the src1
(substring) string, there is no way that equal ordered will return true, so the
packed comparison instructions force a false in this situation.

If the polarity bits (bits 4 to 5 of imm8) contain 00b or 10b, the polarity
bits do not affect the comparison operation. If the polarity bits are 01b, the
packed string comparison instructions invert all the bits in the temporary bit
map result before copying the data to XMM0 ((v)pcmpistrm and (v)pcmpestrm)
or calculating the index ((v)pcmpestri and (v)pcmpistri). If the polarity set-
ting is 11b, the packed string comparison instructions invert the resultant bit
if and only if the corresponding src2 character is valid.

14.3.6 Packed String Comparison Results
The last thing to note about the packed string comparison instructions is
how they affect the CPU flags. These instructions are unusual among the
SSE/AVX instructions insofar as they affect the condition codes. However,
they do not affect the condition codes in standard ways (for example, you
cannot use the carry and zero flags to test for string less than or greater

844 Chapter 14

than, as you can with the cmps instructions). Instead, these instructions over-
load the meanings of the carry, zero, sign, and overflow flags; furthermore,
each instruction defines the meaning of these flags independently.

All eight instructions—(v)pcmpestri, (v)pcmpistri, (v)pcmpestrm, and
(v)pcmpistrm—clear the carry flag if all of the bits in the (internal) result
bit map are 0 (no comparison); these instructions set the carry flag if there
is at least 1 bit set in the bit map. Note that the carry flag is set or cleared
after the application of the polarity.

The zero flag indicates whether the src2 length is less than 16 (8 for word
characters). For the (v)pcmpestri and (v)pcmpestrm instructions, the zero flag is
set if EDX is less than 16 (8); for the (v)pcmpistri and (v)pcmpistrm instructions,
the zero flag is set if XMMsrc2/memsrc2 contains a null character.

The sign flag indicates whether the src1 length is less than 16 (8 for
word characters). For the (v)pcmpestri and (v)pcmpestrm instructions, the sign
flag is set if EAX is less than 16 (8); for the (v)pcmpistri and (v)pcmpistrm
instructions, the zero flag is set if XMMsrc1 contains a null character.

The overflow flag contains the setting for bit 0 of the result bit map
(that is, whether the first character of the source string was a match). This
can be useful after an equal ordered comparison to see if the substring is a
prefix of the larger string (for example).

 14.4 Alignment and Memory Management Unit Pages
The (v)pcmpXstrY instructions are nice insofar as they do not require their
memory operand to be 16-byte aligned. However, this lack of alignment
creates a special problem of its own: it is possible for a single (v)pcmpXstrY
instruction memory access to cross an MMU page boundary. As noted in
“Memory Access and 4K Memory Management Unit Pages” in Chapter 3,
some MMU pages might not be accessible and will generate a general pro-
tection fault if the CPU attempts to read data from them.

If the string is less than 16 bytes in length and ends before the page
boundary, using (v)pcmpXstrY to access that data may cause an inadvertent
page fault when it reads a full 16 bytes from memory, including data beyond
the end of the string. Though accessing data beyond the string that crosses
into a new, inaccessible MMU page is a rare situation, it can happen, so you
want to ensure you don’t access data across MMU page boundaries unless
the next MMU page contains actual data.

If you have aligned an address on a 16-byte boundary and you access
16 bytes from memory starting at that address, you never have to worry about
crossing into a new MMU page. MMU pages contain an integral multiple
of 16 bytes (there are 256 16-byte blocks in an MMU page). If the CPU
accesses 16 bytes starting at a 16-byte boundary, the last 15 bytes of that
block will fall into the same MMU page as the first byte. This is why most SSE
memory accesses are okay: they require 16-byte-aligned memory operands.
The exceptions are the unaligned move instructions and the (v)pcmpXstrY
instructions.

The String Instructions 845

You typically use the unaligned move instructions (for example, movdqu
and movupd) to move 16 actual bytes of data into an SSE/AVX register; there-
fore, these instructions don’t usually access extra bytes in memory. The
(v)pcmpXstrY instructions, however, often access data bytes beyond the end of
the actual string. These instructions read a full 16 bytes from memory even
if the string consumes fewer than 16 of those bytes. Therefore, when using
the (v)pcmpXstrY instructions (and the other unaligned moves, if you’re
using them to read beyond the end of a data structure), you should ensure
that the memory address you are supplying is at least 16 bytes before the
end of an MMU page, or that the next page in memory contains valid data.

As Chapter 3 notes, there is no machine instruction that lets you test a
page in memory to see if the application can legally access that page. So you
have to ensure that no memory accesses by the (v)pcmpXstrY instructions will
cross a page boundary. The next chapter provides several examples.

 14.5 For More Information
Agner Fog is one of the world’s foremost experts on optimization of x86(-64)
assembly language. His website (https://www.agner.org/optimize/#manuals/) has
a lot to say about optimizing memory moves and other string instructions.
This website is highly recommended if you want to write fast string code in
x86 assembly language.

T. Herselman has spent a huge amount of time writing fast memcpy func-
tions. You can find his results at https://www.codeproject.com/Articles/1110153/
Apex-memmove-the-fastest-memcpy-memmove-on-x-x-EVE/ (or just search the web
for Apex memmove). The length of this code will, undoubtedly, convince you to
stick with the movs instruction (which runs fairly fast on modern x86-64 CPUs).

 14.6 Test Yourself
1. What size operands do the generic string instructions support?

2. What are the five general-purpose string instructions?

3. What size operands do the pcmpXstrY instructions support?

4. What registers does the rep movsb instruction use?

5. What registers does the cmpsw instruction use?

6. What registers does the repne scasb instruction use?

7. What registers does the stosd instruction use?

8. If you want to increment the RSI and RDI registers after each string
operation, what direction flag setting do you use?

9. If you want to decrement the RSI and RDI registers after each string
operation, what direction flag setting do you use?

10. If a function or procedure modifies the direction flag, what should that
function do before returning?

https://www.agner.org/optimize/#manuals/
https://www.codeproject.com/Articles/1110153/Apex-memmove-the-fastest-memcpy-memmove-on-x-x-EVE/
https://www.codeproject.com/Articles/1110153/Apex-memmove-the-fastest-memcpy-memmove-on-x-x-EVE/

846 Chapter 14

11. The Microsoft ABI requires a function to _ the direction flag
before returning if it modifies the flag’s value.

12. Which string instructions have Intel optimized for performance on
later x86-64 CPUs?

13. When would you want to set the direction flag prior to using a movs
instruction?

14. When would you want to clear the direction flag prior to using a movs
instruction?

15. What can happen if the direction flag is not set properly when you are
executing a movs instruction?

16. Which string prefix would you normally use with cmpsb to test two
strings to see if they are equal?

17. When comparing two character strings, how should the direction flag
normally be set?

18. Do you need to test whether RCX is 0 before executing a string instruc-
tion with a repeat prefix?

19. If you wanted to search for a zero-terminating byte in a C/C++ string,
what (general-purpose) string instruction would be most appropriate?

20. If you wanted to fill a block of memory with 0s, what string instruction
would be most appropriate?

21. If you wanted to concoct your own string operations, what string
instruction(s) would you use?

22. Which string instruction would you typically never use with a repeat
prefix?

23. Before using one of the pcmpXstrY instructions, what should you do?

24. Which SSE string instructions automatically handle zero-terminated
strings?

25. Which SSE string instructions require an explicit length value?

26. Where do you pass explicit lengths to the pcmpXstrY instructions?

27. Which pcmpXstrY aggregate operation searches for characters belonging
to a set of characters?

28. Which pcmpXstrY aggregate operation compares two strings?

29. Which pcmpXstrY aggregate operation checks whether one string is a sub-
string of another?

30. What is the problem with the pcmpXstrY instruction and MMU pages?

15
M A N A G I N G C O M P L E X P R O J E C T S

Most assembly language source files aren’t
stand-alone programs. They’re components

of a large set of source files, in different lan-
guages, compiled and linked together to form

complex applications. Programming in the large is the term
software engineers have coined to describe the pro-
cesses, methodologies, and tools for handling the
development of large software projects.

While everyone has their own idea of what large is, separate compilation
is one of the more popular techniques that support programming in the
large. Using separate compilation, you first break your large source files
into manageable chunks. Then you compile the separate files into object
code modules. Finally, you link the object modules together to form a com-
plete program. If you need to make a small change to one of the modules,

848 Chapter 15

you need to reassemble only that one module; you do not need to reassem-
ble the entire program. Once you’ve debugged and tested a large section of
your code, continuing to assemble that same code when you make a small
change to another part of your program is a waste of time. Imagine having
to wait 20 or 30 minutes on a fast PC to assemble a program to which you’ve
made a one-line change!

The following sections describe the tools MASM provides for separate
compilation and how to effectively employ these tools in your programs for
modularity and reduced development time.

 15.1 The include Directive
The include directive, when encountered in a source file, merges a specified
file into the compilation at the point of the include directive. The syntax for
the include directive is

include filename

where filename is a valid filename. By convention, MASM include files have
an .inc (include) suffix, but the name of any file containing MASM assembly
language source will work fine. A file being included into another file dur-
ing assembly may itself include files.

Using the include directive by itself does not provide separate compila-
tion. You could use the include directive to break a large source file into
separate modules and join these modules together when you compile your
file. The following example would include the print.inc and getTitle.inc files
during the compilation of your program:

include print.inc
include getTitle.inc

Now your program will benefit from modularity. Alas, you will not save
any development time. The include directive inserts the source file at the
point of the include during compilation, exactly as though you had typed
that code yourself. MASM still has to compile the code, and that takes time.
If you are including a large number of source files (such as a huge library)
into your assembly, the compilation process could take forever.

In general, you should not use the include directive to include source
code as shown in the preceding example.1 Instead, you should use the include
directive to insert a common set of constants, types, external procedure
declarations, and other such items into a program. Typically, an assembly lan-
guage include file does not contain any machine code (outside of a macro; see
Chapter 13 for details). The purpose of using include files in this manner will
become clearer after you see how the external declarations work.

1. There is nothing wrong with this, except that it does not take advantage of separate
compilation.

Managing Complex Projects 849

 15.2 Ignoring Duplicate Include Operations
As you begin to develop sophisticated modules and libraries, you will eventu-
ally discover a big problem: some header files need to include other header
files. Well, this isn’t actually a big problem, but a problem will occur when
one header file includes another, and that second header file includes
another, and that third header file includes another, and . . . that last header
file includes the first header file. Now this is a big problem, because it creates
an infinite loop in the compiler and makes MASM complain about duplicate
symbol definitions. After all, the first time it reads the header file, it processes
all the declarations in that file; the second time around, it views all those sym-
bols as duplicate symbols.

The standard technique for ignoring duplicate includes, well-known to
C/C++ programmers, is to use conditional assembly to have MASM ignore
the content of an include file. (See “Conditional Assembly (Compile-Time
Decisions)” in Chapter 13.) The trick is to place an ifndef (if not defined)
statement around all statements in the include file. You specify the include
file’s filename as the ifndef operand, substituting underlines for periods (or
any other undefined symbol). Then, immediately after the ifndef statement,
you define that symbol (using a numeric equate and assigning the symbol
the constant 0 is typical). Here’s an example of this ifndef usage in action:

 ifndef myinclude_inc ; Filename: myinclude.inc
myinclude_inc = 0

Put all the source code lines for the include file here

; The following statement should be the last non-blank line
; in the source file:

 endif ; myinclude_inc

On the second inclusion, MASM simply skips over the contents of the
include file (including any include directives), which prevents the infinite
loop and all the duplicate symbol definitions.

 15.3 Assembly Units and External Directives
An assembly unit is the assembly of a source file plus any files it includes or
indirectly includes. An assembly unit produces a single .obj file after assem-
bly. The Microsoft linker takes multiple object files (produced by MASM or
other compilers, such as MSVC) and combines them into a single executable
unit (an .exe file). The main purpose of this section (and, indeed, this whole
chapter) is to describe how these assembly units (.obj files) communicate
linkage information to one another during the linking process. Assembly
units are the basis for creating modular programs in assembly language.

To use MASM’s assembly unit facilities, you must create at least two
source files. One file contains a set of variables and procedures used by the
second. The second file uses those variables and procedures without know-
ing how they’re implemented.

850 Chapter 15

Instead of using the include directive to create modular programs, which
wastes time because MASM must recompile bug-free code every time you
assemble the main program, a much better solution would be to preassemble
the debugged modules and link the object code modules together. This is
what the public, extern, and externdef directives allow you to do.

Technically, all of the programs appearing in this book up to this point
have been separately assembled modules (which happen to link with a C/
C++ main program rather than another assembly language module). The
assembly language main program named asmMain is nothing but a func-
tion compatible with C++ that the generic c.cpp program has called from its
main program. Consider the body of asmMain from Listing 2-1 in Chapter 2:

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 .
 .
 .
asmMain endp

The public asmMain statement has been included in every program that
has had an asmMain function without any definition or explanation. Well,
now it’s time to deal with that oversight.

Normal symbols in a MASM source file are private to that particular
source file and are inaccessible from other source files (which don’t directly
include the file containing those private symbols, of course). That is, the
scope of most symbols in a source file is limited to those lines of code within
that particular source file (and any files it includes). The public directive tells
MASM to make the specified symbol global to the assembly unit—accessible
by other assembly units during the link phase. Through the public asmMain
statement in the example programs appearing throughout this book, these
sample programs have made the asmMain symbol global to the source file con-
taining them so that the c.cpp program can call the asmMain function.

Simply making a symbol public is insufficient to use that symbol in
another source file. The source file that wants to use the symbol must also
declare that symbol as an external symbol. This notifies the linker that it
will have to patch in the address of a public symbol whenever the file with
the external declaration uses that symbol. For example, the c.cpp source
file defines the asmMain symbol as external in the following lines of code
(for what it’s worth, this declaration also defines the external symbols
getTitle and readLine):

// extern "C" namespace prevents
// "name mangling" by the C++
// compiler.

extern "C"
{

Managing Complex Projects 851

 // asmMain is the assembly language
 // code's "main program":

 void asmMain(void);

 // getTitle returns a pointer to a
 // string of characters from the
 // assembly code that specifies the
 // title of that program (which makes
 // this program generic and usable
 // with a large number of sample
 // programs in "The Art of 64-Bit
 // Assembly").

 char *getTitle(void);

 // C++ function that the assembly
 // language program can call:

 int readLine(char *dest, int maxLen);

};

Note, in this example, that readLine is a C++ function defined in the
c.cpp source file. C/C++ does not have an explicit public declaration.
Instead, if you supply the source code for a function in a source file that
declares that function to be external, C/C++ will automatically make that
symbol public by virtue of the external declaration.

MASM actually has two external symbol declaration directives: extern
and externdef.2 These two directives use the syntax

extern symbol:type {optional_list_of_symbol:type_pairs}
externdef symbol:type {optional_list_of_symbol:type_pairs}

where symbol is the identifier you want to use from another assembly unit,
and type is the data type of that symbol. The data type can be any of the
following:

•	 proc, which indicates that the symbol is a procedure (function) name or
a statement label

•	 Any MASM built-in data type (such as byte, word, dword, qword, oword, and
so on)

•	 Any user-defined data type (such as a struct name)

•	 abs, which indicates a constant value

The abs type isn’t for declaring generic external constants such as
someConst = 0. Pure constant declarations, such as this one, would normally
appear in a header file (an include file), which this section will describe

2. Technically, MASM has three external directives; extrn is an older name for extern. They
are just synonyms. This book uses the extern variant.

852 Chapter 15

shortly. Instead, the abs type is generally reserved for constants that are
based on code offsets within an object module. For example, if you have the
following code in an assembly unit,

 public someLen
someStr byte "abcdefg"
someLen = $-someStr

someLen’s type, in an extern declaration, would be abs.
Both directives use a comma-delimited list to allow multiple symbol

declarations; for example:

extern p:proc, b:byte, d:dword, a:abs

I’d argue, however, that your programs will be more readable if you
limit your external declarations to one symbol per statement.

When you place an extern directive in your program, MASM treats that
declaration the same as any other symbol declaration. If the symbol already
exists, MASM will generate a symbol-redefinition error. Generally, you
should place all external declarations near the beginning of the source file
to avoid any scoping or forward reference issues. Because the public directive
does not actually define the symbol, the placement of the public directive
is not as critical. Some programmers put all the public declarations at the
beginning of a source file; others put the public declaration right before
the definition of the symbol (as I’ve done with the asmMain symbol in most of
the same programs). Either position is fine.

 15.4 Header Files in MASM
Because a public symbol from one source file can be used by many assembly
units, a small problem develops: you have to replicate the extern directive
in all the files that use that symbol. For a small number of symbols, this
is not much of a problem. However, as the number of external symbols
increases, maintaining all these external symbols across multiple source
files becomes burdensome. The MASM solution is the same as the C/C++
solution: header files.

Header files are include files that contain external (and other) declara-
tions that are common among multiple assembly units. They are called
header files because the include statement that injects their code into a
source file normally appears at the beginning (at the head) of the source
file that uses them. This turns out to be the primary use of include files in
MASM: to include external (and other) common declarations.

 15.5 The externdef Directive
When you start using header files with large sets of library modules (assem-
bly units), you’ll quickly discover a huge problem with the extern direc-
tive. Typically, you will create a single header file for a large set of library

Managing Complex Projects 853

functions, with each function possibly appearing in its own assembly unit.
Some library functions might use other functions in the same library mod-
ule (a collection of object files); therefore, that particular library function’s
source file might want to include the header file for the library in order to
reference the external name of the other library function.

Unfortunately, if the header file contains the external definition for the
function in the current source file, a symbol redefinition error occurs:

; header.inc
 ifndef header_inc
header_inc = 0

 extern func1:proc
 extern func2:proc

 endif ; header_inc

Assembly of the following source file produces an error because func1 is
already defined in the header.inc include file:

; func1.asm

 include header.inc

 .code

func1 proc
 .
 .
 .
 call func2
 .
 .
 .
func1 endp
 end

C/C++ doesn’t suffer from this problem because the external keyword
doubles as both a public and an external declaration.

To overcome this problem, MASM introduced the externdef directive.
This directive is similar to C/C++’s external directive: it behaves like an
extern directive when the symbol is not present in a source file, and it behaves
like a public directive when the symbol is defined in a source file. In addi-
tion, multiple externdef declarations for the same symbol may appear in a
source file (though they should specify the same type for the symbol if mul-
tiple declarations do appear). Consider the previous header.inc header file
modified to use externdef definitions:

; header.inc
 ifndef header_inc
header_inc = 0

854 Chapter 15

 externdef func1:proc
 externdef func2:proc

 endif ; header_inc

Using this header file, the func1.asm assembly unit will compile correctly.

 15.6 Separate Compilation
Way back in “The MASM Include Directive” in Chapter 11, I started putting
the print and getTitle functions in include files so that I could simply include
them in every source file that needed to use these functions rather than man-
ually cutting and pasting these functions into every program. Clearly, these
are good examples of programs that should be made into assembly units and
linked with other programs rather than being included during assembly.

Listing 15-1 is a header file that incorporates the necessary print and
getTitle declarations:3

; aoalib.inc - Header file containing external function
; definitions, constants, and other items used
; by code in "The Art of 64-Bit Assembly."

 ifndef aoalib_inc
aoalib_inc equ 0

; Constant definitions:

; nl (newline constant):

nl = 10

; SSE4.2 feature flags (in ECX):

SSE42 = 00180000h ; Bits 19 and 20
AVXSupport = 10000000h ; Bit 28

; CPUID bits (EAX = 7, EBX register):

AVX2Support = 20h ; Bit 5 = AVX

**

; External data declarations:

 externdef ttlStr:byte

3. This source file is also part of the generic aoalib.inc header file used to encompass various
library functions appearing throughout this book.

Managing Complex Projects 855

**

; External function declarations:

 externdef print:qword
 externdef getTitle:proc

; Definition of C/C++ printf function that
; the print function will call (and some
; AoA sample programs call this directly,
; as well).

 externdef printf:proc

 endif ; aoalib_inc

Listing 15-1: aoalib.inc header file

Listing 15-2 contains the print function used in “The MASM Include
Directive” in Chapter 11 converted to an assembly unit.

; print.asm - Assembly unit containing the SSE/AVX dynamically
; selectable print procedures.

 include aoalib.inc

 .data
 align qword
print qword choosePrint ; Pointer to print function

 .code

; print - "Quick" form of printf that allows the format string to
; follow the call in the code stream. Supports up to five
; additional parameters in RDX, R8, R9, R10, and R11.

; This function saves all the Microsoft ABI–volatile,
; parameter, and return result registers so that code
; can call it without worrying about any registers being
; modified (this code assumes that Windows ABI treats
; YMM6 to YMM15 as nonvolatile).

; Of course, this code assumes that AVX instructions are
; available on the CPU.

; Allows up to 5 arguments in:

; RDX - Arg #1
; R8 - Arg #2
; R9 - Arg #3
; R10 - Arg #4
; R11 - Arg #5

856 Chapter 15

; Note that you must pass floating-point values in
; these registers as well. The printf function
; expects real values in the integer registers.

; There are two versions of this program, one that
; will run on CPUs without AVX capabilities (no YMM
; registers) and one that will run on CPUs that
; have AVX capabilities (YMM registers). The difference
; between the two is which registers they preserve
; (print_SSE preserves only XMM registers and will
; run properly on CPUs that don't have YMM register
; support; print_AVX will preserve the volatile YMM
; registers on CPUs with AVX support).

; On first call, determine if we support AVX instructions
; and set the "print" pointer to point at print_AVX or
; print_SSE:

choosePrint proc
 push rax ; Preserve registers that get
 push rbx ; tweaked by CPUID
 push rcx
 push rdx

 mov eax, 1
 cpuid
 test ecx, AVXSupport ; Test bit 28 for AVX
 jnz doAVXPrint

 lea rax, print_SSE ; From now on, call
 mov print, rax ; print_SSE directly

; Return address must point at the format string
; following the call to this function! So we have
; to clean up the stack and JMP to print_SSE.

 pop rdx
 pop rcx
 pop rbx
 pop rax
 jmp print_SSE

doAVXPrint: lea rax, print_AVX ; From now on, call
 mov print, rax ; print_AVX directly

; Return address must point at the format string
; following the call to this function! So we have
; to clean up the stack and JMP to print_AUX.

 pop rdx
 pop rcx
 pop rbx
 pop rax
 jmp print_AVX

Managing Complex Projects 857

choosePrint endp

; Version of print that will preserve volatile
; AVX registers (YMM0 to YMM3):

thestr byte "YMM4:%I64x", nl, 0
print_AVX proc

; Preserve all the volatile registers
; (be nice to the assembly code that
; calls this procedure):

 push rax
 push rbx
 push rcx
 push rdx
 push r8
 push r9
 push r10
 push r11

; YMM0 to YMM7 are considered volatile, so preserve them:

 sub rsp, 256
 vmovdqu ymmword ptr [rsp + 000], ymm0
 vmovdqu ymmword ptr [rsp + 032], ymm1
 vmovdqu ymmword ptr [rsp + 064], ymm2
 vmovdqu ymmword ptr [rsp + 096], ymm3
 vmovdqu ymmword ptr [rsp + 128], ymm4
 vmovdqu ymmword ptr [rsp + 160], ymm5
 vmovdqu ymmword ptr [rsp + 192], ymm6
 vmovdqu ymmword ptr [rsp + 224], ymm7

 push rbp

returnAdrs textequ <[rbp + 328]>

 mov rbp, rsp
 sub rsp, 256
 and rsp, -16

; Format string (passed in RCX) is sitting at
; the location pointed at by the return address;
; load that into RCX:

 mov rcx, returnAdrs

; To handle more than three arguments (four counting
; RCX), you must pass data on stack. However, to the
; print caller, the stack is unavailable, so use
; R10 and R11 as extra parameters (could be just
; junk in these registers, but pass them just
; in case).

858 Chapter 15

 mov [rsp + 32], r10
 mov [rsp + 40], r11
 call printf

; Need to modify the return address so
; that it points beyond the zero-terminating byte.
; Could use a fast strlen function for this, but
; printf is so slow it won't really save us anything.

 mov rcx, returnAdrs
 dec rcx
skipTo0: inc rcx
 cmp byte ptr [rcx], 0
 jne skipTo0
 inc rcx
 mov returnAdrs, rcx

 leave
 vmovdqu ymm0, ymmword ptr [rsp + 000]
 vmovdqu ymm1, ymmword ptr [rsp + 032]
 vmovdqu ymm2, ymmword ptr [rsp + 064]
 vmovdqu ymm3, ymmword ptr [rsp + 096]
 vmovdqu ymm4, ymmword ptr [rsp + 128]
 vmovdqu ymm5, ymmword ptr [rsp + 160]
 vmovdqu ymm6, ymmword ptr [rsp + 192]
 vmovdqu ymm7, ymmword ptr [rsp + 224]
 add rsp, 256
 pop r11
 pop r10
 pop r9
 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
print_AVX endp

; Version that will run on CPUs without
; AVX support and will preserve the
; volatile SSE registers (XMM0 to XMM3):

print_SSE proc

; Preserve all the volatile registers
; (be nice to the assembly code that
; calls this procedure):

 push rax
 push rbx
 push rcx
 push rdx
 push r8
 push r9

Managing Complex Projects 859

 push r10
 push r11

; XMM0 to XMM3 are considered volatile, so preserve them:

 sub rsp, 128
 movdqu xmmword ptr [rsp + 00], xmm0
 movdqu xmmword ptr [rsp + 16], xmm1
 movdqu xmmword ptr [rsp + 32], xmm2
 movdqu xmmword ptr [rsp + 48], xmm3
 movdqu xmmword ptr [rsp + 64], xmm4
 movdqu xmmword ptr [rsp + 80], xmm5
 movdqu xmmword ptr [rsp + 96], xmm6
 movdqu xmmword ptr [rsp + 112], xmm7

 push rbp

returnAdrs textequ <[rbp + 200]>

 mov rbp, rsp
 sub rsp, 128
 and rsp, -16

; Format string (passed in RCX) is sitting at
; the location pointed at by the return address;
; load that into RCX:

 mov rcx, returnAdrs

; To handle more than three arguments (four counting
; RCX), you must pass data on stack. However, to the
; print caller, the stack is unavailable, so use
; R10 and R11 as extra parameters (could be just
; junk in these registers, but pass them just
; in case):

 mov [rsp + 32], r10
 mov [rsp + 40], r11
 call printf

; Need to modify the return address so
; that it points beyond the zero-terminating byte.
; Could use a fast strlen function for this, but
; printf is so slow it won't really save us anything.

 mov rcx, returnAdrs
 dec rcx
skipTo0: inc rcx
 cmp byte ptr [rcx], 0
 jne skipTo0
 inc rcx
 mov returnAdrs, rcx

 leave

860 Chapter 15

 movdqu xmm0, xmmword ptr [rsp + 00]
 movdqu xmm1, xmmword ptr [rsp + 16]
 movdqu xmm2, xmmword ptr [rsp + 32]
 movdqu xmm3, xmmword ptr [rsp + 48]
 movdqu xmm4, xmmword ptr [rsp + 64]
 movdqu xmm5, xmmword ptr [rsp + 80]
 movdqu xmm6, xmmword ptr [rsp + 96]
 movdqu xmm7, xmmword ptr [rsp + 112]
 add rsp, 128
 pop r11
 pop r10
 pop r9
 pop r8
 pop rdx
 pop rcx
 pop rbx
 pop rax
 ret
print_SSE endp
 end

Listing 15-2: The print function appearing in an assembly unit

To complete all the common aoalib functions used thus far, here is
Listing 15-3.

; getTitle.asm - The getTitle function converted to
; an assembly unit.

; Return program title to C++ program:

 include aoalib.inc

 .code
getTitle proc
 lea rax, ttlStr
 ret
getTitle endp
 end

Listing 15-3: The getTitle function as an assembly unit

Listing 15-4 is a program that uses the assembly units in Listings 15-2
and 15-3.

; Listing 15-4

; Demonstration of linking.

 include aoalib.inc

 .data
ttlStr byte "Listing 15-4", 0

Managing Complex Projects 861

; Here is the "asmMain" function.

 .code
 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage

 call print
 byte "Assembly units linked", nl, 0

 leave
 pop rdi
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 15-4: A main program that uses the print and getTitle assembly modules

So how do you build and run this program? Unfortunately, the build.bat
batch file this book has been using up to this point will not do the job.
Here’s a command that will assemble all the units and link them together:

ml64 /c print.asm getTitle.asm listing15-4.asm
cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

These commands will properly compile all source files and link together
their object code to produce the executable file c.exe.

Unfortunately, the preceding commands defeat one of the major ben-
efits of separate compilation. When you issue the ml64 /c print.asm getTitle
.asm listing15-4.asm command, it will compile all the assembly source files.
Remember, a major reason for separate compilation is to reduce compila-
tion time on large projects. While the preceding commands work, they
don’t achieve this goal.

To separately compile the two modules, you must run MASM separately
on them. To compile the three source files separately, break the ml64 invoca-
tion into three separate commands:

ml64 /c print.asm
ml64 /c getTitle.asm
ml64 /c listing15-4.asm
cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

862 Chapter 15

Of course, this sequence still compiles all three assembly source files.
However, after the first time you execute these commands, you’ve built the
print.obj and getTitle.obj files. From this point forward, as long as you don’t
change the print.asm or getTitle.asm source files (and don’t delete the print.obj
or getTitle.obj files), you can build and run the program in Listing 15-4 by
using these commands:

ml64 /c listing15-4.asm
cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

Now, you’ve saved the time needed to compile the print.asm and
getTitle.asm files.

 15.7 An Introduction to Makefiles
The build.bat file used throughout this book has been far more convenient
than typing the individual build commands. Unfortunately, the build
mechanism that build.bat supports is really good for only a few fixed source
files. While you could easily construct a batch file to compile all the files
in a large assembly project, running the batch file would reassemble every
source file in the project. Although you can use complex command line
functions to avoid some of this, there is an easier way: makefiles.

A makefile is a script in a special language (designed in early releases of
Unix) that specifies how to execute a series of commands based on certain
conditions, executed by the program make. If you’ve installed MSVC and
MASM as part of Visual Studio, you’ve probably also installed (as part of
that same process) Microsoft’s variant of make: nmake.exe.4 To use nmake.exe,
you execute it from a Windows command line as follows:

nmake optional_arguments

If you execute nmake on a command line by itself (without any arguments),
nmake.exe will search for a file named makefile and attempt to process the com-
mands in that file. For many projects, this is very convenient. You will have all
your project’s source files in a single directory (or in subdirectories hanging
off that directory), and you will place a single makefile (named makefile) in
that directory. By changing into that directory and executing nmake (or make),
you can build the project with minimal fuss.

If you want to use a different filename than makefile, you must preface
the filename with the /f option, as follows:

nmake /f mymake.mak

The filename doesn’t have to have the extension .mak. However, this is a
popular convention when using makefiles that are not named makefile.

4. nmake stands for new make, which is Microsoft’s way of saying that it didn’t adhere to the stan-
dard make language. That’s fine; nmake will behave just like the Unix variants for the simple
operations we need.

Managing Complex Projects 863

The nmake program does provide many command line options, and
/help will list them. Look up nmake documentation online for a description
of the other command line options (most of them are advanced and are
unnecessary for most tasks).

15.7.1 Basic Makefile Syntax
A makefile is a standard ASCII text file containing a sequence of lines (or a
set of multiple occurrences of this sequence) as follows:

target: dependencies
 commands

The target: dependencies line is optional. The commands item is a list of
one or more command line commands, also optional. The target item, if
present, must begin in column 1 of the source line it is on. The commands
items must have at least one whitespace character (space or tab) in front of
them (that is, they must not begin in column 1 of the source line). Consider
the following valid makefile:

c.exe:
 ml64 /c print.asm
 ml64 /c getTitle.asm
 ml64 /c listing15-4.asm
 cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

If these commands appear in a file named makefile and you execute
nmake, then nmake will execute these commands exactly like the command line
interpreter would have executed them had they appeared in a batch file.

A target item is an identifier or a filename of some sort. Consider the
following makefile:

executable:
 ml64 /c listing15-4.asm
 cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

library:
 ml64 /c print.asm
 ml64 /c getTitle.asm

This separates the build commands into two groups: one group speci-
fied by the executable label and one group specified by the library label.

If you run nmake without any command line options, nmake will execute
only those commands associated with the very first target in the makefile.
In this example, if you run nmake by itself, it will assemble listing15-4.asm,
print.asm, and getTitle.asm; compile c.cpp; and attempt to link the resulting
c.obj with print.obj, getTitle.obj, and listing15-4.obj. This should successfully
produce the c.exe executable.

864 Chapter 15

To process the commands after the library target, specify the target name
as an nmake command line argument:

nmake library

This nmake command compiles print.asm and getTitle.asm. So if you execute
this command once (and never change print.asm or getTitle.asm thereafter), you
need only execute the nmake command by itself to generate the executable
file (or use nmake executable if you want to explicitly state that you are build-
ing the executable).

15.7.2 Make Dependencies
Although the ability to specify which targets you want to build on the com-
mand line is very useful, as your projects get larger (with many source files
and library modules), keeping track of which source files you need to recom-
pile all the time can be burdensome and error prone; if you’re not careful,
you’ll forget to compile an obscure library module after you’ve made changes
to it and wonder why the application is still failing. The make dependencies
option allows you to automate the build process to help avoid these problems.

A list of one or more (whitespace-separated) dependencies can follow a
target in a makefile:

target: dependency1 dependency2 dependency3 ...

Dependencies are either target names (of targets appearing in that
makefile) or filenames. If a dependency is a target name (that is not also a
filename), nmake will go execute the commands associated with that target.
Consider the following makefile:

executable:
 ml64 /c listing15-4.asm
 cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

library:
 ml64 /c print.asm
 ml64 /c getTitle.asm

all: library executable

The all target depends on the library and executable targets, so it will
go execute the commands associated with those targets (and in the order
library, executable, which is important because the library object files must
be built before the associated object modules can be linked into the execut-
able program). The all identifier is a common target in makefiles. Indeed,
it is often the first or second target to appear in a makefile.

If a target: dependencies line becomes too long to be readable (nmake
doesn’t really care too much about line length), you can break the line into
multiple lines by putting a backslash character (\) as the last character on a
line. The nmake program will combine source lines that end with a backslash
with the next line in the makefile.

Managing Complex Projects 865

N O T E The backslash must be the very last character on the line. Whitespace characters (tabs
and spaces) are not allowed.

Target names and dependencies can also be filenames. Specifying a file-
name as a target name is generally done to tell the make system how to build
that particular file. For example, we could rewrite the current example as
follows:

executable:
 ml64 /c listing15-4.asm
 cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

library: print.obj getTitle.obj

print.obj:
 ml64 /c print.asm

getTitle.obj:
 ml64 /c getTitle.asm

all: library executable

When dependencies are associated with a target that is a filename, you
can read the target: dependencies statement as “target depends on dependencies.”
When processing a make command, nmake compares the modification date and
time stamp of the files specified as target filenames and dependency filenames.

If the date and time of the target are older than any of the dependencies
(or the target file doesn’t exist), nmake will execute the commands after the
target. If the target file’s modification date and time are later (newer) than
all of the dependent files, nmake will not execute the commands. If one of the
dependencies after a target is itself a target elsewhere, nmake will first execute
that command (to see if it modifies the target object, changing its modifica-
tion date and time, and possibly causing nmake to execute the current target’s
commands). If a target or dependency is just a label (it is not a filename),
nmake will treat its modification date and time as older than any file.

Consider the following modification to the running makefile example:

c.exe: print.obj getTitle.obj listing15-4.obj
 cl /EHa c.cpp print.obj getTitle.obj listing15-4.obj

listing15-4.obj: listing15-4.asm
 ml64 /c listing15-4.asm

print.obj: print.asm
 ml64 /c print.asm

getTitle.obj: getTitle.asm
 ml64 /c getTitle.asm

Note that the all and library targets were removed (they turn out to be
unnecessary) and that executable was changed to c.exe (the final target execut-
able file).

866 Chapter 15

Consider the c.exe target. Because print.obj, getTitle.obj, and listing15-4.obj
are all targets (as well as filenames), nmake will first go execute those targets.
After executing those targets, nmake will compare the modification date and
time of c.exe against that of the three object files. If c.exe is older than any of
those object files, nmake will execute the command following the c.exe target
line (to compile c.cpp and link it with the object files). If c.exe is newer than its
dependent object files, nmake will not execute the command.

The same process happens, recursively, for each of the dependent object
files following the c.exe target. While processing the c.exe target, nmake will
go off and process the print.obj, getTitle.obj, and listing15-4.obj targets (in that
order). In each case, nmake will compare the modification date and time of the
.obj file with the corresponding .asm file. If the .obj file is newer than the .asm
file, nmake returns to processing the c.exe target without doing anything; if the
.obj file is older than the .asm file (or doesn’t exist), nmake executes the corre-
sponding ml64 command to generate a new .obj file.

If c.exe is newer than all the .obj files (and they are all newer than the .asm
files), executing nmake does nothing (well, it will report that c.exe is up to date,
but it will not process any of the commands in the makefile). If any of the files
are out of date (because they’ve been modified), this makefile will compile
and link only the files necessary to bring c.exe up to date.

The makefiles thus far are missing an important dependency: all of
the .asm files include the aoalib.inc file. A change to aoalib.inc could possibly
require a recompilation of these .asm files. This dependency has been added
to Listing 15-5. This listing also demonstrates how to include comments in a
makefile by using the # character at the beginning of a line.

listing15-5.mak

makefile for Listing 15-4.

listing15-4.exe:print.obj getTitle.obj listing15-4.obj
 cl /nologo /O2 /Zi /utf-8 /EHa /Felisting15-4.exe c.cpp \
 print.obj getTitle.obj listing15-4.obj

listing15-4.obj: listing15-4.asm aoalib.inc
 ml64 /nologo /c listing15-4.asm

print.obj: print.asm aoalib.inc
 ml64 /nologo /c print.asm

getTitle.obj: getTitle.asm aoalib.inc
 ml64 /nologo /c getTitle.asm

Listing 15-5: Makefile to build Listing 15-4

Here’s the nmake command to build the program in Listing 15-4 by
using the makefile (listing15-5.mak) in Listing 15-5:

C:\>nmake /f listing15-5.mak

Microsoft (R) Program Maintenance Utility Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

Managing Complex Projects 867

 ml64 /nologo /c print.asm
 Assembling: print.asm
 ml64 /nologo /c getTitle.asm
 Assembling: getTitle.asm
 ml64 /nologo /c listing15-4.asm
 Assembling: listing15-4.asm
 cl /nologo /O2 /Zi /utf-8 /EHa /Felisting15-4.exe c.cpp print.obj
getTitle.obj listing15-4.obj
c.cpp

C:\>listing15-4
Calling Listing 15-4:
Assembly units linked
Listing 15-4 terminated

15.7.3 Make Clean and Touch
One common target you will find in most professionally made makefiles
is clean. The clean target will delete an appropriate set of files to force the
entire system to be remade the next time you execute the makefile. This
command typically deletes all the .obj and .exe files associated with the proj-
ect. Listing 15-6 provides a clean target for the makefile in Listing 15-5.

listing15-6.mak

makefile for Listing 15-4.

listing15-4.exe:print.obj getTitle.obj listing15-4.obj
 cl /nologo /O2 /Zi /utf-8 /EHa /Felisting15-4.exe c.cpp \
 print.obj getTitle.obj listing15-4.obj

listing15-4.obj: listing15-4.asm aoalib.inc
 ml64 /nologo /c listing15-4.asm

print.obj: print.asm aoalib.inc
 ml64 /nologo /c print.asm

getTitle.obj: getTitle.asm aoalib.inc
 ml64 /nologo /c getTitle.asm

clean:
 del getTitle.obj
 del print.obj
 del listing15-4.obj
 del c.obj
 del listing15-4.ilk
 del listing15-4.pdb
 del vc140.pdb
 del listing15-4.exe

Alternative clean (if you like living dangerously):

clean:
del *.obj
del *.ilk

868 Chapter 15

del *.pdb
del *.exe

Listing 15-6: A clean target example

Here is a sample clean and remake operation:

C:\>nmake /f listing15-6.mak clean

Microsoft (R) Program Maintenance Utility Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 del getTitle.obj
 del print.obj
 del listing15-4.obj
 del c.obj
 del listing15-4.ilk
 del listing15-4.pdb
 del listing15-4.exe

C:\>nmake /f listing15-6.mak

Microsoft (R) Program Maintenance Utility Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

 ml64 /nologo /c print.asm
 Assembling: print.asm
 ml64 /nologo /c getTitle.asm
 Assembling: getTitle.asm
 ml64 /nologo /c listing15-4.asm
 Assembling: listing15-4.asm
 cl /nologo /O2 /Zi /utf-8 /EHa /Felisting15-4.exe c.cpp
 print.obj getTitle.obj listing15-4.obj
c.cpp

If you want to force the recompilation of a single file (without manually
editing and modifying it), a Unix utility comes in handy: touch. The touch
program accepts a filename as its argument and goes in and updates the
modification date and time of the file (without otherwise modifying the
file). For example, after building Listing 15-4 by using the makefile in
Listing 15-6, were you to execute the command

touch listing15-4.asm

and then execute the makefile in Listing 15-6 again, it would reassemble
the code in Listing 15-4, recompile c.cpp, and produce a new executable.

Unfortunately, while touch is a standard Unix application and comes
with every Unix and Linux distribution, it is not a standard Windows appli-
cation.5 Fortunately, you can easily find a version of touch for Windows on the
internet. It’s also a relatively simple program to write.

5. Also see https://docs.microsoft.com/en-us/windows/wsl/install-win10/ to see how to gain access to
Linux utilities under Windows.

https://docs.microsoft.com/en-us/windows/wsl/install-win10/

Managing Complex Projects 869

 15.8 The Microsoft Linker and Library Code
Many common projects reuse code that developers created long ago (or they
use code that came from a source outside the developer’s organization).
These libraries of code are relatively static: they rarely change during the
development of a project that uses the library code. In particular, you would
not normally incorporate the building of the libraries into a given project’s
makefile. A specific project might list the library files as dependencies in
the makefile, but the assumption is that the library files are built elsewhere
and supplied as a whole to the project. Beyond that, one major difference
exists between a library and a set of object code files: packaging.

Dealing with a myriad of separate object files can become troublesome
when you’re working with true sets of library object files. A library may con-
tain tens, hundreds, or even thousands of object files. Listing all of these
object files (or even just the ones a project uses) is a lot of work and can lead
to consistency errors. A common way to deal with this problem is to com-
bine various object files into a separate package (file) known as a library file.
Under Windows, library files typically have a .lib suffix.

For many projects, you will be given a library (.lib) file that packages
together a specific library module. You supply this file to the linker when
building your program, and the linker automatically picks out the object
modules it needs from the library. This is an important point: including a
library while building an executable does not automatically insert all of the
code from that library into the executable. The linker is smart enough to
extract only the object files it needs and to ignore the object files it doesn’t
use (remember, a library is just a package containing a bunch of object files).

So the question is, “How do you create a library file?” The short answer
is, “By using the Microsoft Library Manager program (lib.exe).” The basic
syntax for the lib program is

lib /out:libname.lib list_of_.obj_files

where libname.lib is the name of the library file you want to produce, and
list_of_.obj_files is a (space-separated) list of object filenames you want to
collect into the library. For example, if you want to combine the print.obj and
getTitle.obj files into a library module (aoalib.lib), here’s the command to do it:

lib /out:aoalib.lib getTitle.obj print.obj

Once you have a library module, you can specify it on a linker (or ml64
or cl) command line just as you would an object file. For example, to link in
the aoalib.lib module with the program in Listing 15-4, you could use the fol-
lowing command:

cl /EHa /Felisting15-4.exe c.cpp listing15-4.obj aoalib.lib

The lib program supports several command line options. You can get a
list of those options by using this command:

lib /?

870 Chapter 15

See the online Microsoft documentation for a description of the vari-
ous commands. Perhaps the most useful of the options is

lib /list lib_filename.lib

where lib_filename.lib represents a library filename. This will print a list of
the object files contained within that library module. For example, lib /list
aoalib.lib produces the following output:

C:\>lib /list aoalib.lib
Microsoft (R) Library Manager Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

getTitle.obj
print.obj

MASM provides a special directive, includelib, that lets you specify
libraries to include. This directive has the syntax

includelib lib_filename.lib

where lib_filename.lib is the name of the library file you want to include.
This directive embeds a command in the object file that MASM produces
that passes this library filename along to the linker. The linker will then
automatically load the library file when processing the object module con-
taining the includelib directive.

This activity is identical to manually specifying the library filename to
the linker (from the command line). Whether you prefer to put the includelib
directive in a MASM source file, or include the library name on the linker
(or ml64/cl) command line, is up to you. In my experience, most assembly lan-
guage programmers (especially when writing stand-alone assembly language
programs) prefer the includelib directive.

 15.9 Object File and Library Impact on Program Size
The basic unit of linkage in a program is the object file. When combining
object files to form an executable, the Microsoft linker will take all of the
data from a single object file and merge it into the final executable. This
is true even if the main program doesn’t call all the functions (directly or
indirectly) in the object module or use all the data in that object file. So, if
you put 100 routines in a single assembly language source file and compile
them into an object module, the linker will include the code for all 100 rou-
tines in your final executable even if you use only one of them.

If you want to avoid this situation, you should break those 100 routines
into 100 separate object modules and combine the resulting 100 object files
into a single library. When the Microsoft linker processes that library file, it
will pick out the single object file containing the function the program uses

Managing Complex Projects 871

and incorporate only that object file into the final executable. Generally, this
is far more efficient than linking in a single object file with 100 functions
buried in it.

The key word in that last sentence is generally. In fact, there are some
good reasons for combining multiple functions into a single object file. First
of all, consider what happens when the linker merges an object file into an
executable. To ensure proper alignment, whenever the linker takes a section
or segment (for example, the .code section) from an object file, it adds suf-
ficient padding so that the data in that section is aligned on that section’s
specified alignment boundary. Most sections have a default 16-byte section
alignment, so the linker will align each section from the object file it links in
on a 16-byte boundary. Normally, this isn’t too bad, especially if your proce-
dures are large. However, suppose those 100 procedures you’ve created are all
really short (a few bytes each). Then you wind up wasting a lot of space.

Granted, on modern machines, a few hundred bytes of wasted space
won’t amount to much. However, it might be more practical to combine sev-
eral of these procedures into a single object module (even if you don’t call
them all) to fill in some of the wasted space. Don’t go overboard, though;
once you’ve gone beyond the alignment, whether you’re wasting space
because of padding or wasting space because you’re including code that
never gets called, you’re still wasting space.

 15.10 For More Information
Although it is an older book, covering MASM version 6, The Waite Group’s
Microsoft Macro Assembler Bible by Nabajyoti Barkakati and this author (Sams,
1992) goes into much greater detail about MASM’s external directives
(extern, externdef, and public) and include files.

You can also find the MASM 6 manual (the last published edition)
online.

For more information about makefiles, check out these resources:

•	 Wikipedia: https://en.wikipedia.org/wiki/Make_(software)

•	 Managing Projects with GNU Make, Third Edition, by Robert Mecklenburg
(O’Reilly Media, 2004)

•	 The GNU Make Book by John Graham-Cumming (No Starch Press, 2015)

 15.11 Test Yourself
1. What statement(s) would you use to prevent recursive include files?

2. What is an assembly unit?

3. What directive would you use to tell MASM that a symbol is global and
visible outside the current source file?

4. What directive(s) would you use to tell MASM to use a global symbol
from another object module?

 https://en.wikipedia.org/wiki/Make_(software)

872 Chapter 15

5. Which directive prevents duplicate symbol errors when an external sym-
bol is defined within an assembly source file?

6. What external data type declaration would you use to access an external
constant symbol?

7. What external data type declaration would you use to access an external
procedure?

8. What is the name of Microsoft’s make program?

9. What is the basic makefile syntax?

10. What is a makefile-dependent file?

11. What does a makefile clean command typically do?

12. What is a library file?

16
S T A N D - A L O N E A S S E M B LY

L A N G U A G E P R O G R A M S

Until now, this book has relied upon a C/C++
main program to call the example code

written in assembly language. Although this
is probably the biggest use of assembly language

in the real world, it is also possible to write stand-alone
code (no C/C++ main program) in assembly language.

In the context of this chapter, stand-alone assembly language programs
means that you’re writing an executable program in assembly that does not
directly link into a C/C++ program for execution. Without a C/C++ main
program calling your assembly code, you’re not dragging along the C/C++
library code and runtime system, so your programs can be smaller and you
won’t have external naming conflicts with C/C++ public names. However,
you’ll have to do much of the work yourself that C/C++ libraries do by writ-
ing comparable assembly code or calling the Win32 API.

The Win32 API is a bare-metal interface to the Windows operating sys-
tem that provides thousands of functions you can call from a stand-alone
assembly language program—far too many to consider in this chapter. This
chapter provides a basic introduction to Win32 applications (especially

874 Chapter 16

console-based applications). This information will get you started writing
stand-alone assembly language programs under Windows.

To use the Win32 API from your assembly programs, you’ll need to
download the MASM32 library package from https://www.masm32.com/.1
Most of the examples in this chapter assume the MASM32 64-bit include
files are available on your system in the C:\masm32 subdirectory.

 16.1 Hello World, by Itself
Before showing you some of the wonders of Windows stand-alone assembly
language programming, perhaps the best place to start is at the beginning:
with a stand-alone “Hello, world!” program (Listing 16-1).

; Listing 16-1.asm

; A stand-alone assembly language version of
; the ubiquitous "Hello, world!" program.

; Link in the Windows Win32 API:

 includelib kernel32.lib

; Here are the two Windows functions we will need
; to send "Hello, world!" to the standard console device:

 extrn __imp_GetStdHandle:proc
 extrn __imp_WriteFile:proc

 .code
hwStr byte "Hello World!"
hwLen = $-hwStr

; This is the honest-to-goodness assembly language
; main program:

main proc

; On entry, stack is aligned at 8 mod 16. Setting aside
; 8 bytes for "bytesWritten" ensures that calls in main have
; their stack aligned to 16 bytes (8 mod 16 inside function),
; as required by the Windows API (which __imp_GetStdHandle and
; __imp_WriteFile use. They are written in C/C++).

 lea rbx, hwStr
 sub rsp, 8
 mov rdi, rsp ; Hold # of bytes written here

; Note: must set aside 32 bytes (20h) for shadow registers for
; parameters (just do this once for all functions).
; Also, WriteFile has a 5th argument (which is NULL),

1. Despite its name, the MASM32 library includes header files for both 32-bit and 64-bit
assembly language programmers. Obviously, we’re interested in the 64-bit libraries.

https://www.masm32.com/

Stand-Alone Assembly Language Programs 875

; so we must set aside 8 bytes to hold that pointer (and
; initialize it to zero). Finally, stack must always be
; 16-byte-aligned, so reserve another 8 bytes of storage
; to ensure this.

 sub rsp, 030h ; Shadow storage for args

; Handle = GetStdHandle(-11);
; Single argument passed in ECX.
; Handle returned in RAX.

 mov rcx, -11 ; STD_OUTPUT
 call qword ptr __imp_GetStdHandle ; Returns handle
 ; in RAX

; WriteFile(handle, "Hello World!", 12, &bytesWritten, NULL);
; Zero out (set to NULL) "lpOverlapped" argument:

 xor rcx, rcx
 mov [rsp + 4 * 8], rcx

 mov r9, rdi ; Address of "bytesWritten" in R9
 mov r8d, hwLen ; Length of string to write in R8D
 lea rdx, hwStr ; Ptr to string data in RDX
 mov rcx, rax ; File handle passed in RCX
 call qword ptr __imp_WriteFile

; Clean up stack and return:

 add rsp, 38h
 ret
main endp
 end

Listing 16-1: Stand-alone “Hello, world!” program

The __imp_GetStdHandle and __imp_WriteFile procedures are functions
inside Windows (they are part of the so-called Win32 API, even though this
is 64-bit code that is executing). The __imp_GetStdHandle procedure, when
passed the (admittedly magic) number –11 as an argument, returns a handle
to the standard output device. With this handle, calls to __imp_WriteFile will
send the output to the standard output device (the console). To build and
run this program, use the following command:

ml64 listing16-1.asm /link /subsystem:console /entry:main

The MASM /link command line option tells it that the following com-
mands (to the end of the line) are to be passed on to the linker. The
/subsystem:console (linker) command line option tells the linker that this
program is a console application (that is, it will run in a command line
window). The /entry:main linker option passes along the name of the main
program to the linker. The linker stores this address in a special location

876 Chapter 16

in the executable file so Windows can determine the starting address of
the main program after it loads the executable file into memory.

 16.2 Header Files and the Windows Interface
Near the beginning of the “Hello, world!” example in Listing 16-1, you’ll
notice the following lines:

includelib kernel32.lib

; Here are the two Windows functions we will need
; to send "Hello, world!" to the standard console device:

extrn __imp_GetStdHandle:proc
extrn __imp_WriteFile:proc

The kernel32.lib library file contains the object module definitions for
many of the Win32 API functions, including the __imp_GetStdHandle and
__imp_WriteFile procedures. Inserting extrn directives for all the Win32 API
functions into your assembly language programs is an incredible amount of
work. The proper way to deal with these function definitions is to include
them in a header (include) file and then include that file in every applica-
tion you write that uses the Win32 API functions.

The bad news is that creating an appropriate set of header files is a
gargantuan task. The good news is that somebody else has already done
all that work for you: the MASM32 headers. Listing 16-2 is a rework of
Listing 16-1 that uses the MASM32 64-bit include files to obtain the Win32
external declarations. Note that we incorporate MASM32 via an include file,
listing16-2.inc, rather than use it directly. This will be explained in a moment.

; Listing 16-2

 include listing16-2.inc
 includelib kernel32.lib ; File I/O library

; Include just the files we need from masm64rt.inc:

; include \masm32\include64\masm64rt.inc
; OPTION DOTNAME ; Required for macro files
; option casemap:none ; Case sensitive
; include \masm32\include64\win64.inc
; include \masm32\macros64\macros64.inc
; include \masm32\include64\kernel32.inc

 .data
bytesWrtn qword ?
hwStr byte "Listing 16-2", 0ah, "Hello, World!", 0
hwLen = sizeof hwStr

 .code

**

Stand-Alone Assembly Language Programs 877

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push r15
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage
 and rsp, -16

 mov rcx, -11 ; STD_OUTPUT
 call __imp_GetStdHandle ; Returns handle

 xor rcx, rcx
 mov bytesWrtn, rcx

 lea r9, bytesWrtn ; Address of "bytesWritten" in R9
 mov r8d, hwLen ; Length of string to write in R8D
 lea rdx, hwStr ; Ptr to string data in RDX
 mov rcx, rax ; File handle passed in RCX
 call __imp_WriteFile

allDone: leave
 pop r15
 pop rdi
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Here’s the listing16-2.inc include file:

; listing16-2.inc

; Header file entries extracted from MASM32 header
; files (placed here rather than including the
; full MASM32 headers to avoid namespace pollution
; and speed up assemblies).

PPROC TYPEDEF PTR PROC ; For include file prototypes

externdef __imp_GetStdHandle:PPROC
externdef __imp_WriteFile:PPROC

Listing 16-2: Using the MASM32 64-bit include files

Here’s the build command and sample output:

C:\>ml64 /nologo listing16-2.asm kernel32.lib /link /nologo /subsystem:console
/entry:asmMain
 Assembling: listing16-2.asm

878 Chapter 16

C:\>listing16-2
Listing 16-2
Hello, World!

The MASM32 include file

include \masm32\include64\masm64rt.inc

includes all the other hundreds of include files that are part of the MASM32
64-bit system. Sticking this include directive into your programs provides
your application with access to a huge number of Win32 API functions, data
declarations, and other goodies (such as MASM32 macros).

However, your computer will pause for a bit when you assemble your
source file. That’s because that single include directive winds up including
many tens of thousands of lines of code into your program during assembly.
If you know which header file(s) contain the actual declarations you want to
use, you can speed up your compilations by including just the files you need
(as was done in listing16-2.asm using the MASM32 64-bit include files).

Including masm64rt.inc into your programs has one other problem:
namespace pollution. The MASM32 include file introduces thousands and
thousands of symbols into your program, and there is a chance a symbol
you want to use has already been defined in the MASM32 include files (for
a different purpose than the one you have in mind). If you have a file grep
utility, a program that searches through files in a directory and recursively
in subdirectories for a particular string, you can easily locate all occurrences
of a particular symbol you want to use in your file and copy that symbol’s
definition into your own source file (or, better yet, into a header file you cre-
ate specifically for this purpose). This is the approach this chapter uses for
many of the example programs.

 16.3 The Win32 API and the Windows ABI
The Win32 API functions all adhere to the Windows ABI calling convention.
This means that calls to these functions can modify all the volatile registers
(RAX, RCX, RDX, R8, R9, R10, R11, and XMM0 to XMM5) but must pre-
serve the nonvolatile registers (the others not listed here). Also, API calls
pass parameters in RDX, RCX, R8, R9 (and XMM0 to XMM3), and then on
the stack; the stack must be 16-byte-aligned prior to the API call. See the
discussion of the Windows ABI throughout this book for more details.

 16.4 Building a Stand-Alone Console Application
Take a look at the (simplified) build command from the preceding section:2

ml64 listing16-2.asm /link /subsystem:console /entry:asmMain

2. I’ve removed the /nologo options to save space on the line. They don’t affect the operation
of the compilation other than to reduce some Microsoft output.

Stand-Alone Assembly Language Programs 879

The /subsystem:console option tells the linker that in addition to pos-
sible GUI windows the application might create, the system must also create
a special window for the application to display console information. If you
run the program from a Windows command line, it uses the already-open
console window of the cmd.exe program.

 16.5 Building a Stand-Alone GUI Application
To create a pure Windows GUI application that does not also open up a con-
sole window, you can specify /subsystem:windows rather than /subsystem:console.
The simple dialog box application in Listing 16-3 is an example of an espe-
cially simple Windows application. It displays a simple dialog box and then
quits when the user clicks the OK button in the dialog box.

; Listing 16-3

; Dialog box demonstration.

 include listing16-3.inc
 includelib user32.lib

 ; include \masm32\include64\masm64rt.inc

 .data

msg byte "Dialog Box Demonstration",0
DBTitle byte "Dialog Box Title", 0

 .code

**

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbp
 mov rbp, rsp
 sub rsp, 56 ; Shadow storage
 and rsp, -16

 xor rcx, rcx ; HWin = NULL
 lea rdx, msg ; Message to display
 lea r8, DBTitle ; Dialog box title
 mov r9d, MB_OK ; Has an "OK" button
 call MessageBox

allDone: leave
 ret ; Returns to caller
asmMain endp
 end

Listing 16-3: A simple dialog box application

880 Chapter 16

Here’s the listing16-3.inc include file:

; listing16-3.inc

; Header file entries extracted from MASM32 header
; files (placed here rather than including the
; full MASM32 headers to avoid namespace pollution
; and speed up assemblies).

PPROC TYPEDEF PTR PROC ; For include file prototypes

MB_OK equ 0h

externdef __imp_MessageBoxA:PPROC
MessageBox equ <__imp_MessageBoxA>

Here is the build command for the program in Listing 16-3:

C:\>ml64 listing16-3.asm /link /subsystem:windows /entry:asmMain

Figure 16-1 shows the runtime output from Listing 16-3.

Figure 16-1: Sample dialog box output

 16.6 A Brief Look at the MessageBox Windows API
Function
Although creating GUI applications in assembly language is well beyond
the scope of this book, the MessageBox function is sufficiently useful (even in
console applications) to be worth a special mention.

The MessageBox function has four parameters:

RCX Window handle. This is usually NULL (0), implying that the
message box is a stand-alone dialog box that is not associated with any
particular window.

RDX Message pointer. RDX contains a pointer to a zero-terminated
string that will be displayed in the body of the message box.

Stand-Alone Assembly Language Programs 881

R8 Window title. R8 contains a pointer to a zero-terminated string
that is displayed in the title bar of the message box window.

R9D Message box type. This is an integer value that specifies the type
of buttons and other icons appearing in the message box. Typical values
are the following: MB_OK, MB_OKCANCEL, MB_ABORTRETRYIGNORE, MB_YESNOCANCEL,
MB_YESNO, and MB_RETRYCANCEL.

The MessageBox function returns an integer value in RAX corresponding
to the button that was pressed (if MB_OK was specified, that’s the value that
the message box returns when the user clicks the OK button).

 16.7 Windows File I/O
One thing missing from most of the example code in this book has been
a discussion of file I/O. Although you can easily make C Standard Library
calls to open, read, write, and close files, it seemed appropriate to use file
I/O as an example in this chapter to cover this missing detail.

The Win32 API provides many useful functions for file I/O: reading and
writing file data. This section describes a small number of these functions:

CreateFileA A function (despite its name) that you use to open existing
files or create new files

WriteFile A function that writes data to a file

ReadFile A function that reads data from a file

CloseHandle A function that closes a file and flushes any cached data to
the storage device

GetStdHandle A function, which you’ve already seen, that returns the
handle of one of the standard input or output devices (standard input,
standard output, or standard error)

GetLastError A function you can use to retrieve a Windows error code
if an error occurs in the execution of any of these functions

Listing 16-4 demonstrates the use of these functions as well as the
creation of some useful procedures that call these functions. Note that
this code is rather long, so I’ve taken the liberty of breaking it into smaller
chunks, with individual explanations in front of each section.

The Win32 file I/O functions are all part of the kernel32.lib library
module. Therefore, Listing 16-4 uses the includelib kernel32.lib statement
to automatically link in this library during the build phase. To speed up
assembly and reduce namespace pollution, this program does not auto-
matically include all of the MASM32 equate files (via an include \masm32
\include64\masm64rt.inc statement). Instead, I’ve collected all the necessary
equates and other definitions from the MASM32 header files and placed
them in the listing16-4.inc header file (which appears a little later in this

882 Chapter 16

chapter). Finally, the program also includes the aoalib.inc header file, just
to use a few of the constants defined in that file (such as cr and nl):

; Listing 16-4

; File I/O demonstration.

 include listing16-4.inc
 include aoalib.inc ; To get some constants
 includelib kernel32.lib ; File I/O library

 .const
prompt byte "Enter (text) filename:", 0
badOpenMsg byte "Could not open file", cr, nl, 0

 .data

inHandle dword ?
inputLn byte 256 dup (0)

fileBuffer byte 4096 dup (0)

The following code constructs wrapper code around each of the file I/O
functions to preserve the volatile register values. These functions use the
following macro definitions to save and restore the register values:

 .code

rcxSave textequ <[rbp - 8]>
rdxSave textequ <[rbp - 16]>
r8Save textequ <[rbp - 24]>
r9Save textequ <[rbp - 32]>
r10Save textequ <[rbp - 40]>
r11Save textequ <[rbp - 48]>
xmm0Save textequ <[rbp - 64]>
xmm1Save textequ <[rbp - 80]>
xmm2Save textequ <[rbp - 96]>
xmm3Save textequ <[rbp - 112]>
xmm4Save textequ <[rbp - 128]>
xmm5Save textequ <[rbp - 144]>
var1 textequ <[rbp - 160]>

mkActRec macro
 push rbp
 mov rbp, rsp
 sub rsp, 256 ; Includes shadow storage
 and rsp, -16 ; Align to 16 bytes
 mov rcxSave, rcx
 mov rdxSave, rdx
 mov r8Save, r8
 mov r9Save, r9
 mov r10Save, r10
 mov r11Save, r11
 movdqu xmm0Save, xmm0
 movdqu xmm1Save, xmm1

Stand-Alone Assembly Language Programs 883

 movdqu xmm2Save, xmm2
 movdqu xmm3Save, xmm3
 movdqu xmm4Save, xmm4
 movdqu xmm5Save, xmm5
 endm

rstrActRec macro
 mov rcx, rcxSave
 mov rdx, rdxSave
 mov r8, r8Save
 mov r9, r9Save
 mov r10, r10Save
 mov r11, r11Save
 movdqu xmm0, xmm0Save
 movdqu xmm1, xmm1Save
 movdqu xmm2, xmm2Save
 movdqu xmm3, xmm3Save
 movdqu xmm4, xmm4Save
 movdqu xmm5, xmm5Save
 leave
 endm

N O T E These macros assume that the code does not need to preserve the AVX registers (YMM,
or even ZMM, registers). If you’re running on a CPU that supports the AVX exten-
sions (and you need to preserve YMM0 to YMM5 or even ZMM0 to ZMM5), you
will need to modify these macros to handle the preservation of those registers. These
macros also do not preserve the value in the RAX register, because almost all Win32
API functions return a function result in RAX (an error code, if nothing else).

The first function appearing in Listing 16-4 is getStdOutHandle. This is
a wrapper function around __imp_GetStdHandle that preserves the volatile
registers and explicitly requests the standard output device handle. This
function returns the standard output device handle in the RAX regis-
ter. Immediately following getStdOutHandle are comparable functions that
retrieve the standard error handle and the standard input handle:

; getStdOutHandle - Returns stdout handle in RAX:

getStdOutHandle proc
 mkActRec
 mov rcx, STD_OUTPUT_HANDLE
 call __imp_GetStdHandle ; Returns handle
 rstrActRec
 ret
getStdOutHandle endp

; getStdErrHandle - Returns stderr handle in RAX:

getStdErrHandle proc
 mkActRec
 mov rcx, STD_ERROR_HANDLE
 call __imp_GetStdHandle ; Returns handle
 rstrActRec
 ret

884 Chapter 16

getStdErrHandle endp

; getStdInHandle - Returns stdin handle in RAX:

getStdInHandle proc
 mkActRec
 mov rcx, STD_INPUT_HANDLE
 call __imp_GetStdHandle ; Returns handle
 rstrActRec
 ret
getStdInHandle endp

Now consider the wrapper code for the write function:

; write - Write data to a file handle.

; RAX - File handle.
; RSI - Pointer to buffer to write.
; RCX - Length of buffer to write.

; Returns:

; RAX - Number of bytes actually written
; or -1 if there was an error.

write proc
 mkActRec

 mov rdx, rsi ; Buffer address
 mov r8, rcx ; Buffer length
 lea r9, var1 ; bytesWritten
 mov rcx, rax ; Handle
 xor r10, r10 ; lpOverlapped is passed
 mov [rsp+4*8], r10 ; on the stack
 call __imp_WriteFile
 test rax, rax ; See if error
 mov rax, var1 ; bytesWritten
 jnz rtnBytsWrtn ; If RAX was not zero
 mov rax, -1 ; Return error status

rtnBytsWrtn:
 rstrActRec
 ret
write endp

The write function writes data from a memory buffer to the output file
specified by a file handle (which could also be the standard output or stan-
dard error handle, if you want to write data to the console). The write function
expects the following parameter data:

RAX File handle specifying the write destination. This is typically
a handle obtained by the open or openNew functions (a little later in the
program) or the getStdOutHandle and getStdErrHandle functions.

Stand-Alone Assembly Language Programs 885

RSI Address of the buffer containing the data to write to the file.

RCX Number of bytes of data to write to the file (from the buffer).

This function does not follow the Windows ABI calling convention.
Although there isn’t an official assembly language calling convention, many
assembly language programmers tend to use the same registers that the
x86-64 string instructions use. For example, the source data (buffer) is
passed in RSI (the source index register), and the count (buffer size)
parameter appears in the RCX register. The write procedure moves the
data to appropriate locations for the call to __imp_WriteFile (as well as sets
up additional parameters).

The __imp_WriteFile function is the actual Win32 API write function
(technically, __imp_WriteFile is a pointer to the function; the call instruction
is an indirect call through this pointer). The __imp_WriteFile has the follow-
ing arguments:

RCX File handle.

RDX Buffer address.

R8 Buffer size (really, 32 bits in R8D).

R9 Address of a dword variable to receive the number of bytes writ-
ten to the file; this will equal the buffer size if the write operation is
successful.

[rsp + 32] lpOverlapped value; just set this to NULL (0). As per the
Windows ABI, callers pass all parameters beyond the fourth parameter
on the stack, leaving room (shadow parameters) for the first four.

On return from __imp_WriteFile, RAX contains a nonzero value (true) if
the write was successful, and zero (false) if there was an error. If there was an
error, you can call the Win32 GetLastError function to retrieve the error code.

Note that the write function returns the number of bytes written to the
file in the RAX register. If there was an error, write returns -1 in the RAX
register.

Next up are the puts and newLn functions:

; puts - Outputs a zero-terminated string to standard output device.

; RSI - Address of string to print to standard output.

 .data
stdOutHnd qword 0
hasSOHndl byte 0

 .code
puts proc
 push rax
 push rcx
 cmp hasSOHndl, 0
 jne hasHandle

886 Chapter 16

 call getStdOutHandle
 mov stdOutHnd, rax
 mov hasSOHndl, 1

; Compute the length of the string:

hasHandle: mov rcx, -1
lenLp: inc rcx
 cmp byte ptr [rsi][rcx * 1], 0
 jne lenLp

 mov rax, stdOutHnd
 call write

 pop rcx
 pop rax
 ret
puts endp

; newLn - Outputs a newline sequence to the standard output device:

newlnSeq byte cr, nl

newLn proc
 push rax
 push rcx
 push rsi
 cmp hasSOHndl, 0
 jne hasHandle

 call getStdOutHandle
 mov stdOutHnd, rax
 mov hasSOHndl, 1

hasHandle: lea rsi, newlnSeq
 mov rcx, 2
 mov rax, stdOutHnd
 call write

 pop rsi
 pop rcx
 pop rax
 ret
newLn endp

The puts and newLn procedures write strings to the standard output
device. The puts function writes a zero-terminated string whose address you
pass in the RSI register. The newLn function writes a newline sequence (car-
riage return and line feed) to the standard output device.

These two functions have a tiny optimization: they call getStdOutHandle
only once to obtain the standard output device handle. On the first call to
either of these functions, they call getStdOutHandle and cache the result (in the
stdOutHnd variable) and set flag (hasSOHndl) that indicates that the cached value

Stand-Alone Assembly Language Programs 887

is valid. Thereafter, these functions use the cached value rather than continu-
ally calling getStdOutHandle to retrieve the standard output device handle.

The write function requires a buffer length; it does not work on zero-
terminated strings. Therefore, the puts function must explicitly determine
the length of the zero-terminated string before calling write. The newLn
function doesn’t have to do this because it knows the length of the carriage
return and line feed sequence (two characters).

The next function in Listing 16-4 is the wrapper for the read function:

; read - Read data from a file handle.

; EAX - File handle.
; RDI - Pointer to buffer receive data.
; ECX - Length of data to read.

; Returns:

; RAX - Number of bytes actually read
; or -1 if there was an error.

read proc
 mkActRec

 mov rdx, rdi ; Buffer address
 mov r8, rcx ; Buffer length
 lea r9, var1 ; bytesRead
 mov rcx, rax ; Handle
 xor r10, r10 ; lpOverlapped is passed
 mov [rsp+4*8], r10 ; on the stack
 call __imp_ReadFile
 test rax, rax ; See if error
 mov rax, var1 ; bytesRead
 jnz rtnBytsRead ; If RAX was not zero
 mov rax, -1 ; Return error status

rtnBytsRead:
 rstrActRec
 ret
read endp

The read function is the input analog to the write function. The param-
eters are similar (note, however, that read uses RDI as the destination address
for the buffer parameter):

RAX File handle.

RDI Destination buffer to store data read from file.

RCX Number of bytes to read from the file.

The read function, a wrapper around the Win32 API __imp_ReadFile
function, has the following arguments:

RCX File handle.

RDX File buffer address.

888 Chapter 16

R8 Number of bytes to read.

R9 Address of dword variable to receive the number of bytes actually
read.

[rsp + 32] Overlapped operation; should be NULL (0). As per the
Windows ABI, callers pass all parameters beyond the fourth parameter
on the stack, leaving room (shadow parameters) for the first four.

The read function returns -1 in RAX if there was an error during the
read operation. Otherwise, it returns the actual number of bytes read from
the file. This value can be less than the requested read amount if the read
operation reaches the end of the file (EOF). A 0 return value generally indi-
cates EOF has been reached.

The open function opens an existing file for reading, writing, or both. It
is a wrapper function for the Windows CreateFileA API call:

; open - Open existing file for reading or writing.

; RSI - Pointer to filename string (zero-terminated).
; RAX - File access flags.
; (GENERIC_READ, GENERIC_WRITE, or
; "GENERIC_READ + GENERIC_WRITE")

; Returns:

; RAX - Handle of open file (or INVALID_HANDLE_VALUE if there
; was an error opening the file).

open proc
 mkActRec

 mov rcx, rsi ; Filename
 mov rdx, rax ; Read and write access
 xor r8, r8 ; Exclusive access
 xor r9, r9 ; No special security
 mov r10, OPEN_EXISTING ; Open an existing file
 mov [rsp + 4 * 8], r10
 mov r10, FILE_ATTRIBUTE_NORMAL
 mov [rsp + 5 * 8], r10
 mov [rsp + 6 * 8], r9 ; NULL template file
 call __imp_CreateFileA
 rstrActRec
 ret
open endp

The open procedure has two parameters:

RSI A pointer to a zero-terminated string containing the filename of
the file to open.

RAX A set of file access flags. These are typically the constants GENERIC
_READ (to open a file for reading), GENERIC_WRITE (to open a file for writing),
or GENERIC_READ + GENERIC_WRITE (to open a file for reading and writing).

Stand-Alone Assembly Language Programs 889

The open function calls the Windows CreateFileA function after setting
up the appropriate parameters for the latter. The A suffix on CreateFileA
stands for ASCII. This particular function expects the caller to pass an
ASCII filename. Another function, CreateFileW, expects Unicode filenames,
encoded as UTF-16. Internally, Windows uses Unicode filenames; when you
call CreateFileA, it converts the ASCII filename to Unicode and then calls
CreateFileW. The open function sticks with ASCII characters.

The CreateFileA function has the following parameters:

RCX Pointer to zero-terminated (ASCII) string holding the name of
the file to open.

RDX Read and write access flags (GENERIC_READ and GENERIC_WRITE).

R8 Sharing mode flag (0 means exclusive access). Controls whether
another process can access the file while the current process has it
open. Possible flag values are FILE_SHARE_READ, FILE_SHARE_WRITE, and
FILE_SHARE_DELETE (or a combination of these).

R9 Pointer to a security descriptor. The open function doesn’t specify
any special security; it simply passes NULL (0) as this argument.

[rsp + 32] This parameter holds the creation disposition flag. The open
function opens an existing file, so it passes OPEN_EXISTING here. Other
possible values are CREATE_ALWAYS, CREATE_NEW, OPEN_ALWAYS, OPEN_EXISTING, or
TRUNCATE_EXISTING. The OPEN_EXISTING value requires that the file exists, or
it will return an open error. Being the fifth parameter, this is passed on
the stack (in the fifth 64-bit slot).

[rsp + 40] This parameter contains the file attributes. This func-
tion simply uses the FILE_ATTRIBUTE_NORMAL attribute (for example, not
read-only).

[rsp + 48] This parameter is a pointer to a file template handle. The
open function doesn’t use a file template, so it passes NULL (0) in this
argument.

The open function returns a file handle in the RAX register. If there was
an error, this function returns INVALID_HANDLE_VALUE in RAX.

The openNew function is also a wrapper around the CreateFileA function:

; openNew - Creates a new file and opens it for writing.

; RSI - Pointer to filename string (zero-terminated).

; Returns:

; RAX - Handle of open file (or INVALID_HANDLE_VALUE if there
; was an error opening the file).

openNew proc
 mkActRec

 mov rcx, rsi ; Filename
 mov rdx, GENERIC_WRITE+GENERIC_WRITE ; Access

890 Chapter 16

 xor r8, r8 ; Exclusive access
 xor r9, r9 ; No security
 mov r10, CREATE_ALWAYS ; Open a new file
 mov [rsp + 4 * 8], r10
 mov r10, FILE_ATTRIBUTE_NORMAL
 mov [rsp + 5 * 8], r10
 mov [rsp + 6 * 8], r9 ; NULL template
 call __imp_CreateFileA
 rstrActRec
 ret
openNew endp

openNew creates a new (empty) file on the disk. If the file previously existed,
openNew will delete it before opening the new file. This function is almost iden-
tical to the preceding open function, with the following two differences:

•	 The caller does not pass the file access flags in the RAX register. The
file access is always assumed to be GENERIC_WRITE.

•	 This function passes the CREATE_ALWAYS creation disposition flag to
CreateFileA rather than OPEN_EXISTING.

The closeHandle function is a simple wrapper around the Windows
CloseHandle function. You pass the file handle of the file to close in the RAX
register. This function returns 0 in RAX if there was an error, or a nonzero
file if the file close operation was successful. The only purpose of this wrap-
per is to preserve all the volatile registers across the call to the Windows
CloseHandle function:

; closeHandle - Closes a file specified by a file handle.

; RAX - Handle of file to close.

closeHandle proc
 mkActRec

 call __imp_CloseHandle

 rstrActRec
 ret
closeHandle endp

Although this program doesn’t explicitly use getLastError, it does pro-
vide a wrapper around the getLastError function (just to show how it would
be written). Whenever one of the Windows functions in this program
returns an error indication, you have to call getLastError to retrieve the
actual error code. This function has no input parameters. It returns the last
Windows error code generated in RAX.

It is very important to call getLastError immediately after a function
returns an error indication. If you call any other Windows functions between
the error and retrieval of the error code, those intervening calls will reset
the last error code value.

Stand-Alone Assembly Language Programs 891

As was the case for the closeHandle function, the getLastError procedure
is a very simple wrapper around the Windows GetLastError function that pre-
serves volatile register values across the call:

; getLastError - Returns the error code of the last Windows error.

; Returns:

; RAX - Error code.

getLastError proc
 mkActRec
 call __imp_GetLastError
 rstrActRec
 ret
getLastError endp

The stdin_read is a simple wrapper function around the read function
that reads its data from the standard input device (rather than from a file
on another device):

; stdin_read - Reads data from the standard input.

; RDI - Buffer to receive data.
; RCX - Buffer count (note that data input will
; stop on a newline character if that
; comes along before RCX characters have
; been read).

; Returns:

; RAX - -1 if error, bytes read if successful.

stdin_read proc
 .data
hasStdInHnd byte 0
stdInHnd qword 0
 .code
 mkActRec
 cmp hasStdInHnd, 0
 jne hasHandle

 call getStdInHandle
 mov stdInHnd, rax
 mov hasStdInHnd, 1

hasHandle: mov rax, stdInHnd ; Handle
 call read

 rstrActRec
 ret
stdin_read endp

892 Chapter 16

stdin_read is similar to the puts (and newLn) procedure insofar as it caches
the standard input handle on its first call and uses that cached value on sub-
sequent calls. Note that stdin_read does not (directly) preserve the volatile
registers. This function does not directly call any Windows functions, so it
doesn’t have to preserve the volatile registers (stdin_read calls the read func-
tion, which preserves the volatile registers). The stdin_read function has the
following parameters:

RDI Pointer to destination buffer that will receive the characters read
from the standard input device.

RCX Buffer size (maximum number of bytes to read).

This function returns the actual number of bytes read in the RAX regis-
ter. This value may be less than the value passed in RCX. If the user presses
ENTER, this function immediately returns. This function does not zero-
terminate the string read from the standard input device. Use the value in
the RAX register to determine the string’s length. If this function returns
because the user pressed ENTER on the standard input device, that carriage
return will appear in the buffer.

The stdin_getc function reads a single character from the standard
input device and returns that character in the AL register:

; stdin_getc - Reads a single character from the standard input.
; Returns character in AL register.

stdin_getc proc
 push rdi
 push rcx
 sub rsp, 8

 mov rdi, rsp
 mov rcx, 1
 call stdin_read
 test eax, eax ; Error on read?
 jz getcErr
 movzx rax, byte ptr [rsp]

getcErr: add rsp, 8
 pop rcx
 pop rdi
 ret
stdin_getc endp

The readLn function reads a string of characters from the standard
input device and places them in a caller-specified buffer. The arguments
are as follows:

RDI Address of the buffer.

RCX Maximum buffer size. (readLn allows the user to enter a maxi-
mum of RCX – 1 characters.)

Stand-Alone Assembly Language Programs 893

This function will put a zero-terminating byte at the end of the string
input by the user. Furthermore, it will strip out the carriage return (or
newline or line feed) character at the end of the line. It returns the charac-
ter count in RAX (not counting the ENTER key):

; readLn - Reads a line of text from the user.
; Automatically processes backspace characters
; (deleting previous characters, as appropriate).
; Line returned from function is zero-terminated
; and does not include the ENTER key code (carriage
; return) or line feed.

; RDI - Buffer to place line of text read from user.
; RCX - Maximum buffer length.

; Returns:

; RAX - Number of characters read from the user
; (does not include ENTER key).

readLn proc
 push rbx

 xor rbx, rbx ; Character count
 test rcx, rcx ; Allowable buffer is 0?
 je exitRdLn
 dec rcx ; Leave room for 0 byte
readLp:
 call stdin_getc ; Read 1 char from stdin
 test eax, eax ; Treat error like ENTER
 jz lineDone
 cmp al, cr ; Check for ENTER key
 je lineDone
 cmp al, nl ; Check for newline code
 je lineDone
 cmp al, bs ; Handle backspace character
 jne addChar

; If a backspace character came along, remove the previous
; character from the input buffer (assuming there is a
; previous character).

 test rbx, rbx ; Ignore BS character if no
 jz readLp ; chars in the buffer
 dec rbx
 jmp readLp

; If a normal character (that we return to the caller),
; then add the character to the buffer if there is
; room for it (ignore the character if the buffer is full).

addChar: cmp ebx, ecx ; See if we're at the
 jae readLp ; end of the buffer
 mov [rdi][rbx * 1], al ; Save char to buffer

894 Chapter 16

 inc rbx
 jmp readLp

; When the user presses ENTER (or the line feed) key
; during input, come down here and zero-terminate the string.

lineDone: mov byte ptr [rdi][rbx * 1], 0

exitRdLn: mov rax, rbx ; Return char cnt in RAX
 pop rbx
 ret
readLn endp

Here’s the main program for Listing 16-4, which reads a filename from
the user, opens that file, reads the file data, and displays the data on the
standard output device:

**

; Here is the "asmMain" function.

 public asmMain
asmMain proc
 push rbx
 push rsi
 push rdi
 push rbp
 mov rbp, rsp
 sub rsp, 64 ; Shadow storage
 and rsp, -16

; Get a filename from the user:

 lea rsi, prompt
 call puts

 lea rdi, inputLn
 mov rcx, lengthof inputLn
 call readLn

; Open the file, read its contents, and display
; the contents to the standard output device:

 lea rsi, inputLn
 mov rax, GENERIC_READ
 call open

 cmp eax, INVALID_HANDLE_VALUE
 je badOpen

 mov inHandle, eax

Stand-Alone Assembly Language Programs 895

; Read the file 4096 bytes at a time:

readLoop: mov eax, inHandle
 lea rdi, fileBuffer
 mov ecx, lengthof fileBuffer
 call read
 test eax, eax ; EOF?
 jz allDone
 mov rcx, rax ; Bytes to write

 call getStdOutHandle
 lea rsi, fileBuffer
 call write
 jmp readLoop

badOpen: lea rsi, badOpenMsg
 call puts

allDone: mov eax, inHandle
 call closeHandle

 leave
 pop rdi
 pop rsi
 pop rbx
 ret ; Returns to caller
asmMain endp
 end

Listing 16-4: File I/O demonstration program

Here’s the build command and sample output for Listing 16-4:

C:\>nmake /nologo /f listing16-4.mak
 ml64 /nologo listing16-4.asm /link /subsystem:console /entry:asmMain
 Assembling: listing16-4.asm
Microsoft (R) Incremental Linker Version 14.15.26730.0
Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:listing16-4.exe
listing16-4.obj
/subsystem:console
/entry:asmMain

C:\>listing16-4
Enter (text) filename:listing16-4.mak
listing16-4.exe: listing16-4.obj listing16-4.asm
 ml64 /nologo listing16-4.asm \
 /link /subsystem:console /entry:asmMain

896 Chapter 16

Here’s the listing16-4.inc include file:

; listing16-4.inc

; Header file entries extracted from MASM32 header
; files (placed here rather than including the
; entire set of MASM32 headers to avoid namespace
; pollution and speed up assemblies).

STD_INPUT_HANDLE equ -10
STD_OUTPUT_HANDLE equ -11
STD_ERROR_HANDLE equ -12
CREATE_NEW equ 1
CREATE_ALWAYS equ 2
OPEN_EXISTING equ 3
OPEN_ALWAYS equ 4
FILE_ATTRIBUTE_READONLY equ 1h
FILE_ATTRIBUTE_HIDDEN equ 2h
FILE_ATTRIBUTE_SYSTEM equ 4h
FILE_ATTRIBUTE_DIRECTORY equ 10h
FILE_ATTRIBUTE_ARCHIVE equ 20h
FILE_ATTRIBUTE_NORMAL equ 80h
FILE_ATTRIBUTE_TEMPORARY equ 100h
FILE_ATTRIBUTE_COMPRESSED equ 800h
FILE_SHARE_READ equ 1h
FILE_SHARE_WRITE equ 2h
GENERIC_READ equ 80000000h
GENERIC_WRITE equ 40000000h
GENERIC_EXECUTE equ 20000000h
GENERIC_ALL equ 10000000h
INVALID_HANDLE_VALUE equ -1

PPROC TYPEDEF PTR PROC ; For include file prototypes

externdef __imp_GetStdHandle:PPROC
externdef __imp_WriteFile:PPROC
externdef __imp_ReadFile:PPROC
externdef __imp_CreateFileA:PPROC
externdef __imp_CloseHandle:PPROC
externdef __imp_GetLastError:PPROC

Here’s the listing16-4.mak makefile:

listing16-4.exe: listing16-4.obj listing16-4.asm
 ml64 /nologo listing16-4.asm \
 /link /subsystem:console /entry:asmMain

Stand-Alone Assembly Language Programs 897

 16.8 Windows Applications
This chapter has provided just a glimpse of what is possible when writing
pure assembly language applications that run under Windows. The
kernel32.lib library provides hundreds of functions you can call, covering
such diverse topic areas as manipulating filesystems (for example, deleting
files, looking up filenames in a directory, and changing directories), creating
threads and synchronizing them, processing environment strings, allocating
and deallocating memory, manipulating the Windows registry, sleeping for a
certain time period, waiting for events to occur, and much, much more.

The kernel32.lib library is but one of the libraries in the Win32 API. The
gdi32.lib library contains most of the functions needed to create GUI appli-
cations running under Windows. Creating such applications is well beyond
the scope of this book, but if you want to create stand-alone Windows GUI
applications, you need to become intimately familiar with this library.
The following “For More Information” section provides links to internet
resources if you’re interested in creating stand-alone Windows GUI applica-
tions in assembly language.

 16.9 For More Information
If you want to write stand-alone 64-bit assembly language programs that
run under Windows, your first stop should be https://www.masm32.com/.
Although this website is primarily dedicated to creating 32-bit assembly lan-
guage programs that run under Windows, it has a large amount of informa-
tion for 64-bit programmers as well. More importantly, this site contains the
header files you will need to access the Win32 API from your 64-bit assem-
bly language programs.

If you’re serious about writing Win32 API–based Windows applications
in assembly language, Charles Petzold’s Programming Windows, Fifth Edition
(Microsoft, 1998) is an absolutely essential purchase. This book is old (do
not get the newer edition for C# and XAML), and you likely will have to
purchase a used copy. It was written for C programmers (not assembly),
but if you know the Windows ABI (which you should by now), translating
all the C calls into assembly language isn’t that difficult. Though much of
this information about the Win32 API is available online (such as at the
MASM32 site), having all the information available in a single (very large!)
book is essential.

Another good source on the web for Win32 API calls is software analyst
Geoff Chappell’s Win32 Programming page (https://www.geoffchappell.com/
studies/windows/win32/).

The Iczelion tutorials were the original standard for writing Windows
programs in x86 assembly language. Although they were originally written
for 32-bit x86 assembly language, there have been several translations of this
code to 64-bit assembly language, for example: http://masm32.com/board/index
.php?topic=4190.0/.

https://www.masm32.com/
https://www.geoffchappell.com/studies/windows/win32/
https://www.geoffchappell.com/studies/windows/win32/
http://masm32.com/board/index.php?topic=4190.0
http://masm32.com/board/index.php?topic=4190.0

898 Chapter 16

The HLA Standard Library and examples (which can be found at
https://www.randallhyde.com/) contain a ton of Windows code and API
function calls. Though this code is all 32-bit, translating it to 64-bit
MASM code is easy.

 16.10 Test Yourself

1. What is the linker command line option needed to tell MASM that
you’re building a console application?

2. What website should you visit to get Win32 programming information?

3. What is the major drawback to including \masm32\include64\masm64rt.inc
in all your assembly language source files?

4. What linker command line option lets you specify the name of your
assembly language main program?

5. What is the name of the Win32 API function that lets you bring up a
dialog box?

6. What is wrapper code?

7. What is the Win32 API function you would use to open an existing file?

8. What Win32 API function do you use to retrieve the last Windows error
code?

https://www.randallhyde.com/

PART III
R E F E R E N C E M A T E R I A L

A
A S C I I C H A R A C T E R S E T

Binary Hex Decimal Character

0000_0000 00 0 NUL

0000_0001 01 1 CTRL-A

0000_0010 02 2 CTRL-B

0000_0011 03 3 CTRL-C

0000_0100 04 4 CTRL-D

0000_0101 05 5 CTRL-E

0000_0110 06 6 CTRL-F

0000_0111 07 7 Bell

0000_1000 08 8 BACKSPACE

0000_1001 09 9 TAB

0000_1010 0A 10 Line feed

0000_1011 0B 11 CTRL-K

0000_1100 0C 12 Form feed

0000_1101 0D 13 Carriage return

0000_1110 0E 14 CTRL-N

0000_1111 0F 15 CTRL-O

0001_0000 10 16 CTRL-P

0001_0001 11 17 CTRL-Q

(continued)

902 Appendix A

Binary Hex Decimal Character

0001_0010 12 18 CTRL-R

0001_0011 13 19 CTRL-S

0001_0100 14 20 CTRL-T

0001_0101 15 21 CTRL-U

0001_0110 16 22 CTRL-V

0001_0111 17 23 CTRL-W

0001_1000 18 24 CTRL-X

0001_1001 19 25 CTRL-Y

0001_1010 1A 26 CTRL-Z

0001_1011 1B 27 ESC (CTRL-[)

0001_1100 1C 28 CTRL-\

0001_1101 1D 29 CTRL-]

0001_1110 1E 30 CTRL-^

0001_1111 1F 31 CTRL-_

0010_0000 20 32 Space

0010_0001 21 33 !

0010_0010 22 34 "

0010_0011 23 35 #

0010_0100 24 36 $

0010_0101 25 37 %

0010_0110 26 38 &

0010_0111 27 39 '

0010_1000 28 40 (

0010_1001 29 41)

0010_1010 2A 42 *

0010_1011 2B 43 +

0010_1100 2C 44 ,

0010_1101 2D 45 -

0010_1110 2E 46 .

0010_1111 2F 47 /

0011_0000 30 48 0

0011_0001 31 49 1

0011_0010 32 50 2

0011_0011 33 51 3

0011_0100 34 52 4

0011_0101 35 53 5

0011_0110 36 54 6

ASCII Character Set 903

Binary Hex Decimal Character

0011_0111 37 55 7

0011_1000 38 56 8

0011_1001 39 57 9

0011_1010 3A 58 :

0011_1011 3B 59 ;

0011_1100 3C 60 <

0011_1101 3D 61 =

0011_1110 3E 62 >

0011_1111 3F 63 ?

0100_0000 40 64 @

0100_0001 41 65 A

0100_0010 42 66 B

0100_0011 43 67 C

0100_0100 44 68 D

0100_0101 45 69 E

0100_0110 46 70 F

0100_0111 47 71 G

0100_1000 48 72 H

0100_1001 49 73 I

0100_1010 4A 74 J

0100_1011 4B 75 K

0100_1100 4C 76 L

0100_1101 4D 77 M

0100_1110 4E 78 N

0100_1111 4F 79 O

0101_0000 50 80 P

0101_0001 51 81 Q

0101_0010 52 82 R

0101_0011 53 83 S

0101_0100 54 84 T

0101_0101 55 85 U

0101_0110 56 86 V

0101_0111 57 87 W

0101_1000 58 88 X

0101_1001 59 89 Y

0101_1010 5A 90 Z

(continued)

904 Appendix A

Binary Hex Decimal Character

0101_1011 5B 91 [

0101_1100 5C 92 \

0101_1101 5D 93]

0101_1110 5E 94 ^

0101_1111 5F 95 _

0110_0000 60 96 `

0110_0001 61 97 a

0110_0010 62 98 b

0110_0011 63 99 c

0110_0100 64 100 d

0110_0101 65 101 e

0110_0110 66 102 f

0110_0111 67 103 g

0110_1000 68 104 h

0110_1001 69 105 i

0110_1010 6A 106 j

0110_1011 6B 107 k

0110_1100 6C 108 l

0110_1101 6D 109 m

0110_1110 6E 110 n

0110_1111 6F 111 o

0111_0000 70 112 p

0111_0001 71 113 q

0111_0010 72 114 r

0111_0011 73 115 s

0111_0100 74 116 t

0111_0101 75 117 u

0111_0110 76 118 v

0111_0111 77 119 w

0111_1000 78 120 x

0111_1001 79 121 y

0111_1010 7A 122 z

0111_1011 7B 123 {

0111_1100 7C 124 |

0111_1101 7D 125 }

0111_1110 7E 126 ~

0111_1111 7F 127 DELETE

B
G L O S S A R Y

 Symbols
.code
A section for program code.

.const
A declaration section for initialized read-only values.

.data
A declaration section for initialized variables.

.data?
A declaration section for uninitialized variables.

 A
ABI
See application binary interface.

address bus
A set of electronic signals that hold a binary address of a memory element.

906 Appendix B

aggregate data types
Data types composed of one or more smaller data types.

API
Application programming interface.

application binary interface
A set of conventions that code uses to ensure interoperability between code
that calls other functions or procedures and the functions or procedures
being called.

ASCII
American Standard Code for Information Interchange.

assembly unit
The assembly of a source file plus any files it includes or indirectly includes.

associativity
Associativity dictates the grouping of operations within a complex expres-
sion in which the operators all have the same precedence. For example, if
you have two operators, op1 and op2, associativity determines the order of
evaluation of the expression x op1 y op2 z. Left-associative operators would
produce the result of the evaluation (x op1 y) op2 z, whereas right-associative
operators would produce the result of the evaluation x op1 (y op2 z).

automatic variables
See local variables.

AVX
Advanced Vector Extensions.

 B
BCD
Binary-coded decimal.

big endian
Multi-byte data objects in memory are big endian if their HO byte appears
at the lowest address in memory and their LO byte appears at the highest
address in memory.

 C
calling convention
The protocol for passing data to and from a procedure, including where the
data is to be passed, the alignment of the data, and the size of the data.

Glossary 907

CLI
Command line interface, or command line interpreter (Windows cmd.exe
application).

code snippets
See snippets.

coercion
Forcing a data type to behave as another data type; for example, treating a
character value as an integer.

column-major ordering
A function for storing elements of multidimensional array elements in lin-
ear memory by storing the elements of a column in contiguous locations
and then placing each column after the previous column in memory.

commutative
An operation is commutative if (A op B) is always equal to (B op A).

composite data types
See aggregate data types.

control bus
A set of electronic signals from the CPU that control activities such as read-
ing, writing, and generating wait states.

control characters
Special nonprinting characters that control aspects of the machine printing
the characters. This includes operations such as carriage return (moving
the printer carriage to the beginning of the line), line feed (moving the
printer device down one line), and backspace (moving the print position
back one character on the current line).

CTL
Compile-time language.

 D
dangling pointer
Use of a pointer to allocated memory after that memory has been freed and
returned to the system (and is possibly being used for another purpose).

data bus
A set of electronic signals from the CPU that transfer data between the
CPU and external devices (such as memory or I/O).

908 Appendix B

delimiter characters
Characters that separate a sequence of other characters belonging to a set
(such as a string of numeric characters delimited by spaces or commas).

dependencies
In a makefile, one file is dependent on another if changing that other file
requires a recompilation (or other operation) on the original file.

dereference
Access data at an address specified by a pointer variable.

descriptor
A data structure that describes another data structure. Typically, a descriptor
contains information such as a pointer to the actual data, type information,
or length information.

directive
An assembly language statement that provides information to the assembler
but is not a machine instruction and does not generate any code.

domain (of a function)
The set of all possible input values that a function accepts.

dword
Double word (two 16-bit words, forming a 32-bit value).

dynamic type system
A program organization that allows types of objects to change during
runtime.

 E
effective address
The ultimate address in memory that an instruction will access, after all the
address calculations are complete.

epilogue
The standard exit sequence that cleans up local variable storage for a proce-
dure. Typically, this consists of the following statements:

leave
ret

Glossary 909

 F
facade code
Code that changes the parameter or return result interface between call-
ing code and a function or procedure being called to make the calling
sequences compatible.

false precision
Extra bits in a computed result that contain garbage values; their presence
indicates more precision than is actually present in the result.

field
A member of a record and struct or object.

floating-point unit
A section of a CPU that implements floating-point arithmetic.

FPU
See floating-point unit.

full pathname
A pathname beginning with a backslash (\) character, specifying a path
that starts at the root directory. Also see pathnames.

 G
granularity
The smallest unit of access; for example, an MMU may access memory by
using page granularity, where the granularity is 4096 bytes.

guard digits (or bits)
Extra digits (or bits) maintained during a calculation to enhance the accu-
racy of a long chain of calculations.

 H
heap
An area in memory where a program keeps dynamically allocated memory
objects.

HLL
High-level language.

HO
High order.

910 Appendix B

horizontal addition or subtraction
Adding or subtracting adjacent lanes in an XMM or a YMM register
rather than the usual corresponding lanes in separate XMM or YMM regis-
ters. Also see vertical addition or subtraction.

 I
I/O
Input/output.

IDE
See integrated development environment.

idiom
An idiosyncrasy of the machine.

indirection
A technique in which an instruction’s operand provides the location where
the instruction can find the address of the object, rather than the object
itself.

induction variable
A variable whose value depends entirely on the value of another variable
(typically during the execution of a loop).

integrated development environment
A set of programmer tools including compilers and assemblers, linkers,
debuggers, and editors that allow you to develop software all within the
same system.

 L
lane
An element of a vector (SSE/AVX packed data types).

leaf function
A function that does not call any other functions. The name comes from a
call tree graph, in which its leaf nodes are those procedures that do not call
any other procedures (and have no edges coming out of their nodes).

lexicographical ordering
Alphabetical ordering (or, more correctly, ordering based on the character
code). Strings are compared on a character-by-character basis from the first
character to the length of the shorter string. If two strings are equal to the
length of the shorter string, the longer string is the greater of the two. Two
strings are equal only if they have the same length and all characters in the
string are equal.

Glossary 911

library module
A collection of object files. Typically organized into a .lib file (though this is
not a requirement for a library module).

lifetime
A period of time, ranging from when storage is first bound to a variable to
the point when the storage is no longer available for that variable.

LIFO
Last in, first out.

little endian
Multi-byte data objects in memory are little endian if their LO byte appears
at the lowest address in memory and their HO byte appears at the highest
address in memory.

LO
Low order.

local variables
Variables (more properly called automatic variables) that have their storage
allocated upon entry into a procedure and that storage is returned for other
use when the procedure returns to its caller.

loop-invariant computation
A calculation that appears within a loop and always yields the same result
on each iteration.

 M
machine code
Binary (or numeric) encoding of assembly language instructions.

macro
A textual sequence that a macro processor will substitute for a macro identi-
fier everywhere that identifier appears in the source file.

macroarchitecture
That view of the CPU’s architecture that is visible to software.

macro function
A macro that you can invoke anywhere in the body of the source file
(including in the operand field of an instruction or directive); the macro
returns a textual string that the macro invocation substitutes for the
invocation.

912 Appendix B

manifest constant
An identifier representing a constant value. MASM directly substitutes the
value of the manifest constant everywhere the identifier appears in the
program.

MASM
Microsoft Macro Assembler.

memory management unit
A component of the CPU that translates program addresses into physical
memory addresses and handles illegal memory accesses.

microarchitecture
The design of the CPU below the level that is visible to software.

MMU
See memory management unit.

MMX
Multimedia Extensions (extended instruction set for the x86 CPU to sup-
port multimedia operations).

mnemonic
Literally, this means memory aid. Applied to instruction names, mnemonic
effectively means abbreviation. For example, the mnemonic lea stands for
load effective address.

MSVC
Microsoft Visual C++.

 N
namespace pollution
Having many names in a source file, thus limiting the number of available
new names a programmer can use. (When a source file contains a large
number of symbols, programmers commonly create conflicts by reusing the
same name, leading to duplicate symbol errors in the compilation process.)

NaN
Not a number. A floating-point exceptional value indicating that a valid
numeric result is unobtainable.

 O
opcode
Operation code. The numeric encoding of a machine instruction.

Glossary 913

ordered comparisons
Comparisons between two values, neither of which are NaNs.

oword
Octal word (eight 16-bit words, or a 16-byte value).

 P
partial pathname
A pathname that begins with a directory name (not a backslash character),
denoting a path off the current (default) directory.

pass by reference
A parameter-passing mechanism whereby the caller passes the address of
the actual parameter data to a procedure or function.

pass by value
A parameter-passing mechanism whereby the caller passes the actual value
of a parameter to a procedure or function.

pathnames
A sequence of (sub)directory names separated by backslash (\) characters,
possibly ending with a filename.

PC
Program counter. The current instruction or directive address in an assem-
bly language program. PC-relative addressing is an offset from the current
machine instruction.

powerset
A set data type implemented by using a single bit to represent each object in
the set. If the cardinality of the set (number of members in the set) is n, the
set data type will require n bits. In mathematics, the power set of any set S is
the set of all subsets of S, including the empty set and S itself; this requires
2n different sets, which is representable by an n-bit bit string.

precedence
When two different operators appear in an expression (without parentheses
to denote the order of evaluation), precedence controls which operations
occur first. For example, with the operators op1 and op2, and the expres-
sion x op1 y op2 z, the order of evaluation is determined by the precedence
of the operators. If op1 has higher precedence than op2, the expression is
evaluated as (x op1 y) op2 z. If op2 has a higher precedence than op1, the
expression is evaluated as x op1 (y op2 z). If both operators have the same
precedence, associativity rules control the order of evaluation (see also
associativity).

914 Appendix B

precision
The number of digits or bits maintained in a computation.

programming in the large
Using processes, methodologies, and tools to handle the development of
large software systems.

prologue
The standard entry sequence to a procedure, typically consisting of these
statements:

push rbp
mov rbp, rsp
sub rsp, size_of_local_variables

proper subset
A set whose elements are all contained within another set, and the two sets
are not equal.

proper superset
A set that contains all the elements of another set, and the two sets are not
equal.

 Q
qword
Quad word (four 16-bit values, forming a 64-bit value).

 R
range (of a function)
The set of all possible output values a function produces.

record
See struct.

row-major ordering
A function for arranging multidimensional arrays in linear memory by stor-
ing elements of each row in contiguous memory locations and then placing
each row, one after the other, in memory.

 S
saturation
The process of converting a larger (bit-sized) value to a smaller one by clip-
ping (that is, forcing the maximum- or minimum-sized value if the original
value is too large to fit in the smaller result).

Glossary 915

scalar data type
A primitive, indivisible data type (for example, an integer or a floating-
point value) that cannot be broken into any smaller parts (other than indi-
vidual bits).

scope
The scope of an identifier determines where that identifier is visible (acces-
sible) in the source file during compilation. In most HLLs, the scope of a
procedure local variable is the body of that procedure; the identifier is inac-
cessible outside that procedure.

sign contraction
The process of converting a larger signed value to a smaller signed value.

significant digits
The (number of) digits whose values are maintained during a calculation.

SIMD
See single-instruction, multiple-data instructions.

single-instruction, multiple-data instructions
Specialized machine instructions that operate on two or more pieces of
data simultaneously. Provides higher-performance operations for certain
multimedia and other applications.

SISD
Single instruction, single data.

snippets
Small pieces of code that demonstrate a concept.

SSE
Streaming SIMD Extensions.

state machine
Programming logic that maintains a history of prior execution via a state
maintained by the program. The state could be maintained in variables or
in the current execution location of the state machine.

static variables
Variables whose lifetime is the execution time of the whole program; typi-
cally, you declare static variables in the .data, .data?, or .const section of an
assembly language program.

strength-reduction optimizations
Using a less expensive operation to compute the same result as a more
expensive operation.

916 Appendix B

string descriptor
A data structure that provides information about string data. Typically, a
string descriptor contains a pointer to the actual string data, the number of
characters in the string (its length), and possibly the string type or encod-
ing (such as ASCII, UTF-8, or information describing other encoding).

struct
A composite data structure composed of a collection of heterogeneous
(different typed) objects.

system bus
A collection of electronic signals comprising the address, data, and control
buses.

 T
timestamp
A numeric (usually time-based) value associated with an event in the sys-
tem. Timestamps are monotonically increasing; that is, if two events have
timestamps associated with them, the later event will have a larger time-
stamp value.

TOS
Top of stack.

trampoline
A fixed point in the code where a program can jump (or call) to transfer to
another point in the code that is outside the normal range of a jmp or call
instruction.

tricky programming
Programming constructs that use non-obvious results of a computation.

 U
unordered comparisons
Comparisons between two values, where at least one of the values is a NaN.

unraveling loops
Pulling the body out of a loop and expanding it in place several times (once
for each loop iteration) to avoid the overhead of loop control at runtime.

URL
Uniform resource locator (web address).

Glossary 917

 V
variant type
A data type that can change dynamically during program execution (that
is, it is a varying type).

vector instructions
Instructions that operate on multiple pieces of data simultaneously (SIMD
instructions). Specifically, an array of two or more data values.

vertical addition or subtraction
Adding or subtracting corresponding lanes in two XMM or YMM registers.
Also see horizontal addition or subtraction.

 W
whitespace characters
Characters that reserve space on a display but don’t otherwise have a print-
able glyph (such as the space and tab characters).

word
A 16-bit value.

wrapper code
Code that is written to change the behavior of a function call without directly
modifying that function (such as changing where the caller passes param-
eters to the underlying function). Wrapper code is also known as a facade.

C
I N S T A L L I N G A N D U S I N G

V I S U A L S T U D I O

The Microsoft Macro Assembler (MASM),
Microsoft C++ compiler, Microsoft linker,

and other tools this book uses are all available
in the Microsoft Visual Studio package. At the

time of this writing, you can download the Visual Studio
Community edition for Windows at https://visualstudio
.microsoft.com/vs/community/. Of course, URLs change
over time. A web-based search for Microsoft Visual Studio
download should lead you to the appropriate spot.

 C.1 Installing Visual Studio Community
Once you download the Visual Studio Community edition, run the installer
program. This appendix does not provide step-by-step directions as Microsoft
is famous for completely changing the user interface of programs even when
minor updates occur. Any directions appearing here would probably be

https://visualstudio.microsoft.com/vs/community/
https://visualstudio.microsoft.com/vs/community/

920 Appendix C

obsolete when you try to run them. However, the main thing you want to
do is ensure that you download and install the Microsoft Visual C++ desk-
top tools.

 C.2 Creating a Command Line Prompt for MASM
To use the Microsoft Visual C++ (MSVC) compiler and MASM, we need to
initialize the environment by using a batch file provided by Visual Studio
and then leave the command line interpreter (CLI) open so we can build
and run programs. We have two options: use an environment created by the
Visual Studio installer, or create a custom environment.

At the time of this writing, the Visual Studio 2019 installer creates vari-
ous CLI environments:

•	 Developer Command Prompt for VS 2019

•	 Developer PowerShell for VS 2019

•	 x64 Native Tools Command Prompt for VS 2019

•	 x64_x86 Cross Tools Command Prompt for VS 2019

•	 x86 Native Tools Command Prompt for VS 2019

•	 x86_x64 Cross Tools Command Prompt for VS 2019

You can find these by clicking Start (the Windows icon) on the Windows
taskbar and then navigating to and clicking the Visual Studio 2019 folder.
x86 refers to 32-bit, and x64 refers to 64-bit versions of Windows.

The Developer Command Prompt, Developer PowerShell, x86 Native
Tools, and x64_x86 Cross Tools target the 32-bit versions of Windows, so
they are outside the scope of this book. x86_x64 Cross Tools targets 64-bit
Windows, but the tools available in the environment are themselves 32-bit.
Basically, these are the tools for people running a 32-bit version of Windows.
x64 Native Tools are for people targeting and running a 64-bit version of
Windows. The 32-bit versions of Windows are rare today, so we have not used
nor tested this book’s code under x86_x64 Cross Tools. In theory, it should
work to assemble and compile 64-bit code, but we would not be able to run
it in this 32-bit environment.

x64 Native Tools running under 64-bit Windows is what we have used
and tested. If you right-click x64 Native Tools, you can pin it to Start, or if
you select More, you can pin it to the taskbar.

Alternatively, you can create your own custom environment, and we will
now go through that process. We’ll create a shortcut to a MASM-ready com-
mand line prompt by using the following steps:

1. Find the batch file named vcvars64.bat (or something similar). If you
cannot find vcvars64.bat, try vcvarsall.bat instead. At the time of writing
this chapter (using Visual Studio 2019), I found the vcvars64.bat file in
the following directory: C:\Program Files (x86)\Microsoft Visual Studio\2019\
Community\VC\Auxiliary\Build\.

Installing and Using Visual Studio 921

N O T E vcvars.bat or vcvars32.bat will not work (these set up the environment variables for
the 32-bit version of the assembler and C++ compiler, which we don’t want to use).

2. Create a shortcut to the file (by right-clicking it in the Windows Explorer
and selecting Create Shortcut from the pop-up). Move this shortcut to
your Windows desktop and rename it VSCmdLine.

3. Right-click the shortcut icon on the desktop and click Properties4
Shortcut. Find the Target text box that contains the path to the
vcvars64.bat file; for example:

"C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\vcvars64.bat"

Add the prefix cmd /k in front of this path:

cmd /k "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\
vcvars64.bat"

The cmd command is the Microsoft cmd.exe command line interpreter.
The /k option tells cmd.exe to execute the command that follows (that
is, the vcvars64.bat file) and then leave the window open when the com-
mand finishes execution. Now, when you double-click the shortcut icon
on the desktop, it will initialize all the environment variables and leave
the command window open so you can execute the Visual Studio tools
(for example, MASM and MSVC) from the command line.

If you can’t find vcvars64.bat but there is a vcvarsall.bat, also add x64 to
the end of the command line:

cmd /k "C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\VC\Auxiliary\Build\
vcvarsall.bat" x64

4. Before closing the shortcut’s Properties dialog, modify the Start In text
box to contain C:\ or another directory where you will normally be
working when first starting the Visual Studio command line tools.

Double-click the shortcut icon on the desktop; you should be presented
with a command window that has text like the following:

**
** Visual Studio 2019 Developer Command Prompt v16.9.0
** Copyright (c) 2019 Microsoft Corporation
**
[vcvarsall.bat] Environment initialized for: 'x64'

From the command line, type ml64. This should produce output similar
to the following:

C:\>ml64
Microsoft (R) Macro Assembler (x64) Version 14.28.29910.0
Copyright (C) Microsoft Corporation. All rights reserved.

922 Appendix C

usage: ML64 [options] filelist [/link linkoptions]
Run "ML64 /help" or "ML64 /?" for more info

Although MASM is complaining that you haven’t supplied a filename
to compile, the fact that you’ve gotten this message means that ml64.exe
is in the execution path, so the system has properly set up the environ-
ment variables so you can run the Microsoft Macro Assembler.

5. As a final test, execute the cl command to verify that you can run
MSVC. You should get output similar to the following:

C:\>cl
Microsoft (R) C/C++ Optimizing Compiler Version 19.28.29910 for x64
Copyright (C) Microsoft Corporation. All rights reserved.

usage: cl [option...] filename... [/link linkoption...]

6. Finally, as one last check, locate the Visual Studio application in the
Windows Start menu. Click it and verify that this brings up the Visual
Studio IDE. If you like, you can make a copy of this shortcut and place
it on the desktop so you can bring up Visual Studio by double-clicking
the shortcut icon.

 C.3 Editing, Assembling, and Running a MASM Source File
You will use a text editor of some sort to create and maintain MASM
assembly language source files. If you’re not already familiar with Visual
Studio and want an environment that’s easier to learn and use, consider
downloading the (free) Notepad++ text editor application. Notepad++
provides excellent support for MASM, is fast, and is easy to learn and use.
Regardless of which text editor you choose (I use a commercial product
called CodeWright), the first step is to create a simple assembly language
source file.

MASM requires that all source files have a .asm suffix, so create the file
hw64.asm with your editor and enter the following text into that file:

includelib kernel32.lib

 extrn __imp_GetStdHandle:proc
 extrn __imp_WriteFile:proc

 .CODE
hwStr byte "Hello World!"
hwLen = $-hwStr

main PROC

; On entry, stack is aligned at 8 mod 16. Setting aside 8
; bytes for "bytesWritten" ensures that calls in main have
; their stack aligned to 16 bytes (8 mod 16 inside function).

Installing and Using Visual Studio 923

 lea rbx, hwStr
 sub rsp, 8
 mov rdi, rsp ; Hold # of bytes written here

; Note: must set aside 32 bytes (20h) for shadow registers for
; parameters (just do this once for all functions).
; Also, WriteFile has a 5th argument (which is NULL),
; so we must set aside 8 bytes to hold that pointer (and
; initialize it to zero). Finally, the stack must always be
; 16-byte-aligned, so reserve another 8 bytes of storage
; to ensure this.

; Shadow storage for args (always 30h bytes).

 sub rsp, 030h

; Handle = GetStdHandle(-11);
; Single argument passed in ECX.
; Handle returned in RAX.

 mov rcx, -11 ; STD_OUTPUT
 call qword ptr __imp_GetStdHandle

; WriteFile(handle, "Hello World!", 12, &bytesWritten, NULL);
; Zero out (set to NULL) "LPOverlapped" argument:

 mov qword ptr [rsp + 4 * 8], 0 ; 5th argument on stack

 mov r9, rdi ; Address of "bytesWritten" in R9
 mov r8d, hwLen ; Length of string to write in R8D
 lea rdx, hwStr ; Ptr to string data in RDX
 mov rcx, rax ; File handle passed in RCX
 call qword ptr __imp_WriteFile
 add rsp, 38h
 ret
main ENDP
 END

This (pure) assembly language program is offered without explanation.
Various chapters in this book explain the machine instructions.

Look back at the source code, and you’ll see the first line is as follows:

includelib kernel32.lib

The kernel32.lib is a Windows library that includes, among other
things, the GetStdHandle and WriteFile functions this assembly language pro-
gram uses. The Visual Studio installation includes this file and, presumably,
the vcvars64.bat file will put it in an include path so the linker can find
it. If you have problems assembling and linking the program (in the next
step), simply make a copy of this file (wherever you can find it in the Visual
Studio installation) and include that copy in the directory where you are
building the hw64.asm file.

924 Appendix C

To compile (assemble) this file, open the command window (whose
shortcut you created earlier) to get a command prompt. Then enter the fol-
lowing command:

ml64 hw64.asm /link /subsystem:console /entry:main

Assuming you entered the code without error, the command window
should have output similar to the following:

C:\MASM64>ml64 hw64.asm /link /subsystem:console /entry:main
Microsoft (R) Macro Assembler (x64) Version 14.28.29910.0
Copyright (C) Microsoft Corporation. All rights reserved.

 Assembling: hw64.asm
Microsoft (R) Incremental Linker Version 14.28.29910.0
Copyright (C) Microsoft Corporation. All rights reserved.

/OUT:hw64.exe
hw64.obj
/subsystem:console
/entry:main

You can run the hw64.exe output file that this assembly produces by typ-
ing the command hw64 at the command line prompt. The output should be
the following:

C:\MASM64>hw64
Hello World!

D
T H E W I N D O W S C O M M A N D

L I N E I N T E R P R E T E R

Microsoft’s MASM is (mostly) a tool that
you use from the Windows command line.

Therefore, to use MASM properly (at least
with respect to all the examples in this book),

you will need to be comfortable using the Windows
command line interpreter (CLI).

Appendix C shows how to set up the Windows CLI so you can use it.
This appendix briefly describes some common commands you will use in
the CLI.

 D.1 Command Line Syntax
A basic Windows CLI command takes the form

command options

926 Appendix D

where command is either a built-in CLI command, an executable program on
disk (typically having an .exe filename suffix), or a batch filename (with a
.bat suffix), and options is a list of zero or more options for the command.
The options are command-specific.

Probably the most common example in this book of an executable pro-
gram you would run from the command line is the ml64.exe program (the
MASM assembler). The Microsoft linker (link.exe), librarian (lib.exe), nmake
(nmake.exe), and the MSVC compiler (cl.exe) are also examples of executable
programs you might run from the command line.

All of the sample programs appearing in this book are also examples
of commands you could run from the command line. For example, the fol-
lowing command executes the build.bat batch file to build the listing2-1.exe
executable file (from Chapter 2):

build listing2-1

Immediately after building the listing2-1.exe executable file, you can run
it from the command line. Here’s the command and the output it produces:

C:\>listing2-1
Calling Listing 2-1:
i=1, converted to hex=1
j=123, converted to hex=7b
k=456789, converted to hex=6f855
Listing 2-1 terminated

The listing2-1.exe executable file doesn’t support any command line
options. If you type anything after the listing2-1 command on the com-
mand line, the listing2-1.exe program will ignore that text.

Although most options are command-specific, you can apply certain
command line options to most programs you run from the command line:
specifically, I/O redirection. Many console applications write data to the stan-
dard output device (the console window). All of the print and printf function
calls appearing throughout this book, for example, write their data to the
standard output device. Normally, all output sent to the standard output
device appears as text written to the command line (console) window.

However, you can tell Windows to send this data to a file (or even another
device) by using an output redirection option. The output redirection option
takes the form

command options >filename more_options

where command is the command name, options and more_options are zero or
more command line options (not containing an output redirection option),
and filename is the name of the file where you would like to have the output
from command sent. Consider the following command line:

listing2-1 >listing2-1.txt

The Windows Command Line Interpreter 927

Executing this command produces no output to the display. However,
you will discover that this command creates a new text file on the disk.
That text file will contain the output from the listing2-1.exe program (given
earlier).

The Windows CLI also supports standard input redirection using the
syntax

command options <filename more_options

where command is the command name, options and more_options are zero or
more command line options (not containing an input redirection option),
and filename is the name of the file from which command will read its input.

Input redirection causes a program that would normally read data
from the user (at the keyboard, which is the standard input device) to
instead read the data from a text file. For example, suppose you executed
the listing2-1 command given earlier and redirected the output to the
listing2-1.txt output file. Consider the following command (from Chapter 1)
that reads a line of text from the user (in this particular example, I typed
hello in response to the program’s request for input):

C:\>build listing1-8
C:\>echo off
 Assembling: listing1-8.asm
c.cpp
C:\>listing1-8
Calling Listing 1-8:
Enter a string: hello
User entered: 'hello'
Listing 1-8 terminated

Now consider the following command:

C:\>listing1-8 <listing2-1.txt
Calling Listing 1-8:
Enter a string: User entered: 'Calling Listing 2-1:'
Listing 1-8 terminated

In this example, the input is redirected from the listing2-1.txt file pro-
duced by the earlier execution of listing2-1.exe. The listing1-8.exe program
reads the first line of that file as input (rather than reading a line of text
from the keyboard). The program doesn’t echo the text read from the file
(including the newline character); this is why the User entered: 'Calling
Listing 2-1:' text appears on the same line as the Enter a string: prompt.
When actually reading data from the keyboard, the system echoes the data
to the display (including the newline character). This doesn’t happen when
redirecting the input from a file.

The file contains several lines of text. However, listing1-8.exe reads only
one line of text, so it ignores the remaining lines in the listing2-1.txt file.

928 Appendix D

You can redirect both the standard input and the standard output on
the same command. Consider the following:

C:\>listing1-8 <listing2-1.txt >listing1-8.txt

This reads the data from the listing2-1.txt file and sends all the output to
the listing1-8.txt file.

When redirecting the output from a program to a text file, if the output
file already exists, Windows will delete that file prior to writing the standard
output text to that file. You can also instruct Windows to append the output
from the command to the existing file by using the following output redi-
rection syntax (using two greater-than symbols):

command options >>filename more_options

Command line options other than the redirection options are usually
filenames (for example, ml64 mySource.asm) or options that control the com-
mand’s behavior (such as ml64’s /c or /Fl command line options you’ll find
used throughout this book). By convention, most Windows CLI commands
use a slash character (/) as a prefix before actual options (as opposed to
filenames). This is a convention, not a hard requirement.

Some commands, for example, use the Unix convention of a dash or
hyphen character (-) instead of (or in addition to) the slash character. It’s
really an application-specific choice. See the documentation for the partic-
ular program you are using for the details. All the built-in CLI commands,
and most Microsoft CLI programs, use the slash character to designate
options.

 D.2 Directory Names and Drive Letters
Many commands accept or require a file or directory pathname as a com-
mand line option. Pathnames consist of two major components: a drive
letter and the directory or file pathname. A drive letter is a single alphabetic
character (A to Z) followed by a colon; for example:

A: B: C: etc.

Drive letters are not case-sensitive. A: is equivalent to a: on the com-
mand line. Windows reserves drive letters A: and B: for floppy drives. As you
don’t often see floppy disk drives on modern machines, you won’t likely use
these drive letters. However, if you have a really old machine . . .

C: is the default drive letter for the boot drive. If you have only one
hard drive (or SSD) in your machine, Windows will probably associate C:
with that drive. The examples appearing throughout this book assume
you’re operating on drive C: (though this is by no means a requirement).

If you have multiple drives (either multiple physical drive units, or
you’ve partitioned your hard drive into multiple logical drives), Windows

The Windows Command Line Interpreter 929

usually associates consecutive drive letters (D:, E:, and so forth) with these
additional drives. You can reassign drive letters, if you like, so there is no
guarantee that all drive letters will be contiguous in the alphabet.

You can switch the default drive letter by typing the letter and a colon,
by themselves, on the command line. For example,

D:

switches the default drive to D:, assuming such a drive exists. If the drive
does not exist, Windows will complain that the system cannot find the speci-
fied drive and will not change the default drive.

Normally (you can change this), Windows displays the current drive let-
ter as part of the command line prompt (by default, it displays the default
pathname as well). For example, a typical Windows command line prompt
looks like this:

C:\>

The \ character appearing in the command prompt is the current
(default) directory. In this case, \ by itself indicates the root (or main)
directory on the C: drive. Had the current directory been something else,
Windows would have listed that after the drive letter. For example, had the
current directory been \WINDOWS, the CLI would have displayed the following
as the command line prompt:

C:\WINDOWS>

Windows, as you’re probably aware, has a hierarchical filesystem, allow-
ing subdirectories inside (sub)directories. The backslash character separates
directory names in a full pathname. You’ll commonly see two pathname
forms in Windows: full pathnames and partial pathnames.

Full pathnames begin with a backslash (\) character and start from the
root directory. Partial pathnames do not begin with a backslash, and the path
begins with the current (default) directory (the first subdirectory in the
partial pathname must appear in the current default subdirectory).

Spaces normally separate options on a command line. If a space appears
in a pathname, you must surround the entire pathname with quotes; for
example:

"\This\Path name\has\a\space"

The CLI supports a pair of wildcard characters in pathnames. The aster-
isk character (*) will match zero or more characters. The question mark
character (?) will match zero or one character.

A command must explicitly support wildcard characters; the Windows
CLI commands support wildcard options, as do most Microsoft tools (for
example, ml64.exe). Not all executable files support wildcards in filenames,

930 Appendix D

however. Wildcard characters are usable in directory names as well as file-
names. They will not, however, replace the backslash character (\) in a
pathname.

 D.3 Some Useful Built-in Commands
The Windows CLI contains many built-in commands (commands that
are part of the cmd.exe program and don’t require a separate .exe or .bat
file). There are far too many built-in commands to consider here (and you
wouldn’t use most of them); therefore, this section presents just a handful
of the most commonly used commands.

D.3.1 The cd and chdir Commands
The cd (change directory) command switches the default directory to the
directory you specify as the command line option. Note that chdir is a syn-
onym for cd. Its syntax is

cd directory_name

where directory_name is a full or partial pathname to the new directory. For
example:

cd \masm32\examples

The cd command does not normally change the default drive letter, even
if you specify it as part of the pathname. For example, if the current drive
letter is D:, the following command will not directly change the default drive
letter and pathname:

D:\>cd C:\masm32\examples
D:\>

Notice that the command prompt remains D:\> after the cd command.
However, if you switch to the C: drive (using the C: command), Windows
will set the default directory as per the previous command:

D:>C:
C:\masm32\examples>

As you can see, the default directory is associated with a drive letter (and
each drive letter maintains its own default directory).

If you want to switch both the drive letter and the pathname with the cd
command, just supply the /d option before the pathname:

D:\>cd /d C:\masm32\examples
C:\masm32\examples

The Windows Command Line Interpreter 931

Don’t forget that if a pathname contains spaces, you must enclose the
pathname in quotes when using the cd command:

cd /d "C:\program files"

The following displays help information about the cd command:

cd /?

If you issue the cd command by itself (no command line arguments), this
command displays the current (default) pathname.

D.3.2 The cls Command
The cls command clears the screen (at least, the command window). This
is useful when you want to clear the screen prior to a compilation and want
to see only the messages associated with that particular compilation when
scrolling back through the command window.

D.3.3 The copy Command
The copy command copies one or more files to a different location. Typically,
you use this command to make backup copies of a file in the current direc-
tory or to make a copy of a file into a different subdirectory. The syntax for
this command is as follows:

copy source_filename destination_filename

This command duplicates the file specified by source_filename and
names that duplicate destination_filename. Both names can be full or
partial pathnames.

The copy command supports several command line options (in addi-
tion to the source and destination filenames). You probably won’t use those
options very often. For more details, issue the following help command:

copy /?

D.3.4 The date Command
The date command, by itself, displays the current system date and prompts
you to enter a new date (which will permanently set the system date—so
be careful using this!). With a /t command line option, this command will
only display the date and not ask you to change it. Here’s an example:

C:\>date /t
Sat 02/23/2019

As usual, date /? displays the help information for this command.

932 Appendix D

D.3.5 The del (erase) Command
The del command (erase is a synonym for del) will delete the file(s) you
specify as the command line options. The syntax is

del options files_to_delete

where options is command line options beginning with a slash, and files
_to_delete is a list of filenames (pathnames), separated by spaces or commas, to
be deleted. This command accepts wildcard characters; for example, the fol-
lowing command deletes all the .obj files appearing in the current directory:

del *.obj

It goes without saying that you should be very careful when using this
command, especially when using wildcard characters. For example, con-
sider the following command (which is probably a typo):

del * .obj

This deletes all the files in the current directory and then attempts to
delete a file named .obj (which won’t exist after this command has deleted
all the files in the subdirectory).

Some useful command line options are associated with this command.
Use the /? option to learn about them:

C:\>del /?

D.3.6 The dir Command
The dir (directory) command is one of the more useful CLI commands. It
displays a directory listing (a list of files in a directory).

Without any command line options, this command displays all the files in
the current directory. With a single drive letter (and colon) as the argument,
this command displays all the files in the default directory on the specified
drive. With a pathname that leads to a subdirectory, this command displays
all the files in the specified directory. With a pathname that leads to a single
filename, this command displays the directory information about that par-
ticular file.

As usual, this command supports several command line options begin-
ning with the slash character. Use dir /? to get the help information for this
command.

D.3.7 The more Command
The more command displays the text in a text file one screenful at a time.
After displaying a screenful of text, it waits for the user to press ENTER or
spacebar on the keyboard. Pressing spacebar advances the output another

The Windows Command Line Interpreter 933

screenful of text; pressing ENTER advances the output by one line.
Pressing Q terminates the program.

The more command expects one or more filenames on the command
line as arguments. If you specify two or more files, more will display the out-
put in order. The more command also allows several command line options.
You can use the following command to learn about them:

more /?

D.3.8 The move Command
The move command moves a file from one location to another (possibly
renaming the file while moving it). It is similar to copy, though move deletes
the file from its original location after moving it. The basic syntax for this
command is the following:

move original_file new_file

As usual, the /? command line option provides help for this command.

D.3.9 The ren and rename Commands
The ren command (rename is a synonym) changes the name of a file. The
syntax is

ren original_filename new_filename

where (obviously) original_filename is the old filename you want to change
and new_filename is the new name of the file you want to use. The new and old
files must be in the same directory. Use the move command if you want to
move the file to a new directory while renaming it.

D.3.10 The rd and rmdir Commands
The rd command (rmdir is a synonym) removes (deletes) a directory. The
directory must be empty before using this command (though the /s option
can override this). The basic syntax for this command is

rd directory_path

where directory_path is the path to the directory you wish to remove. Use the
rd /? command to get help.

D.3.11 The time Command
With no arguments, the time command displays the current system time
and prompts you to change it. With a /t command line argument, time
simply displays the current time. Use /? to display help information for this
command.

934 Appendix D

 D.4 For More Information
This appendix has provided only the tiniest introduction to the Windows
command line interpreter—just enough information to be able to effec-
tively compile and run assembly language programs using MASM. The
CLI supports many dozens of built-in commands (if not over a hundred).
One place to learn about these commands is https://docs.microsoft.com/en-us/
windows-server/administration/windows-commands/cmd/.

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd/.
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cmd/.

E
A N S W E R S T O Q U E S T I O N S

 E.1 Answers to Questions in Chapter 1
1. cmd.exe

2. ml64.exe

3. Address, data, and control

4. AL, AH, AX, and EAX

5. BL, BH, BX, and EBX

6. SIL, SI, and ESI

7. R8B, R8W, and R8D

8. FLAGS, EFLAGS, or RFLAGS

9. (a) 2, (b) 4, (c) 16, (d) 32, (e) 8

10. Any 8-bit register and any constant that can be represented with 8 bits

11. 32

936 Appendix E

12.

Destination Constant size

RAX 32

EAX 32

AX 16

AL 8

AH 8

mem32 32

mem64 32

N O T E 64-bit add operands support only 32-bit constants.

13. 64

N O T E Technically the x86-64 allows 16- and 32-bit registers as lea destination operands
for legacy reasons; however, such instructions are not generally useful for calculating
actual memory addresses (though they might be useful for sneaky addition operations).

14. Any memory operand will work, regardless of its size.

15. call

16. ret

17. Application binary interface

18. (a) AL, (b) AX, (c) EAX, (d) RAX, (e) XMM0, (f) RAX

19. RCX for integer operands, XMM0 for floating-point/vector operands

20. RDX for integer operands, XMM1 for floating-point/vector operands

21. R8 for integer operands, XMM2 for floating-point/vector operands

22. R9 for integer operands, XMM3 for floating-point/vector operands

23. dword or sdword

24. qword

 E.2 Answers to Questions in Chapter 2
1. 9 × 103 + 3 × 102 + 8 × 101 + 4 × 100 + 5 × 10-1 + 7 × 10-2 + 6 × 10-3

2. (a) 10, (b) 12, (c) 7, (d) 9, (e) 3, (f) 15

3. (a) A, (b) E, (c) B, (d) D, (e) 2, (f) C, (g) CF, (h) 98D1

4. (a) 0001_0010_1010_1111, (b) 1001_1011_1110_0111, (c) 0100_1010,
(d) 0001_0011_0111_1111, (e) 1111_0000_0000_1101, (f) 1011_1110
_1010_1101, (g) 0100_1001_0011_1000

5. (a) 10, (b) 11, (c) 15, (d) 13, (e) 14, (f) 12

Answers to Questions 937

6. (a) 16, (b) 64, (c) 128, (d) 32, (e) 4, (f) 8, (g) 4

7. (a) 2, (b) 4, (c) 8, (d) 16

8. (a) 16, (b) 256, (c) 65,636, (d) 2

9. 4

10. 0 through 7

11. Bit 0

12. Bit 31

13. (a) 0, (b) 0, (c) 0, (d) 1

14. (a) 0, (b) 1, (c) 1, (d) 1

15. (a) 0, (b) 1, (c) 1, (d) 0

16. 1

17. AND

18. OR

19. NOT

20. XOR

21. not

22. 1111_1011

23. 0000_0010

24. (a) and (c) and (e)

25. neg

26. (a) and (c) and (d)

27. jmp

28. label:

29. Carry, overflow, zero, and sign

30. JZ

31. JC

32. JA, JAE, JBE, JB, JE, JNE (and the synonyms JNA, JNAE, JNB, JNBE,
plus other synonyms)

33. JG, JGE, JL, JLE, JE, JNE (and the synonyms JNG, JNGE, JNL, and
JNLE)

34. ZF = 1 if the result of the shift is 0.

35. The HO bit shifted out of the operand goes into the carry flag.

36. If the next-to-HO bit is different from the HO bit before the shift, the OF
will be set; otherwise, it is cleared, though only for 1-bit shifts.

37. The SF is set equal to the HO bit of the result.

38. ZF = 1 if the result of the shift is 0.

39. The LO bit shifted out of the operand goes into the carry flag.

40. If the next-to-HO bit is different from the HO bit before the shift, the OF
will be set; otherwise, it is cleared, but only for 1-bit shifts.

938 Appendix E

41. The SF is always clear after the SHR instruction because a 0 is always
shifted into the HO bit of the result.

42. ZF = 1 if the result of the shift is 0.

43. The LO bit shifted out of the operand goes into the carry flag.

44. The OF is always clear after SAR as it is impossible for the sign to
change.

45. The SF is set equal to the HO bit of the result, though technically it will
never change.

46. The HO bit shifted out of the operand goes into the carry flag.

47. It doesn’t affect the ZF.

48. The LO bit shifted out of the operand goes into the carry flag.

49. It doesn’t affect the sign flag.

50. Multiplication by 2

51. Division by 2

52. Multiplication and division

53. Subtract them and see if their difference is less than a small error value.

54. A value that has a 1 bit in the HO mantissa position

55. 7

56. 30h through 39h

57. Apostrophes and quotes

58. UTF-8, UTF-16, and UTF-32

59. A scalar integer value that represents a single Unicode character

60. A block of 65,536 different Unicode characters

 E.3 Answers to Questions in Chapter 3
1. RIP

2. Operation code, the numeric encoding for a machine instruction

3. Static and scalar variables

4. ±2GB

5. The address of the memory location to access

6. RAX

7. lea

8. The final address obtained after all addressing mode calculations are
completed

9. 1, 2, 4, or 8

10. 2GB total memory

11. You can use the VAR[REG] addressing mode(s) to directly access elements
of an array using a 64-bit register as an index into the array without first
loading the address of the array into a separate base register.

Answers to Questions 939

12. The .data section can hold initialized data values; the .data? section can
contain only uninitialized variables.

13. .code and .const

14. .data and .data?

15. An offset into a particular section (for example, .data)

16. Use some_ID label some_type to inform MASM that the following data is
of type some_type when, in fact, it could be another type.

17. MASM will combine them into a single section.

18. Use the align 8 statement.

19. Memory management unit

20. If b is at an address that is at the last byte in an MMU page and the next
page is not readable, loading a word from the memory location starting
with b will produce a general protection fault.

21. A constant expression plus the base address of a variable in memory

22. To coerce the following operand type to a different type

23. Little-endian values appear in memory with their LO byte at the lowest
address and the HO byte at the highest address. Big-endian values are
the opposite: their HO byte appears at the lowest address, and their LO
byte appears at the highest address in memory.

24. xchg al, ah or xchg ah, al

25. bswap eax

26. bswap rax

27. (a) Subtract 8 from RSP, (b) Store the value in RAX at the location
pointed at by RSP.

28. (a) Load RAX from the 8 bytes pointed at by RSP, (b) Add 8 to RSP.

29. Reverse

30. Last in, first out

31. Move the data to and from the stack using the [RSP ± const] addressing
mode.

32. The Windows ABI requires the stack to be aligned on a 16-byte bound-
ary; pushing RAX might make the stack aligned on an 8-byte (but not
16-byte) boundary.

 E.4 Answers to Questions in Chapter 4
1. imul reg, constant

2. imul destreg, srcreg, constant

3. imul destreg, srcreg

4. A symbolic (named) constant for which MASM will substitute the literal
constant for the name everywhere it appears in the source file

5. =, equ, textequ

940 Appendix E

6. Text equates substitute a textual string that can be any text; numeric
equates must be assigned a numeric constant value that can be repre-
sented with a 64-bit integer.

7. Use the text delimiters < and > around the string literal; for example,
<"a long string">.

8. An arithmetic expression whose value MASM can calculate during
assembly

9. lengthof

10. The offset into the current section

11. this and $

12. Use the constant expression $-startingLocation.

13. Use a series of (numeric) equates, with each successive equate set to the
value of the previous equate plus one; for example:

val1 = 0
val2 = val1 + 1
val3 = val2 + 1
etc.

14. Using the typedef directive

15. A pointer is a variable in memory that holds the address of another
object in memory.

16. Load the pointer variable into a 64-bit register and use the register-
indirect addressing mode to reference that address.

17. Using a qword data declaration, or another data type that is 64 bits
in size

18. The offset operator

19. (a) Uninitialized pointers, (b) Using pointers to hold an illegal value,
(c) Using a pointer after its storage has been freed (dangling pointers),
(d) Failing to free storage after it is no longer being used (memory
leak), (e) Accessing indirect data by using the wrong data type

20. Using a pointer after its storage has been freed

21. Failing to free storage after you are done using it

22. An aggregate type composed of smaller data objects

23. A sequence of characters ending with a 0 byte (or other 0 value)

24. A string containing a length value as its first element

25. A descriptor is a data type containing a pointer (to the character
data), string length, and possibly other information that describes
the string data.

26. A homogenous collection of data elements (all with the same type)

27. The memory address of the first element of the array

28. array byte 10 dup (?) (as an example)

Answers to Questions 941

29. Simply fill in the initial values as the operand field of a byte, word,
dword, or other data declaration directive. Also, you could use a
sequence of one or more constant values as the dup operator operand;
for example, 5 dup (2, 3).

30. (a) base_address + index * 4 (4 is the element size), (b) W[i,j] = base_address
+ (i * 8 + j) * 2 (2 is the element size), (c) R[i,j,k] = base_address
+(((i * 4) + j) * 6 + k) * 8 (8 is the element size)

31. An organization for multidimensional arrays where you store the ele-
ments of each row in the array in contiguous memory locations and
then store each row, one after the other, in memory

32. An organization for multidimensional arrays where you store the ele-
ments of each column in the array in contiguous memory locations and
then store each column, one after the other, in memory

33. W word 4 dup (8 dup (?))

34. A heterogeneous collection of data elements (each field could have
different types)

35. struct and ends

36. The dot operator

37. A heterogeneous collection of data elements (each field could have
different types); the offset of each field in the union begins at 0.

38. union and ends

39. The fields of a record and struct appear at successive memory locations
within the struct (each field has its own block of bytes); the fields of a
union overlap one another, with each field beginning at offset zero in
the union.

40. An unnamed union whose fields are treated as fields of the enclosing
struct

 E.5 Answers to Questions in Chapter 5
1. It pushes the return address onto the stack (the address of the next

instruction after the call) and then jumps to the address specified by
the operand.

2. It pops a return address off the stack and moves the address into the
RIP register, transferring control to the instruction just beyond the call
to the current procedure.

3. After popping the return address, the CPU adds this value to RSP,
removing that number of bytes of parameters from the stack.

4. The address of the instruction just beyond the call to the procedure

5. Namespace pollution occurs when so many symbols, identifiers, or
names are defined in a source file that it becomes difficult to select
new, unique names to use in that source file.

6. Put two colons after the name; for example, id::.

942 Appendix E

7. Use the option noscoped directive just before the procedure.

8. Use the push instruction to save the register values on the stack upon
entry into the procedure; then use the pop instruction to restore the
register values immediately before returning from the procedure.

9. Code is difficult to maintain. (A secondary issue, though minor, is that
it takes more space.)

10. Performance—because you’re often preserving registers that don’t need
to be preserved for the calling code

11. When the subroutine attempts to return, it uses the garbage you left
on the stack as the return address, which usually produces undefined
results (a program crash).

12. The subroutine uses whatever was on the stack prior to the call as the
return address, with undefined results.

13. A collection of data, including parameters, local variables, the return
address, and other items, associated with the call (activation) of a
procedure

14. RBP

15. 8 bytes (64 bits)

16.
push rbp
mov rbp, rsp
sub rsp, sizeOfLocals ; Assuming there are local variables

17.
leave
ret

18. and rsp, -16

19. The section of the source file (usually the body of a procedure) where
the symbol is visible and usable in the program

20. From the moment storage is allocated for the variable to the point the
system deallocates that storage

21. Variables whose storage is automatically allocated upon entry into a
block of code (usually a procedure) and automatically deallocated
upon exiting that block of code

22. Upon entry into a procedure (or the block of code associated with that
automatic variable)

23. Using textequ directives or the MASM local directive

24. var1: –2; local2: –8 (MASM aligns variable on dword boundary); dVar: –9;
qArray: –32 (base address of array is the lowest memory address); rlocal:
–40 (base address of array is the lowest memory address); ptrVar: –48

25. option prologue:PrologueDef and option epilogue:EpilogueDef. Should also
supply option prologue:none and option epilogue:none to turn this off.

Answers to Questions 943

26. Before MASM emits any code for the procedure, after all the local
directives

27. Wherever a ret instruction appears

28. The actual parameter’s value

29. The memory address of the actual parameter’s value

30. RCX, RDX, R8, and R9 (or smaller subcomponents of these registers)

31. XMM0, XMM1, XMM2, or XMM3

32. On the stack, above the shadow locations (32 bytes) reserved for the
arguments passed in the registers

33. Procedures are free to modify volatile registers without preserving
their values; procedures must preserve the values of nonvolatile regis-
ters across a procedure invocation.

34. RAX, RCX, RDX, R8, R9, R10, R11, XMM0, XMM1, XMM2, XMM3,
XMM4, XMM5, and the HO 128 bits of all the YMM and ZMM registers

35. RBX, RSI, RDI, RBP, RSP, R12, R13, R14, R15, and XMM6–XMM15.
Also, the direction flag must be clear upon return from a procedure.

36. Using positive offsets from the RBP register

37. Storage reserved on the stack for parameters the caller passes in the
RCX, RDX, R8 and R9 registers

38. 32 bytes

39. 32 bytes

40. 32 bytes

N O T E Shadow storage is the same regardless of how many parameters you pass (including
none).

41. parm1: RBP + 16; parm2: RBP + 24; parm3: RBP + 32; parm4: RBP + 40

42.
mov rax, parm4
mov al, [rax]

43. lclVar1: RBP – 1; lclVar2: RBP – 4 (aligned to 2-byte boundary); lclVar3:
RBP – 8; lclVar4: RBP – 16

44. By reference

45. Application binary interface

46. In the RAX register

47. The address of a procedure passed as a parameter

48. Indirectly. Typically by using a call parm instruction, where parm is the
procedural parameter, a qword variable containing the address of the
procedure. You could also load the parameter value into a 64-bit regis-
ter and indirectly call the procedure through that register.

944 Appendix E

49. Allocate local storage to hold the register values to preserve and move
the register data into that storage upon procedure entry, and then
move the data back into the registers just before returning from the
procedure.

 E.6 Answers to Questions in Chapter 6
1. AL for 8-bit operands, AX for 16-bit operands, EAX for 32-bit operands,

and RAX for 64-bit operands

2. 8-bit mul operation: 16 bits; 16-bit mul operation: 32 bits; 32-bit mul opera-
tion: 64 bits; 64-bit mul operator: 128 bits. The CPU put the products at
AX for 8×8 products, DX:AX for 16×16 products, EDX:EAX for 32×32
products, and RDX:RAX for 64×64 products.

3. The quotient in AL, AX, EAX, or RAX and the remainder in AH, DX,
EDX, or RDX

4. Sign-extend AX into DX.

5. Zero-extend EAX into EDX.

6. A division by 0 and producing a quotient that will not fit into the accu-
mulator register (AL, AX, EAX, or RAX)

7. By setting the carry and overflow flags

8. They scramble the flag; that is, they leave it in an undefined state.

9. The extended-precision imul instruction produces a 2 × n-bit result, uses
implied operands (AL, AX, EAX, and RAX), and modifies the AH, DX,
EDX, and RDX registers. Also, the extended-precision imul instruction does
not allow constant operands, whereas the generic imul instruction does.

10. cbw, cwd, cdq, and cqo

11. They scramble all the flags, leaving them in an undefined state.

12. It sets the zero flag if the two operands are equal.

13. It sets the carry flag if the first operand is less than the second operand.

14. The sign and overflow flags are different if the first operand is less than
the second operand; they are the same if the first operand is greater
than or equal to the second operand.

15. An 8-bit register or memory location

16. They set the operand to 1 if the condition is true, or to false if the con-
dition is not true.

17. The test instruction is the same as the and instruction except it does not
store the result to the destination (first) operand; it only sets the flags.

18. They both set the condition code flags the same way.

19. Supply the operand to be tested as the first (destination) operand and
an immediate constant containing a single 1 bit in the bit position to
test. After the test instruction, the zero flag will contain the state of the
desired bit.

Answers to Questions 945

20. The following are some possible, not the only, solutions:

x = x + y

mov eax, x
add eax, y
mov x, eax

x = y – z

mov eax, y
sub eax, z
mov x, eax

x = y * z

mov eax, y
imul eax, z
mov x, eax

x = y + z * t

mov eax, z
imul eax, t
add eax, y
mov x, eax

x = (y + z) * t

mov eax, y
add eax, z
imul eax, t
mov x, eax

x = -((x*y)/z)

mov eax, x
imul y ; Note: Sign-extends into EDX
idiv z
mov x, eax

x = (y == z) && (t != 0)

mov eax, y
cmp eax, z
sete bl
cmp t, 0
setne bh
and bl, bh
movzx eax, bl ; Because x is a 32-bit integer
mov x, eax

946 Appendix E

21. The following are some possible, not the only, solutions:

x = x * 2

shl x, 1

x = y * 5

mov eax, y
lea eax, [eax][eax*4]
mov x, eax

Here is another solution:

mov eax, y
mov ebx, eax
shl eax, 2
add eax, ebx
mov x, eax

x = y * 8

mov eax, y
shl eax, 3
mov x, eax

22. x = x /2

shr x, 1

x = y / 8

mov ax, y
shr ax, 3
mov x, ax

x = z / 10

movzx eax, z
imul eax, 6554 ; Or 6553
shr eax, 16
mov x, ax

23. x = x + y

fld x
fld y
faddp
fstp x

x = y – z

fld y
fld z

Answers to Questions 947

fsubp
fstp x

x = y * z

fld y
fld z
fmulp
fstp x

x = y + z * t

fld y
fld z
fld t
fmulp
faddp
fstp x

x = (y + z) * t

fld y
fld z
faddp
fld t
fmulp
fstp x

x = -((x * y)/z)

fld x
fld y
fmulp
fld z
fdivp
fchs
fstp x

24. x = x + y

movss xmm0, x
addss xmm0, y
movss x, xmm0

x = y – z

movss xmm0, y
subss xmm0, z
movss x, xmm0

x = y * z

movss xmm0, y

948 Appendix E

mulss xmm0, z
movss x, xmm0

x = y + z * t

movss xmm0, z
mulss xmm0, t
addss xmm0, y
movss x, xmm0

25. b = x < y

fld y
fld x
fcomip st(0), st(1)
setb b
fstp st(0)

b = x >= y && x < z

fld y
fld x
fcomip st(0), st(1)
setae bl
fstp st(0)
fld z
fld x
fcomip st(0), st(1)
setb bh
fstp st(0)
and bl, bh
mov b, bl

 E.7 Answers to Questions in Chapter 7
1. Use the lea instruction or the offset operator.

2. option noscoped

3. option scoped

4. jmp reg64 and jmp mem64
5. A piece of code that maintains history information in variables or via

the program counter

6. If the second letter of the jump mnemonic is n, remove the n; other-
wise, insert an n as the second character.

7. jpo and jpe

N O T E Technically, the jcxz, jecxz, and jrcxz instructions are also exceptions.

8. A short code sequence used to extend the range of a jump or call
instruction beyond the ±2GB range

Answers to Questions 949

9. cmovcc reg, src, where cc is one of the conditional suffixes (which fol-
low a conditional jump), reg is a 16-, 32-, or 64-bit register, and src is a
source register or memory location that is the same size as reg.

10. You can conditionally execute a large set of different types of instruc-
tions by using a conditional jump without the time penalty of a control
transfer.

11. The destination has to be a register, and 8-bit registers are not allowed.

12. Complete Boolean evaluation of an expression evaluates all compo-
nents of the expression, even if it is not logically necessary to do so;
short-circuit evaluation stops as soon as it determines that the expres-
sion must be true or false.

13.
if(x == y || z > t)
{
 Do something
}
 mov eax, x
 cmp eax, y
 sete bl
 mov eax, z
 cmp eax, t
 seta bh
 or bl, bh
 jz skipIF
 Code for statements that "do something"
skipIF:

if(x != y && z < t)
{
 THEN statements
}
Else
{
 ELSE statements
}
 mov eax, x
 cmp eax, y
 setne bl
 mov eax, z
 cmp eax, t
 setb bh
 and bl, bh
 jz doElse
 Code for THEN statements
 jmp endOfIF

doElse:
 Code for ELSE statements
endOfIF:

950 Appendix E

14.
1st IF:
 mov ax, x
 cmp ax, y
 jeq doBlock
 mov eax, z
 cmp eax, t
 jnl skipIF
doBlock: Code for statements that "do something"
skipIF:

2nd IF:
 mov eax, x
 cmp eax, y
 je doElse
 mov eax, z
 cmp eax, t
 jnl doElse
 Code for THEN statements
 jmp endOfIF

doElse:
 Code for ELSE statements
endOfIF:

15.
switch(s)
{
 case 0: case 0 code break;
 case 1: case 1 code break;
 case 2: case 2 code break;
 case 3: case 3 code break;
}

 mov eax, s ; Zero-extends!
 cmp eax, 3
 ja skipSwitch
 lea rbx, jmpTbl
 jmp [rbx][rax * 8]
jmpTbl qword case0, case1, case2, case3

case0: case 0 code
 jmp skipSwitch

case1: case 1 code
 jmp skipSwitch

case2: case 2 code
 jmp skipSwitch

case3: case 3 code

Answers to Questions 951

skipSwitch:

switch(t)
{
 case 2: case 0 code break;
 case 4: case 4 code break;
 case 5: case 5 code break;
 case 6: case 6 code break;
 default: default code
}
 mov eax, t ; Zero-extends!
 cmp eax, 2
 jb swDefault
 cmp eax, 6
 ja swDefault
 lea rbx, jmpTbl
 jmp [rbx][rax * 8 – 2 * 8]
jmpTbl qword case2, swDefault, case4, case5, case6

swDefault: default code
 jmp endSwitch

case2: case 2 code
 jmp endSwitch

case4: case 4 code
 jmp endSwitch

case5: case 5 code
 jmp endSwitch

case6: case 6 code

endSwitch:

switch(u)
{
 case 10: case 10 code break;
 case 11: case 11 code break;
 case 12: case 12 code break;
 case 25: case 25 code break;
 case 26: case 26 code break;
 case 27: case 27 code break;
 default: default code
}
 lea rbx, jmpTbl1 ; Assume cases 10-12
 mov eax, u ; Zero-extends!
 cmp eax, 10
 jb swDefault
 cmp eax, 12
 jbe sw1
 cmp eax, 25
 jb swDefault
 cmp eax, 27

952 Appendix E

 ja swDefault
 lea rbx, jmpTbl2
 jmp [rbx][rax * 8 – 25 * 8]
sw1: jmp [rbx][rax*8-2*8]
jmpTbl1 qword case10, case11, case12
jmpTbl2 qword case25, case26, case27

swDefault: default code
 jmp endSwitch

case10: case 10 code
 jmp endSwitch

case11: case 11 code
 jmp endSwitch

case12: case 12 code
 jmp endSwitch

case25: case 25 code
 jmp endSwitch

case26: case 26 code
 jmp endSwitch

case27: case 27 code

endSwitch:

16.
while(i < j)
{
 Code for loop body
}

whlLp:
 mov eax, i
 cmp eax, j
 jnl endWhl
 Code for loop body
 jmp whlLp
endWhl:

while(i < j && k != 0)
{
 Code for loop body, part a
 if(m == 5) continue;
 Code for loop body, part b
 if(n < 6) break;
 Code for loop body, part c
}

; Assume short-circuit evaluation:

Answers to Questions 953

whlLp:
 mov eax, i
 cmp eax, j
 jnl endWhl
 mov eax, k
 cmp eax, 0
 je endWhl
 Code for loop body, part a
 cmp m, 5
 je whlLp
 Code for loop body, part b
 cmp n, 6
 jl endWhl
 Code for loop body, part c
 jmp whlLp
endWhl:

do
{
 Code for loop body
} while(i != j);

doLp:
 Code for loop body
 mov eax, i
 cmp eax, j
 jne doLp

do
{
 Code for loop body, part a
 if(m != 5) continue;
 Code for loop body, part b
 if(n == 6) break;
 Code for loop body, part c
} while(i < j && k > j);

doLp:
 Code for loop body, part a
 cmp m, 5
 jne doCont
 Code for loop body, part b
 cmp n, 6
 je doExit
 Code for loop body, part c
doCont: mov eax, i
 cmp eax, j
 jnl doExit
 mov eax, k
 cmp eax, j
 jg doLp
doExit:

for(int i = 0; i < 10; ++i)

954 Appendix E

{
 Code for loop body
}

 mov i, 0
forLp: cmp i, 10
 jnl forDone
 Code for loop body
 inc i
 jmp forLp
forDone:

 E.8 Answers to Questions in Chapter 8
1. You compute x = y + z as follows:

a.
mov rax, qword ptr y
add rax, qword ptr z
mov qword ptr x, rax
mov rax, qword ptr y[8]
adc rax, qword ptr z[8]
mov qword ptr x[8], rax

b.
mov rax, qword ptr y
add rax, qword ptr z
mov qword ptr x, rax
mov eax, dword ptr z[8]
adc eax, qword ptr y[8]
mov dword ptr x[8], eax

c.
mov eax, dword ptr y
add eax, dword ptr z
mov dword ptr x, eax
mov ax, word ptr z[4]
adc ax, word ptr y[4]
mov word ptr x[4], ax

2. You compute x = y – z as follows:

a.
mov rax, qword ptr y
sub rax, qword ptr z
mov qword ptr x, rax
mov rax, qword ptr y[8]
sbb rax, qword ptr z[8]
mov qword ptr x[8], rax

Answers to Questions 955

mov rax, qword ptr y[16]
sbb rax, qword ptr z[16]
mov qword ptr x[16], rax

b.
mov rax, qword ptr y
sub rax, qword ptr z
mov qword ptr x, rax
mov eax, dword ptr y[8]
sbb eax, dword ptr z[8]
mov dword ptr x[8], eax

3.
mov rax, qword ptr y
mul qword ptr z
mov qword ptr x, rax
mov rbx, rdx

mov rax, qword ptr y
mul qword ptr z[8]
add rax, rbx
adc rdx, 0
mov qword ptr x[8], rax
mov rbx, rdx

mov rax, qword ptr y[8]
mul qword ptr z
add x[8], rax
adc rbx, rdx

mov rax, qword ptr y[8]
mul qword ptr z[8]
add rax, rbx
mov qword ptr x[16], rax
adc rdx, 0
mov qword ptr x[24], rdx

4.
mov rax, qword ptr y[8]
cqo
idiv qword ptr z
mov qword ptr x[8], rax
mov rax, qword ptr y
idiv qword ptr z
mov qword ptr x, rax

5. The conversions are as follows:

a.
; Note: order of comparison (HO vs. LO) is irrelevant
; for "==" comparison.

956 Appendix E

 mov rax, qword ptr x[8]
 cmp rax, qword ptr y[8]
 jne skipElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 jne skipElse
 then code
skipElse:

b.
 mov rax, qword ptr x[8]
 cmp rax, qword ptr y[8]
 jnb skipElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 jnb skipElse
 then code
skipElse:

c.
 mov rax, qword ptr x[8]
 cmp rax, qword ptr y[8]
 jna skipElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 jna skipElse
 then code
skipElse:

d.
; Note: order of comparison (HO vs. LO) is irrelevant
; for "!=" comparison.

 mov rax, qword ptr x[8]
 cmp rax, qword ptr y[8]
 jne doElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 je skipElse
doElse:
 then code
skipElse:

6. The conversions are as follows:

a.
; Note: order of comparison (HO vs. LO) is irrelevant
; for "==" comparison.

 mov eax, dword ptr x[8]
 cmp eax, dword ptr y[8]

Answers to Questions 957

 jne skipElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 jne skipElse
 then code
skipElse:

b.
 mov eax, dword ptr x[8]
 cmp eax, dword ptr y[8]
 jnb skipElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 jnb skipElse
 then code
skipElse:

c.
 mov eax, dword ptr x[8]
 cmp eax, dword ptr y[8]
 jna skipElse
 mov rax, qword ptr x
 cmp rax, qword ptr y
 jna skipElse
 then code
skipElse:

7. The conversions are as follows:

a.
neg qword ptr x[8]
neg qword ptr x
sbb qword ptr x[8], 0

xor rax, rax
xor rdx, rdx
sub rax, qword ptr x
sbb rdx, qword ptr x[8]
mov qword ptr x, rax
mov qword ptr x[8], rdx

b.
mov rax, qword ptr y
mov rdx, qword ptr y[8]
neg rdx
neg rax
sbb rdx, 0
mov qword ptr x, rax
mov qword ptr x[8], rdx

958 Appendix E

xor rdx, rdx
xor rax, rax
sub rax, qword ptr y
sbb rdx, qword ptr y[8]
mov qword ptr x, rax
mov qword ptr x[8], rdx

8. The conversions are as follows:

a.
mov rax, qword ptr y
and rax, qword ptr z
mov qword ptr x, rax
mov rax, qword ptr y[8]
and rax, qword ptr z[8]
mov qword ptr x[8], rax

b.
mov rax, qword ptr y
or rax, qword ptr z
mov qword ptr x, rax
mov rax, qword ptr y[8]
or rax, qword ptr z[8]
mov qword ptr x[8], rax

c.
mov rax, qword ptr y
xor rax, qword ptr z
mov qword ptr x, rax
mov rax, qword ptr y[8]
xor rax, qword ptr z[8]
mov qword ptr x[8], rax

d.
mov rax, qword ptr y
not rax
mov qword ptr x, rax
mov rax, qword ptr y[8]
not rax
mov qword ptr x[8], rax

e.
mov rax, qword ptr y
shl rax, 1
mov qword ptr x, rax
mov rax, qword ptr y[8]
rcl rax, 1
mov qword ptr x[8], rax

Answers to Questions 959

f.
mov rax, qword ptr y[8]
shr rax, 1
mov qword ptr x[8], rax
mov rax, qword ptr y
rcr rax, 1
mov qword ptr x rax

9.
mov rax, qword ptr y[8]
sar rax, 1
mov qword ptr x[8], rax
mov rax, qword ptr y
rcr rax, 1
mov qword ptr x, rax

10.
rcl qword ptr x, 1
rcl qword ptr x[8], 1

11.
rcr qword ptr x[8], 1
rcr qword ptr x, 1

\

 E.9 Answers to Questions in Chapter 9
1.

btoh proc

 mov ah, al ; Do HO nibble first
 shr ah, 4 ; Move HO nibble to LO
 or ah, '0' ; Convert to char
 cmp ah, '9' + 1 ; Is it "A" to "F"?
 jb AHisGood

; Convert 3Ah to 3Fh to "A" to "F".

 add ah, 7

; Process the LO nibble here.

AHisGood: and al, 0Fh ; Strip away HO nibble
 or al, '0' ; Convert to char
 cmp al, '9' + 1 ; Is it "A" to "F"?
 jb ALisGood

; Convert 3Ah to 3Fh to "A" to "F".

960 Appendix E

 add al, 7
ALisGood: ret
btoh endp

2. 8

3. Call qToStr twice: once with the HO 64 bits and once with the LO
64 bits. Then concatenate the two strings.

4. fbstp

5. If the input value is negative, emit a hyphen (-) character and negate
the value; then call the unsigned decimal conversion function. If the
number is 0 or positive, just call the unsigned decimal conversion
function.

6.
; Inputs:
; RAX - Number to convert to string.
; CL - minDigits (minimum print positions).
; CH - Padding character.
; RDI - Buffer pointer for output string.

7. It will produce the full string required; the minDigits parameter specifies
the minimum string size.

8.
; On Entry:

 ; r10 - Real10 value to convert.
 ; Passed in ST(0).

 ; fWidth - Field width for the number (note that this
 ; is an *exact* field width, not a minimum
 ; field width).
 ; Passed in EAX (RAX).

 ; decimalpts - # of digits to display after the decimal pt.
 ; Passed in EDX (RDX).

 ; fill - Padding character if the number is smaller
 ; than the specified field width.
 ; Passed in CL (RCX).

 ; buffer - r10ToStr stores the resulting characters
 ; in this string.
 ; Address passed in RDI.

 ; maxLength - Maximum string length.
 ; Passed in R8D (R8).

Answers to Questions 961

9. A string containing fWidth # characters.

10.
; On Entry:

; e10 - Real10 value to convert.
; Passed in ST(0).

; width - Field width for the number (note that this
; is an *exact* field width, not a minimum
; field width).
; Passed in RAX (LO 32 bits).

; fill - Padding character if the number is smaller
; than the specified field width.
; Passed in RCX.

; buffer - e10ToStr stores the resulting characters in
; this buffer (passed in EDI).
; Passed in RDI (LO 32 bits).

; expDigs - Number of exponent digits (2 for real4,
; 3 for real8, and 4 for real10).
; Passed in RDX (LO 8 bits).

11. A character that separates a sequence of characters from other such
sequences, such as beginning or ending a numeric string

12. Illegal character on input and numeric overflow during conversion

 E.10 Answers to Questions in Chapter 10
1. The set of all possible input (parameter) values

2. The set of all possible function output (return) values

3. Computes AL = [RBX + AL × 1]

4. Byte values: domain is the set of all integers in the range 0 to 255, and
the range is also the set of all integers in the range 0 to 255.

5. The code implementing the functions is as follows:

a.
lea rbx, f
mov al, input
xlat

b.
lea rbx, f
movzx rax, input
mov ax, [rbx][rax * 2]

962 Appendix E

c.
lea rbx, f
movzx rax, input
mov al, [rbx][rax * 1]

d.
lea rbx, f
movzx rax, input
mov ax, [rbx][rax * 2]

6. Modifying input values that are out of a specific range so that they lie
within the input domain of the function

7. Main memory is so slow that it might be faster to compute the value
than to look it up via a table.

 E.11 Answers to Questions in Chapter 11
1. Use the cpuid instruction.

2. Because Intel and AMD have different feature sets

3. EAX = 1

4. ECX bit 20

5. (a) _TEXT, (b) _DATA, (c) _BSS, (d) CONST

6. PARA or 16 bytes

7.
data segment align(64) 'DATA'
 .
 .
 .
data ends

8. AVX/AVX2/AVX-256/AVX-512

9. A data type within a SIMD register; typically, 1, 2, 4, or 8 bytes wide

10. Scalar instructions operate on a single piece of data; vector instructions
operate, simultaneously, on two or more pieces of data.

11. 16 bytes

12. 32 bytes

13. 64 bytes

14. movd

15. movq

16. movaps, movapd, and movdqa

17. movups, movupd, and movdqu

N O T E lddqu also works.

Answers to Questions 963

18. movhps or movhpd

19. movddup

20. pshufb

21. pshufd, though pshufb could also work

22. (v)pextrb, (v)pextrw, (v)pextrd, or (v)pextrq

23. (v)pinsrb, (v)pinsrw, (v)pinsrd, or (v)pinsrq

24. It takes the bits in the second operand, inverts them, and then logically
ANDs these inverted bits with the first (destination) operand.

25. pslldq

26. pslrdq

27. psllq

28. pslrq

29. The carry out of the HO bit is lost.

30. In a vertical addition, the CPU sums values found in the same lane of
two separate XMM registers; in a horizontal addition, the CPU sums
values found in adjacent lanes of the same XMM register.

31. In the destination XMM register, by storing 0FFh in the corresponding
lane of the destination XMM register (0 for false)

32. Swap the operands of the pcmpgtq instruction.

33. It copies the HO bit of each byte in an XMM register into the corre-
sponding bit position of a general-purpose 16-bit register; for example,
bit 7 of lane 0 goes into bit 0.

34. (a) 4 on SSE, 8 on AVX2, (b) 2 on SSE, 4 on AVX2

35. and rax, -16

36. pxor xmm0, xmm0

37. pcmpeqb xmm1, xmm1

38. include

 E.12 Answers to Questions in Chapter 12
1. and/andn

2. btr

3. or

4. bts

5. xor

6. btc

7. test/and

8. bt

9. pext

10. pdep

11. bextr

964 Appendix E

12. bsf

13. bsr

14. Invert the register and use bsf.

15. Invert the register and use bsr.

16. popcnt

 E.13 Answers to Questions in Chapter 13
1. Compile-time language

2. During the assembly and compilation process

3. echo (or %out)

4. .err

5. The = directive

6. !

7. It replaces an expression with text representing the value of that
compile-time expression.

8. It replaces a text symbol with the expansion of its text.

9. It concatenates two or more textual strings at assembly time and stores
the result into a text symbol.

10. It searches for a substring within a larger string in a MASM text object
and returns the index of the substring into that object; 0 if the sub-
string does not appear in the larger string.

11. It returns the length of a MASM text string.

12. It returns a substring from a larger MASM text string.

13. if, elseif, else, and endif

14. while, for, forc, and endm

15. forc

16. macro, endm

17. Specify the macro’s name where you want the text expansion to occur.

18. As operands to the macro directive

19. Specify :req after the parameter name in the macro operand field.

20. Macro parameters are optional, by default, if they don’t have the :req
suffix.

21. Use the :vararg suffix after the last macro parameter declaration.

22. Use conditional assembly directives such as ifb or ifnb to see if the
actual macro argument is blank.

23. Use the local directive.

24. exitm

25. Use exitm <text>.

26. opattr

Answers to Questions 965

 E.14 Answers to Questions in Chapter 14
1. Bytes, words, dwords, and qwords

2. movs, cmps, scas, stos, and lods

3. Bytes and words

4. RSI, RDI, and RCX

5. RSI and RDI

6. RCX, RSI, and AL

7. RDI and EAX

8. Dir = 0

9. Dir = 1

10. Clear the direction flag; alternatively, preserve its value.

11. Clear

12. movs and stos

13. When the source and destination blocks overlap and the source address
starts at a lower memory address than the destination block

14. This is the default condition; you would also clear the direction flag
when the source and destination blocks overlap and the source address
starts at a higher memory address than the destination block.

15. Portions of the source block can be replicated in the destination block.

16. repe

17. Direction flag should be clear.

18. No, string instructions test RCX prior to the string operation when
using a repeat prefix.

19. scasb

20. stos

21. lods and stos

22. lods

23. Verify that the CPU supports SSE 4.2 instructions.

24. pcmpistri and pcmpistrm

25. pcmpestri and pcmpestrm

26. RAX holds the src1 length, and RDX holds the src2 length.

27. Equal any, or possibly, equal range

28. Equal each

29. Equal ordered

30. The pcmpXstrY instructions always read 16 bytes of memory, even if the
string is shorter than this, and there is the possibility of an MMU page
fault when it reads data beyond the end of the string.

966 Appendix E

 E.15 Answers to Questions in Chapter 15
1. ifndef and endif

2. The assembly of a source file plus any files it includes or indirectly
includes

3. public

4. extern and externdef

5. externdef

6. abs

7. proc

8. nmake.exe

9. Multiple blocks of the following form:

target: dependencies
 commands

10. A dependent file is one that the current file depends on for its proper
operation; the dependent file must be updated and built prior to the
compilation and linking of the current file.

11. Delete old object and executable files, and delete other cruft.

12. A collection of object files

 E.16 Answers to Questions in Chapter 16
1. /subsystem:console

2. https://www.masm32.com/

3. It slows the assembly process.

4. /entry:procedure_name

5. MessageBox

6. Code that surrounds a call to a function and that changes the way you
call the function (for example, parameter order and location)

7. __imp_CreateFileA

8. __imp_GetLastError

https://www.masm32.com/

I N D E X

Numbers
8-bit excess-127 exponent, 88
8-bit registers, 10
16-bit integer variables, 54
16-bit registers, 10
16-byte-aligned addresses, 606
32-bit integer variables, 54
32-bit registers, 10
32-byte alignment within a segment, 605
64-byte alignment within a segment, 605
64-byte memory alignment, 607
80x86 memory addressing modes, 105
96-bit rcl and rcr operations, 484
128-bit comparisons, 461
128-bit decimal output (conversion to

string), 508
256-bit by 64-bit division, 468
8087 FPU, 317

Symbols
%1 (batch file parameter), 34
/c MASM command line option, 9
.code section, 108
.const declaration section, 109
.data declaration section, 108
.data? declaration section, 110
.data directive, 14
.err CTL statement, 748
! escape operator (MASM macros), 750
#IA exception (invalid arithmetic

operation), 673
.inc files (include files), 848
+infinity, 90
–infinity, 90
.lib files, 869
$ operator, 154
% operator in the first column of a

source line, 751
% operator (MASM macros), 750

– (unary negation, within a constant
expression), 153

+ (within a constant expression), 153
[] (within a constant expression), 153
* (within a constant expression), 153
/ (within a constant expression), 153

A
ABI (application binary interface),

27, 261
ABI (Microsoft) register usage, 38
abs external symbol type, 851
absolute value (floating-point), 349
absolute value (SIMD), 659
access fields of a struct/record, 199
accessing

an element of a single dimensional
array, 182

data on the stack, 142
data via a pointer, 162
elements of an array, 183
elements of multidimensional

arrays, 196
elements of three- and four-

dimensional arrays, 191
fields of a struct/record via a

pointer, 199
fields of a union, 206
local variables, 235
record/struct fields, 199
reference parameters, 256
subfields of a nested structure, 200
value parameters, 253

accumulated errors in a floating-point
calculation, 315

activation record
construction at runtime, 228
definition, 228

adc instruction, 455, 716

968 Index

adding 1 to a register or memory
location, 149

add instruction, 21
addition (extended-precision), 454
addition (horizontal, packed), 650
addition (SIMD), 648
addition (vertical, packed), 649
addpd instruction, 669
addps instruction, 669
addresses, 9
address expressions, 130
addressing modes, 122

indirect, 124
indirect-plus-offset, 125
register indirect, 124
scaled-indexed, 126
scaling factor, 126

address of an object, 22
addsd instruction, 371
addss instruction, 371
Advanced Vector Extensions (AVX), 596
aggregate data types, 174
AH register, 10

copying AH to FLAGS register,
86, 350

AL/AX/EAX register usage in string
instructions, 826

algorithm to convert a string to an
integer, 546

aliases, 207
aliasing registers, 10, 623
align directive, 121
aligned data movement instructions

(SSE/AVX), 610
aligning

bit strings, 710
data in a segment, 605
data objects on the stack or

heap, 607
within a record, 204

alignment
data alignment, 119
variable alignment, 121
within a record, 204

allocating storage for arrays, 194. See
also arrays

allocating storage for uninitialized
arrays, 183

AL register, 10
anatomy of a MASM program, 5
and instruction, 58, 309, 709
ANDN (and not) operation, 645
andnpd instruction, 645
AND operation, 55
AND operator, 153
andpd instruction, 645
anonymous

unions, 208
variables, 125

application binary interface (ABI),
27, 261

application programming interface
(API), 35

arbitrary alignment within a
segment, 605

arctangent, 361
arithmetic

expressions, 299, 302
idioms, 310
logical systems, 310
operators within a constant

expression, 153
shift right, 77

arithmetic shifts (SSE/AVX), 647
arrays, 191

accessing elements of an array, 183
accessing elements of

multidimensional arrays, 196
allocating storage for a

multidimensional array, 194
arrays of arrays, 192
arrays of structs, 203
base address, 182
bubble sort, 188
column-major ordering, 193
declarations, 182
definition, 181
dup operator, 182
four-dimensional array access (row

major), 191
indexing operator, 181
initialized arrays, 183
LARGEADDRESSAWARE, 183
multidimensional, 189, 192
row-major ordering, 190
sorting, 185

Index 969

three-dimensional array access
(row major), 191

two or more dimensions, 189
uninitialized storage, 183

array variables, 182
ASCII

character set, 53, 93
codes for numeric digits, 95
groups, 94

assembly language procedures, xxviii, 22
assembly-time initialization of

structures, 200
assigning, 299

constant to a variable, 299
one variable to another, 299

associativity, 302, 304
automatic allocation, 240
automatic code generation, 748
automatic (local) variables, 235
automatic variables, 234

in a procedure, 234
average computation (SIMD), 657
avoiding branches by using

calculations, 409
AVX

aligned data movement
instructions, 610

AVX-512 memory alignment, 607
AVX, AVX2, AVX-256, AVX-512, 596
AVX/SSE comparison

synonyms, 673
extensions, 596
floating-point arithmetic

(SIMD), 668
floating-point conversions, 679
instruction operands, 606
memory alignment

requirements, 606
packed byte data types, 597
packed dword data types, 598
packed qword data types, 598
packed word data types, 597
programming model, 596
sign extension, 666
unaligned memory access,

606, 612
zero extension, 665

AX register, 10

B
backspace, 93
base address (of an array), 182
Base Pointer register (RBP), 230
Basic Multilingual Plane (Unicode

BMP), 97
batch files, 33
BCD (binary coded decimal), 91

arithmetic, 486
numbers, 51
representation, 91, 487

BH register, 10
biased (excess) exponents, 88
big-endian data organization, 115
big-endian to little-endian

conversion, 116
binary

data types, 51
digits, 44
formats, 45
numbering system, 43
point (binary fractions), 87

binary-coded decimal (BCD), 91
arithmetic, 487
numbers, 51
representation, 91

binary search, 422
bit, 45, 51

complement, 708
counting, 739
data, 707
fields, 79
inversion, 708
manipulation, 707, 708
mask, 708
offset, 708
packed data, 79
pattern search, 743
runs, 708
sets, 708
strings, 57, 708

arrays, 733
extraction, 742
merging, 741
reversal, 739
test for 1 bits, 714

bit-by-bit operations, 58
bit string alignment, 710

970 Index

bit string masking, 58
bitwise operations, 58
blank macro arguments, 767
BL register, 10
BMP (Unicode Basic Multilingual

Plane), 97
Boolean

evaluation
complete, 400
short-circuit, 401

expressions, 308
logical systems, 310
values, 51

BP register, 10
bracketing characters in macro

parameters, 764
branch out of range, 393
branch-prediction hardware, 448
break statement, 438
bsf instruction, 737
bsr instruction, 737
bswap instruction, 116
btc instruction, 715
bt instruction, 715
btoStr (byte to string) function, 493
btr instruction, 715
bts, btc, and btr instructions and CPU

performance, 716
bts instruction, 715
bubble sort, 185
busy bit (FPU), 324
BX register, 10
byte, 52

alignment in a segment, 605
data directive, 53
directive, 15

byte-sized lanes, 598
byte strings, 825
byte vectors (packed bytes), 597

C
C++ compiler, 4
callee register preservation, 222
caller register preservation, 222
call indirect, 278
calling assembly code from C/C++, 4
calling C/C++ code from assembly, 4
call instruction, 22, 216, 218

carriage return, 93
carry flag, 12, 294

and, or, and xor instruction
effect, 712

as a bit accumulator, 716
setting after an arithmetic

operation, 71
case

labels (noncontiguous), 418
statement, 396, 410

case-sensitive identifiers, 8
catstr directive, 751
cbw instruction, 288
C/C++ Standard Library, 4
cd command, 930
cdecl calling convention, 262
cdqe instruction, 288
cdq instruction, 288
central processing unit, 9
change sign (floating-point), 349
char

data type, 96
declaring characters in a MASM

program, 96
character

data type, 92
literal constants, 95
strings, 174

chdir command, 930
checking a bit to see if it is zero or

one, 298
checking to see if a macro argument is

blank, 767
checking whether a bit string contains

all 1 bits, 714
choosing an alignment value for

variables, 121
CH register, 10
C integer types, 454
class argument for segment

directive, 605
clc instruction, 86, 716
cld instruction, 86
clearing

bits, 708
clearing bits prior to comparing

them, 709
FPU exception bits, 363

Index 971

CLI (command line interpreter), xxx
cd command, 930
del command, 932

cli instruction, 86
clipping (saturation), 68
closeHandle function, 890
CL register, 10

in rotate operations, 79
in shl instruction, 75

cls command, 931
cmc instruction, 86, 716
cmd.exe (command line interpreter), xxx
cmovae instruction, 395
cmova instruction, 395
cmovbe instruction, 395
cmovb instruction, 395
cmovc instruction, 394, 716
cmove instruction, 395
cmovge instruction, 395
cmovg instruction, 395
cmovnp instruction, 395
cmovpe instruction, 395
cmovp instruction, 395
cmovle instruction, 395
cmovl instruction, 395
cmovnae instruction, 395
cmovna instruction, 395
cmovnbe instruction, 395
cmovnb instruction, 395
cmovnc instruction, 394, 716
cmovne instruction, 395
cmovnge instruction, 395
cmovng instruction, 395
cmovnle instruction, 395
cmovnl instruction, 395
cmovno instruction, 395
cmovns instruction, 394
cmovnz instruction, 394
cmovo instruction, 394
cmovpo instruction, 395
cmovs instruction, 394
cmovz instruction, 394
cmpeqps instruction, 674
cmpeqsd instruction, 373
cmpeqss instruction, 372
cmp instruction, 72, 293
cmpleps instruction, 674
cmplesd instruction, 373

cmpless instruction, 372
cmpltps instruction, 674
cmpltsd instruction, 373
cmpltss instruction, 372
cmpneps instruction, 674
cmpnesd instruction, 373
cmpness instruction, 372
cmpnleps instruction, 674
cmpnless instruction, 372
cmpnltps instruction, 674
cmpnltsd instruction, 373
cmpnltss instruction, 372
cmpordps instruction, 674
cmpordsd instruction, 373
cmpordss instruction, 372
cmppd instruction, 671
cmpps instruction, 671, 674
cmpsd instruction, 372
cmpss instruction, 372
cmps string instruction, 832
cmpunordps instruction, 674
cmpunordsd instruction, 373
cmpunordss instruction, 372
coalescing bit strings, 728
code planes (Unicode), 97
code points (Unicode), 96
code sections, 108
code snippets, xxviii
coercion, 157
collecting disparate bits into a bit

string, 728
collecting macro parameters, 764
column major ordering, 193

formula, 193
command line, xxx
command line assembler, 6
command line interpreter. See CLI
common C++ data type sizes, 35
commutative operators, 307
comparing

a register to zero, 298
bits, 708
dates, 85
strings, 825

comparison for less than (packed/
vector/SIMD), 662

comparison operators in a constant
expression, 153

972 Index

comparison results (SIMD), 663, 678
comparisons

dates, 85
floating point, 323
SIMD, 660

comparison synonyms (AVX/SSE), 673
compile-time

decisions, 752
expressions and operators, 750
language, 748
loops, 756
procedures, 760

compile-time function
sizeof, 207

compile-time language. See CTL
compile-time statement

echo, 748
else, 753
elseif, 753
endm, 756, 759
.err, 748
for, 756, 759
forc, 756
if, 752
while, 756

compile-time versus runtime
expressions, 155–156

complete Boolean evaluation, 400
complex arithmetic expressions, 302
complex string functions, 837
composite data types, 174
computation via table lookup, 584
computing

arctangent, 362
cos, 361
cosine, 361
log2(x), 362
log2(x) plus one, 362
sine, 361
square root, 327, 347
tangent, 361
2x minus one, 361

computing the address of a memory
variable, 22

computing the length of a string at
assembly time, 176

concatenation of text values in
MASM, 751

conditional
compilation, 752
jmp aliases, 392
jmp instructions (opposite

conditions), 391–392
statements, 396

conditional jump instructions, 70
conditional jumps

ja, 391
jae, 391
jb, 391
jbe, 391
jc, 391, 716
je, 391
jg, 391
jge, 391
jl, 391
jle, 391
jna, 391
jnae, 391
jnb, 391
jnbe, 391
jnc, 391, 716
jne, 391
jng, 391
jnge, 391
jnl, 391
jnle, 391
jno, 391
jnp, 391
jns, 391
jnz, 391
jo, 391
jp, 391
jpe, 391
jpo, 391
js, 391
jz, 391

conditional move (if carry), 716
conditional move instructions, 394
condition code

flags, 12
FPU condition codes, 322
settings after cmp instruction, 294

conditioning inputs, 589
configuring software for several

environments, 754

Index 973

constant
0.0 (FPU load instruction), 360
expressions, 131, 152
expressions in CTL

statements, 750
log2(10), 361
log2(e), 361
log10(2), 361
loge(2), 361
pi, 360

constant declarations, 18, 149
constant expression evaluation, 156
constant expressions, 164
constant values, 18
construction of an activation record, 228
continue statement, 438
control characters, 93
control word, 321, 363
conversions (floating-point

instructions), 328
converting

32-bit integers to floating-point, 679
arithmetic expressions to postfix

notation, 366
ASCII digit code (0 to 9) to its

corresponding integer value, 95
BCD to floating-point, 329
between big-endian and little-

endian forms, 116
binary to hexadecimal, 48
binary value (0 to 9) to its ASCII

character representation, 95
break statements to pure

assembly, 438
complex expressions to

assembly, 302
continue statements to pure

assembly, 439
double-precision floating-point

values to single-precision, 680
floating-point expressions to

assembly, 364
floating-point values to a decimal

string, 527
floating-point values to an integer,

319, 679
with truncation, 680

floating-point values to
exponential form, 537

forever statements to pure
assembly, 436

for statements to pure assembly, 437
hexadecimal digit to a

character, 493
hexadecimal to binary, 47
if statements to pure assembly, 396
integer to floating-point, 328
larger integer object to a smaller

one (via saturation), 667
noncommutative arithmetic

operators to assembly, 305
numbers to strings using fbstp, 503
postfix notation to assembly, 367
repeat..until loop to pure

assembly, 434
simple expressions to assembly, 300
single-precision floating-point

values to double-precision, 680
strings to integers, 546
while loops to pure assembly, 433

copy command (CLI), 931
copying

arbitrary number of bytes using
the movsd instruction, 831

overlapping arrays using the movs
string instructions, 830

cosine, 361
counting bits, 739
cpuid instruction, 599
CPU registers, 10
cqo instruction, 288
creating lookup tables, 590
CTL (compile-time language), 748

conditional assembly, 752
decisions, 752
else, 753
elseif, 753
endif, 753
endm, 756
forc, 756
for loop, 756
if statement, 752
instr operator, 751
loops, 756

974 Index

CTL (continued)
macros, 760
! operator, 750
% operator, 750
procedures (compile-time), 760
sizestr operator, 752
substring operator, 752
while statement, 756

cvtdq2pd instruction, 679
cvtdq2ps instruction, 679
cvtpd2dq instruction, 679
cvtpd2ps instruction, 680
cvtps2dq instruction, 680
cvtps2pd instruction, 680
cvttpd2dq instruction, 680
cvttps2dq instruction, 680
cwde instruction, 288
cwd instruction, 288
CX register, 10

D
dangling pointers, 169
data alignment, 119

in a segment, 605
Microsoft ABI, 144

data declaration directives, 15
data representation, 147
data type coercion, 157
data types associated with SSE/AVX

move instructions, 622
data type sizes (C++), 35
date command (CLI), 931
date comparison, 85
date/time stamp of a file in a make

operation, 865
db directive, 15
dd directive, 15
debugging CTL programs, 749
debugging with conditional

compilation, 755
decimal arithmetic, 453, 486, 581
decimal numbering system, 44
decimal (signed) to string conversion

(extended-precision), 513
decimal string-to-integer conversion, 546
decimal string-to-numeric conversion

(extended-precision), 569
decimal-to-string conversion, 500

dec instruction, 149
decisions in MASM, 397
declarations

.code section, 108

.const, 109

.data, 108

.data?, 110
typedef, 156

declaring character variables in a
MASM program, 96

declaring constants, 18
declaring parameters with the proc

directive, 255
default macro parameter values, 768
default segment alignment, 605
defining read-only data in a user-

defined segment, 605
definite loop, 437
del command (CLI), 932
delimiter characters, 546
delimiting macro parameters, 764
denormal exception flag (DE, SSE), 369
denormalized

exception (FPU), 320
floating-point values, 325
values, 90

denormal mask (DM, SSE), 370
denormals are zero (DAZ, SSE), 370
dependencies (in a makefile), 864
destructuring, 407
determining which CPU a piece of

software is running on, 599
DH register, 10
dialog box (example code), 879
differences in the imul instructions, 291
different-size operands, 485
dir command, 932
direction flag and the string

instructions, 826
directives, 6

?, 15
align, 121
byte, 15, 53
catstr, 751
db, 15
dd, 15
dq, 15
dt, 15

Index 975

dw, 15
dword, 15, 55
else, 753
elseif, 753
endif, 753
endm, 756, 759, 760
endp, 216
ends (for structs), 198
equ, 18, 150
extern, 850
externdef, 24, 850
for, 756, 759
forc, 756, 760
if, 753
ifb, 767
ifdef, 849
ifdif, 767
ifdifi, 767
ifidn, 767
ifidni, 767
ifnb, 767
include, 848
instr, 751
label, 156
local (in procedures), 237
macro, 760
option, 8, 238
option epilogue, 238
option prologue, 238
oword, 15, 55
proc, 216, 255
public, 8, 850
qword, 15, 55
real4, 15
real8, 15
real10, 15
sdword, 15
sizestr, 752
sqword, 15
struct, 198
substr, 752
sword, 15
tbyte, 15
textequ, 151
typedef, 156
while, 756
word, 15, 54

direct jump instructions, 382
DI register, 10
disadvantages of macros (versus

procedures), 762
displacements, 113
displaying equate values during

assembly, 751
distributing bit strings, 728
div and idiv instructions, 291, 466
divide-by-zero exception (FPU), 320
divide-by-zero mask (ZM, SSE), 370
division without div or idiv, 312
divpd instruction, 670
divps instruction, 670
divsd instruction, 371
divss instruction, 371
DL register, 10
domain conditioning, 589
dot notation for accessing struct/

record fields, 199
dot operator, 199
double-precision floating-point

format, 88
double-precision (floating-point)

lanes, 599
double-precision vector types, 597
double word, 51, 54. See also dword
double-word strings, 825
dq directive, 15
dt directive, 15
dtoStr (double word to string)

function, 493
duplicate include files/operations

(preventing), 849
duplicating data in an XMM/YMM

register, 620
dup operator, 182, 195
dw directive, 15, 55
dword, 51, 54

alignment within a segment, 605
directive, 15, 55
dword-sized lanes, 598
vectors (packed dwords), 598

DX register, 10
dyadic operations, 55
dynamic

memory allocation, 106, 166
type systems, 209

976 Index

E
e10toStr function, 537
EAX, EBX, ECX, EDX, ESI, EDI, EBP,

and ESP registers, 10
echo CTL statement, 748
effective address, 125
EFLAGS register, 12
else compile-time statement, 753
else directive, 753
elseif compile-time statement, 753
elseif directive, 753
else statement, 397
empty macro arguments, 767
endian byte organization, 114
endian conversions, 116
endif directive, 753
endm compile-time statement, 756, 759
endm directive, 756, 759, 760
endp directive, 216
ends directive (for structs), 198
ends (end segment) directive, 604
enumerated data constants in

MASM, 156
epiloguedef option, 239
epilogue (operand for option

directive), 238
eq operator, 153
equality (macro arguments), 767
equates, 149
equ directive, 18, 150
erase command (CLI), 932
escape character in MASM

expressions, 750
exception-handling in C++, 30
exceptions

divide by zero (FPU), 320
flags (FPU), 322
FPU exception bits, 363
masks (FPU), 320
overflow (FPU), 320

excess-127 exponent, 87, 88
excess-1023 exponent, 88
excess (biased) exponents, 88
exclusive-or operation, 55, 57
executing a loop backward, 445
exponent of a floating-point number, 88
expressions, 302

and temporary values, 307

extended-precision
addition, 454
AND, 479
arithmetic, 453
comparisons, 458
conversions

decimal-to-string (signed), 513
decimal-to-string

(unsigned), 566
string-to-numeric, 555
unsigned integer-to-string, 508

division, 466
floating-point format, 89
formatted I/O, 514
I/O, 491
multiplication, 461
neg, 477
NOT, 480
numeric conversion routines, 546
OR, 479
rotates, 484
shifts, 480
shifts and the flags, 482
XOR, 480

external directives, 849
external symbols, 850
external symbol types, 851
externdef directive, 24, 849, 851
extern directive, 849, 851
extracting

bits, 708
bit strings, 742
sign bits from SSE/AVX floating-

point values, 676
extractps instruction, 643

F
f2xm1 instruction, 361
fabs instruction, 349
facade code, 27
fadd instruction, 330
faddp instruction, 330
false precision, 315
false (representation), 308
FASTCALL calling convention, 263
fbld instruction, 329, 488, 566
fbstp instruction, 329, 488, 503, 566
fchs instruction, 349

Index 977

fclex instruction, 363
fcomi instruction, 357
fcom instruction, 322, 350
fcomip instruction, 357
fcomp instruction, 322, 350
fcompp instruction, 322, 350
fcos instruction, 361
fdiv instruction, 343
fdivp instruction, 343
fdivr instruction, 343
fdivrp instruction, 343
ficom instruction, 322
ficomp instruction, 322
field, 197
field access (of a record/struct) via a

pointer, 199
field alignment within a record, 204
fild instruction, 328
finit instruction, 363
first clear bit, 708, 736
first set bit, 708, 736
fist instruction, 328
fistp instruction, 328
fisttp instruction, 328
flags, 12

and instruction, 712
carry, 12, 294
cmp instruction effect on flags, 293
copying AH register to flags, 86, 350
direction, 826
lahf instruction, 86
or instruction, 712
overflow, 293
sign, 293
xor instruction, 712
zero, 293

flag settings for the logical instructions
(and, or, xor, and not), 71

FLAGS register, 12
fld1 instruction, 360
fldcw instruction, 321, 363
fld instruction, 326
fldl2e instruction, 361
fldl2t instruction, 361
fldlg2 instruction, 361
fldln2 instruction, 361
fldpi instruction, 360

fldz instruction, 360
floating-point

arithmetic, 317
calculations, 317
comparisons, 323, 350

SIMD, 671
control register, 317
control word, 321, 363
conversion to integer, 319, 328
conversion to string, 519, 527

exponential form, 537
data registers, 317
data types, 324
division, 343
exchange registers, 327
FPU (floating-point unit), 11, 317
multiplication, 339
negation, 349
normalized format, 325
overflow, 316
overflow exception, 320
partial remainder, 348
precision control, 320
pushing a value onto the FPU

stack, 326
pushing the constant 1.0 onto the

FPU stack, 360
registers, 11, 317
remainder, 348
rounding control, 319
status register, 317
string conversion (to real), 570
string output, 519
subtraction, 334
test for zero, 322, 360
underflow, 316
unordered comparisons, 357, 360
unit. See FPU
values, 54

as parameters, 244
flush to zero (FZ, SSE), 370
fmul instruction, 339
fmulp instruction, 339
fnclex instruction, 363
fninit instruction, 363
fnstsw instruction, 364
forc directive, 756, 759

978 Index

forcing
a zero result, 56
bits to one, 58
bits to zero, 58

for directive, 756, 759
for and endm compile-time statement,

756, 759
for loops, 437
format specifiers (printf), 24
formatted numeric-to-string

conversions, 514
formula for two-dimensional row-major

access, 191
FORTRAN programming language, 424
four-dimensional array element

access, 191
fpatan instruction, 362
fprem1 instruction, 348
fprem instruction, 348
fptan instruction, 361
FPU (floating-point unit), 11, 317

busy bit, 324
condition code bits, 322
control register, 318
control word, 321, 363
data movement instructions, 326
data registers, 317
data types, 324
denormalized result exception, 320
divide-by-zero exception, 320
exception bits, 363
exception flags, 322
exception masks, 320
floating-point unit, 317
invalid operation exception, 320
overflow exception, 320
popping the FPU stack, 326
precision exception, 321
registers, 317
rounding control, 319
round-up and round-down, 319
stack fault flag, 322
status register, 321, 364
status word, 321
top of stack pointer, 324
truncate during computations, 319
underflow exception, 321

free (memory deallocation) function, 170
frndint instruction, 349
fsincos instruction, 361
fsin instruction, 361
fsqrt instruction, 327, 347
fstcw instruction, 321, 363
fst instruction, 326
fstp instruction, 326
fstsw instruction, 321, 350, 364
fsub instruction, 334
fsubp instruction, 334
fsubr instruction, 334
fsubrp instruction, 334
ftst instruction, 322, 360
fucom instruction, 323
fucomp instruction, 323
fucompp instruction, 323
function

computation via table lookup, 584
results, 270

fxam instruction, 323
fxch instruction, 327
fyl2x instruction, 362
fyl2xp1 instruction, 362

G
general protection fault, 107
general purpose registers, 10, 12
ge operator, 153
getLastError function, 891
getStdErrHandle function, 883
GetStdHandle (Win32 API

function), 875
getStdInHandle function, 884
getStdOutHandle function, 883
getting the address of a variable, 22
granularity (MMU pages), 111
greater-than comparisons on SSE

CPUs, 673
GT operator, 153
guard digits/bits, 314

H
haddpd instruction, 671
haddps instruction, 671
handling SIMD comparisons, 663
header files, 849, 852

Index 979

heap variable address alignment, 607
Hello, world!

compile-time program, 748
MASM program, 6
stand-alone version, 874

hexadecimal
digit-to-character conversion, 493
hexadecimal-to-string

conversion, 492
using table lookup, 497

numbering system, 43, 46
numbers, 51
output (extended-precision), 499
string-to-numeric conversion, 556

high32 operator, 153
high operator, 153
high-order (HO), 46

bit, 46, 52
byte, 53
nibble, 52
word, 54

highword operator, 153
HO (high-order), 46
horizontal addition, 650

and subtraction (floating-point), 671
hsubpd instruction, 671
hsubps instruction, 671
hybrid programs (assembly and

C/C++), 7

I
i128toStr function, 513
identifiers, 8
idiom, 685

machine idiosyncrasies, 310
idiv instruction, 291, 407, 466
IEEE

floating-point standard, 86, 318, 320
ifb directive, 767
if compile-time statement, 752
if conditional statement, 396
ifdef directive, 849
ifdif directive, 767
ifdifi directive, 767
if directive, 753
ifidn directive, 767
ifidni directive, 767
ifnb directive, 767

imul instruction, 148, 289, 461
inc instruction, 149
include directive, 848
inclusive-or operation, 56
indirect

addressing modes, 124
indirect and scaled-indexed

addressing modes, 106
indirect-plus-offset addressing

mode, 125
calls, 278
jump instructions, 383
jumps, 396, 424

through a memory pointer, 389
induction variables, 449
infinite loops, 433
infinite-precision arithmetic, 313
infinity (IEEE representation), 90
infix notation, 364
initialized arrays, 183
initializing struct fields, 200
initializing the FPU, 363
input conditioning, 589
input/output (I/O), 9
input redirection, 927
inserting

a bit into a bit array, 734
a bit set into another bit string, 710
a bit string into a larger bit

string, 718
insertps instruction, 643
instr directive, 751
instructions

adc, 455, 716
add, 21
addpd, 669
addps, 669
addsd, 371
adss, 371
and, 58, 309, 709
andnpd, 645
andpd, 645
bsf, 737
bsr, 737
bswap, 116
bt, 715
btc, 715
btr, 715

980 Index

instructions (continued)
bts, 715
call, 22, 216, 218
cbw, 288
cdq, 288
cdqe, 288
clc, 86, 716
cld, 86
cli, 86
cmc, 86, 716
cmova, 395
cmovae, 395
cmovb, 395
cmovbe, 395
cmovc, 394, 716
cmove, 395
cmovg, 395
cmovge, 395
cmovl, 395
cmovle, 395
cmovna, 395
cmovnae, 395
cmovnb, 395
cmovnbe, 395
cmovnc, 394, 716
cmovne, 395
cmovng, 395
cmovnge, 395
cmovnl, 395
cmovnle, 395
cmovno, 395
cmovnp, 395
cmovns, 394
cmovnz, 394
cmovo, 394
cmovp, 395
cmovpe, 395
cmovpo, 395
cmovs, 394
cmovz, 394
cmp, 72, 293
cmpeqps, 674
cmpeqsd, 373
cmpeqss, 372
cmpleps, 674
cmplesd, 373
cmpless, 372
cmpltps, 674

cmpltsd, 373
cmpltss, 372
cmpneps, 674
cmpnesd, 373
cmpness, 372
cmpnleps, 674
cmpnless, 373
cmpnltps, 674
cmpnltsd, 373
cmpnltss, 372
cmpordps, 674
cmpordsd, 373
cmpordss, 373
cmppd, 671
cmpps, 671, 674
cmps, 832
cmpsd, 372
cmpss, 372
cmpunordps, 674
cmpunordsd, 373
cmpunordss, 372
cqo, 288
cvtdq2pd, 679
cvtdq2ps, 679
cvtpd2dq, 679
cvtpd2ps, 680
cvtps2dq, 680
cvtps2pd, 680
cvttpd2dq, 680
cvttps2dq, 680
cwd, 288
cwde, 288
dec, 149
div, 291, 466
divpd, 670
divps, 670
divsd, 371
divss, 371
extractps, 643
f2xm1, 361
fabs, 349
fadd, 330
faddp, 330
fbld, 329, 488, 503
fbstp, 329, 488, 503, 566
fchs, 349
fclex, 363
fcom, 322, 350

Index 981

fcomi, 357
fcomip, 357
fcomp, 322, 350
fcompp, 322, 350
fcos, 361
fdiv, 343
fdivp, 343
fdivr, 343
fdivrp, 343
ficom, 322
ficomp, 322
fild, 328
finit, 363
fist, 328
fistp, 328
fisttp, 328
fld, 326
fld1, 360
fld2e, 361
fldcw, 321, 363
fldl2t, 361
fldlg2, 361
fldln2, 361
fldpi, 360
fldz, 360
floating-point comparisons, 350
floating-point conversions, 328
fmul, 339
fmulp, 339
fnclex, 363
fninit, 363
fnstsw, 364
fpatan, 362
fprem, 348
fprem1, 348
fptan, 361
FPU data movement, 326
frndint, 349
fsin, 361
fsincos, 361
fsqrt, 327, 347
fst, 326
fstcw, 321, 363
fstp, 326
fstsw, 321, 350, 364
fsub, 334
fsubp, 334
fsubr, 334

fsubrp, 334
ftst, 322, 360
fucom, 323
fucomp, 323
fxam, 323
fxch, 327
fyl2x, 362
fyl2xp1, 362
haddpd, 671
haddps, 671
hsubpd, 671
hsubps, 671
idiv, 291, 407, 466
imul, 148, 289, 461
inc, 149
indirect jumps, 383
insertps, 643
intmul, 291
ja, 73, 391
jae, 73, 391
jb, 73, 391
jbe, 73, 391
jc, 70, 74, 391, 716
je, 72, 74, 391–392
jg, 73, 391
jge, 73, 391–392
jl, 73, 391–392
jle, 73, 391–392
jmp, 69, 382
jna, 74, 391–392
jnae, 74, 391
jnb, 74, 391
jnbe, 74, 391
jnc, 70, 74, 391, 716
jne, 72, 74, 391–392
jng, 74, 391–392
jnge, 74, 391–392
jnl, 74, 391–392
jnle, 74, 391
jno, 70, 391
jnp, 70, 391
jns, 70, 391
jnz, 70, 74, 298, 391
jo, 70, 391
jp, 391
jpe, 391
jpo, 391
js, 70, 391

982 Index

instructions (continued)
jz, 70, 74, 298, 391
lahf, 86
lddqu, 622
ldmxcsr, 370
lea, 22, 125, 378
leave, 234
lods, 836
maxpd, 670
maxps, 670
maxsd, 371
maxss, 371
minpd, 670
minps, 670
minsd, 371
minss, 371
mov, 18, 122
movapd, 610
movaps, 610
movd, 371, 609
movddup, 621
movdqa, 610
movdqu, 612
movhlps, 619
movhpd, 617
movhps, 617
movlhps, 619
movlpd, 615
movlps, 615
movmskpd, 676
movmskps, 676
movq, 371, 609
movs, 826
movsb, 826
movsd, 370, 826
movshdup, 620
movsldup, 620
movss, 370
movsw, 826
movupd, 612
movups, 612
mul, 289, 461
mulpd, 670
mulps, 670
mulsd, 371
mulss, 371
neg, 478
not, 58, 309, 709

or, 58, 309, 709
orpd, 645
pabsb, 659
pabsd, 659
pabsw, 659
packssdw, 667
packsswb, 667
packusdw, 667
packuswb, 667
paddb, 648
paddd, 649
paddq, 649
paddw, 648–649
pavgb, 657
pavgw, 657
pclmulqdq, 656
pcmpeqb, 660
pcmpeqd, 660
pcmpeqq, 660
pcmpeqw, 660
pcmpgtb, 660
pcmpgtd, 660
pcmpgtq, 660
pcmpgtw, 660
pextrb, 641
pextrd, 642
pextrq, 642
pextrw, 642
phaddd, 650
phaddw, 650
pinsrd, 642
pinsrq, 642
pinsrw, 642
pmaxsb, 657
pmaxsd, 658
pmaxsq, 658
pmaxsw, 657
pmaxub, 658
pmaxud, 658
pmaxuq, 658
pmaxuw, 658
pminsb, 658
pminsd, 658
pminsw, 658
pminub, 658
pminud, 658
pminuq, 658
pminuw, 658

Index 983

pmovmskb, 662
pmovsxbd, 666
pmovsxbq, 666
pmovsxbw, 666
pmovsxdq, 666
pmovsxwd, 666
pmovsxwq, 666
pmovzxbd, 665
pmovzxbq, 665
pmovzxbw, 665
pmovzxdq, 665
pmovzxwd, 665
pmovzxwq, 665
pmuldq, 656
pmulld, 655
pmuludq, 656
pop, 135, 222
popf, 140
popfd, 140
pshufb, 625
pshufd, 626
pshufhw, 628
pshuflw, 628
psignb, 659
psignd, 660
psignw, 659
pslldq, 647
psllw, 647
psrldq, 647
psubb, 654
psubd, 653
psubq, 653
psubw, 654
ptest, 646
punpckhbw, 637
punpckhdq, 637
punpckhqdq, 637
punpcklbw, 637
punpckldq, 637
punpcklqdq, 637
punpcklwd, 637
push, 134, 222
pushf, 140
pushfq, 140
pushw, 134
rcl, 79, 716
rcpss, 372
rcr, 79, 716

repe prefix on cmpsb, cmpsw, cmpsd,
and cmpsq, 827

repne prefix on cmpsb, cmpsw, cmpsd,
and cmpsq, 827

rep prefix on movsb, movsw, movsd,
and movsq, 826

ret, 22, 218
rol, 78
ror, 78
rsqrtps, 670
rsqrtss, 372
sahf, 86, 350
sar, 77, 312
sbb, 457, 716
scas, 835
seta, 296
setae, 296
setb, 296
setbe, 296
setc, 295, 716
sete, 296
setg, 296
setge, 297
setl, 297
setna, 296
setnae, 296
setnb, 296
setnbe, 296
setnc, 295, 716
setne, 296
setng, 297
setnge, 297
setnl, 297
setnle, 296
setno, 295
setnp, 295
setns, 295
setnz, 295, 298
seto, 295
setp, 295
setpe, 295
setpo, 295
sets, 295
setz, 295, 298
shl, 75, 310
shld, 482
shr, 76, 312
shrd, 482

984 Index

instructions (continued)
shufpd, 630
shufps, 630
sqrtpd, 670
sqrtps, 670
sqrtsd, 372
sqrtss, 372
stc, 716
std, 86
sti, 86
stmxcsr, 370
stos, 835
sub, 21
subpd, 669
subps, 669
subsd, 371
subss, 371
test, 297, 709
unpckhpd, 633
unpckhps, 633
unpcklpd, 633
unpcklps, 633
vaddpd, 669
vaddps, 669
vandnpd, 645
vandpd, 645
vcmppd, 671, 674
vcmpps, 671, 674
vcvtdq2pd, 679
vcvtdq2ps, 679
vcvtpd2dq, 679
vcvtpd2ps, 680
vcvtps2dq, 680
vcvtps2pd, 680
vcvttpd2dq, 680
vcvttps2dq, 680
vdivpd, 670
vdivps, 670
vextractps, 643
vhaddpd, 671
vhaddps, 671
vhsubpd, 671
vhsubps, 671
vinsertps, 643
vlddqu, 622
vmaxpd, 670
vmaxps, 670
vminpd, 670

vminps, 670
vmovapd, 610
vmovaps, 610
vmovd, 609
vmovddup, 621
vmovdqa, 610
vmovdqu, 612
vmovhlps, 619
vmovhpd, 618
vmovhps, 618
vmovlhps, 619
vmovlpd, 615
vmovlps, 615
vmovmskpd, 676
vmovmskps, 676
vmovq, 609
vmovshdup, 620
vmovsldup, 620
vmovupd, 612
vmovups, 612
vmulpd, 670
vmulps, 670
vorpd, 645
vpabsb, 659
vpabsd, 659
vpabsw, 659
vpackssdw, 667
vpacksswb, 667
vpackusdw, 667
vpackuswb, 667
vpaddb, 649
vpaddd, 649
vpaddq, 649
vpaddw, 648–649
vpavgb, 657
vpavgw, 657
vpclmulqdq, 656
vpcmpeqb, 661
vpcmpeqd, 661
vpcmpeqq, 661
vpcmpeqw, 661
vpcmpgtb, 661
vpcmpgtd, 661
vpcmpgtq, 661
vpcmpgtw, 661
vpextrb, 642
vpextrd, 642
vpextrq, 642

Index 985

vpextrw, 642
vphaddd, 650
vphaddw, 650
vpinsrd, 643
vpinsrq, 643
vpinsrw, 643
vpmaxsb, 657
vpmaxsd, 658
vpmaxsq, 658
vpmaxsw, 657
vpmaxub, 658
vpmaxud, 658
vpmaxuq, 658
vpmaxuw, 658
vpminsb, 658
vpminsd, 658
vpminsw, 658
vpminub, 658
vpminud, 658
vpminuq, 658
vpminuw, 658
vpmovmskb, 662
vpmovsxbd, 666
vpmovsxbq, 666
vpmovsxbw, 666
vpmovsxdq, 666
vpmovsxwd, 666
vpmovsxwq, 666
vpmovzxbd, 665
vpmovzxbq, 665
vpmovzxbw, 665
vpmovzxdq, 665
vpmovzxwd, 665
vpmovzxwq, 665
vpmuldq, 656
vpmulld, 655
vpmuludq, 656
vpshufb, 625
vpshufd, 626
vpshufhw, 628
vpshuflw, 628
vpshufps, 632
vpsignb, 659
vpsignd, 660
vpsignw, 659
vpslldq, 647
vpsllw, 647

vpsrldq, 647
vpsubb, 654
vpsubd, 653
vpsubq, 653
vpsubw, 654
vptest, 646
vpunpckhbw, 640
vpunpckhdq, 641
vpunpckhqdq, 641
vpunpckhwd, 640
vpunpcklbw, 640
vpunpckldq, 640
vpunpcklqdq, 641
vrsqrtps, 670
vshufpd, 632
vsqrtpd, 670
vsqrtps, 670
vsubpd, 669
vsubps, 669
vunpckhpd, 633
vunpckhps, 633
vunpcklpd, 633
vunpcklps, 633
vxorpd, 645
xchg, 116
xlat, 584
xor, 58, 309, 709, 712
xorpd, 645

integer
addition (SIMD), 648
arithmetic (SIMD), 648
average computation (SIMD), 657
comparisons (SIMD), 660
conversions (SIMD), 664
integer portion of a floating-point

number, 349
integer-to-floating-point

conversion, 328
integer-to-string conversion

(extended precision,
unsigned), 508

integer-to-string conversion
(signed), 507

less-than comparison (SIMD), 662
multiplication (SIMD), 654
signed remainder/modulo, 407
subtraction (SIMD), 653

integer types in C, 454

986 Index

integer unpack instructions
(SSE/AVX), 637

interleaving comparison results
(SIMD), 664

imul instruction, 291
invalid arithmetic operation (IA), 673
invalid operation exception flag

(IE, SSE), 369
invalid operation exception (FPU), 320
invalid operation mask (IM, SSE), 370
invariant computations, 446
inverting

bits, 58, 708
bits in a bit string, 57
selected bits in a bit set, 712

I/O (input/output), 9
iSize function, 516
itoStrSize function, 517–518

J
jae instruction, 73, 391
ja instruction, 73, 390
jbe instruction, 73, 390
jb instruction, 73, 390
jc instruction, 70, 74, 390, 716
je instruction, 72, 74, 390, 390–391
jge instruction, 73, 390, 392
jg instruction, 73, 391
jle instruction, 73, 390, 392
jl instruction, 73, 390, 392
jmp instruction, 69, 382
jnae instruction, 74, 390
jna instruction, 74, 390
jnbe instruction, 74, 390
jnb instruction, 74, 390
jnc instruction, 70, 74, 390, 716
jne instruction, 72, 74, 390, 390–391
jnge instruction, 74, 390, 392
jng instruction, 74, 390, 392
jnle instruction, 74, 390
jnl instruction, 74, 390, 392
jno instruction, 70, 390
jnp instruction, 390
jns instruction, 70, 390
jnz instruction, 70, 74, 298, 390
jo instruction, 70, 390
jpe instruction, 390
jp instruction, 390

jpo instruction, 390
js instruction, 70, 390
jump instructions, 382
jz instruction, 70, 74, 298, 390

K
KCS Floating-Point Standard, 87

L
label declaration, 114
label directive, 156
labels, 378

in a procedure, 219
lahf instruction, 86
lanes (elements of an SSE/AVX packed

array), 598
LARGEADDRESSAWARE, 127

and arrays, 183
large address unaware applications, 127
large parameters, 258
last clear bit, 708, 736
last-in, first-out (LIFO) data

structures, 137
last set bit, 736
lddqu instruction, 622
ldmxcsr instruction, 370
leaf function, 278
lea instruction, 22, 125, 378
least significant bit, 46, 52
leave instruction, 234
left

rotates, 78
shifts, 75

left-associative operators, 304
lengthof operator, 153
length of text string in MASM textual

constants, 752
length-prefixed strings, 175
le operator, 153
less-than comparison (SIMD), 662
lexical scope, 378
lexicographical ordering, 833
library file, 869
library module, 853
lifetime of a local variable, 234
LIFO (last in, first out), 137
linear search, 422
line feed, 93

Index 987

listings, xxviii
literal constant, 18
little-endian data organization, 114
little-endian to big-endian

conversion, 116
LO (low-order), 46
load effective address, 378

instruction, 22
loading data into an SSE/AVX

register, 610
loading single-precision vectors into

SSE/AVX registers, 612
loading the flags register from AH, 86
loading the FPU control word, 363
local directive (in procedures), 237
local symbols in procedures, 378
local symbols (statement labels) in a

procedure, 219
local variable access, 235
local variable address alignment, 607
local variables, 234
location counter, 113, 154
lods instruction, 836
log2(e), 361
log2(x), 362
logical

AND operation, 55, 309
exclusive-or operation, 55, 57
NOT operation, 55, 57
operations on binary numbers, 57
operations on bits, 55
operators within a constant

expression, 153
OR operation, 55, 309
shift right, 77
XOR operation, 55, 309

logical systems
arithmetic, 310
Boolean, 310

loops, 433, 437
invariant computations, 446
loop-control variables, 433
register usage, 442
termination, 443
unraveling/unrolling, 447

loops in the MASM compile-time
language, 756

low32 operator, 154

low-level control structures, 378
low operator, 153
low-order (LO), 46

bit, 46, 52
byte, 53
nibble, 52
word, 54

lowword operator, 153
lt operator, 153

M
machine code encoding, 73
machine idioms, 310
machine state (preservation), 220
machine state, saving the, 220
macro

default parameter values, 768
optional parameters, 766
parameter delimiters, 764
parameter expansion, 762
parameter expansion issues, 765
parameters, 762
required parameters, 766

macroarchitecture, 622
macro directive, 760
macros, 760
make dependencies, 864
makefiles, 34
makefile syntax, 863
making symbols case-sensitive in

MASM, 8
malloc (C Standard Library

function), 166
manifest constants, 18, 149
manipulating bits in memory, 707
mantissa, 87
mask (bits), 708
masking

bit strings, 58
masking in bits, 58
masking out bits, 58

MASM (Microsoft Macro Assembler)
dup operator in a data

declaration, 31
enumerated constants, 156
pointers, 162
procedures, 22
structures (struct), 198

988 Index

MASM (continued)
support for ASCII characters, 95
variables, 14

masm32.com website, 874
MASM /c command line option, 9
MASM/C++ hybrid programs, 7
maximum instructions (SIMD), 657
maxpd instruction, 670
maxps instruction, 670
maxsd instruction, 372
maxss instruction, 371
memory, 9

addressing modes, 105, 122
allocation, 105
indirect jump through memory, 389
organization, 106
read operation, 14
subsystem, 13
write operation, 13

memory access violation exception, 169
memory addresses, 9
memory alignment requirements

(SSE/AVX/SIMD), 606
memory leaks, 171
memory management unit (MMU), 111
merging bit strings, 741
merging source files during

assembly, 848
microarchitecture, 622
Microsoft ABI, 35

data alignment boundary, 144
register usage, 38
volatile registers, 38

Microsoft Macro Assembler. See MASM
Microsoft Visual C++ (MSVC), 9, 920
minimal procedures, 218
minimum instructions (SIMD), 657
minpd instruction, 670
minps instruction, 670
minsd instruction, 371
minss instruction, 371
misaligned data and the system

cache, 121
mkActRec (macro), 882
MMU (memory management unit), 111
MMX (Multimedia Extensions), 624
MMX register set, 11
mnemonic, 289

modulo
floating-point remainder, 348
integer remainder, 407

modulo-n counters, 312
mod (within a constant expression), 153
monadic operations, 57
more command (CLI), 932
most significant bit, 46, 52
movapd instruction, 610
movapd operands (MASM), 611
movaps instruction, 610
movaps operands (MASM), 611
movddup instruction, 621
movd instruction, 371, 609
movdqa instruction, 610
movdqa operands (MASM), 611
movdqu instruction, 612
move command (CLI), 933
movhlps instruction, 619
movhpd instruction, 617
movhps instruction, 617
moving string data, 825
mov instruction, 18, 122
mov instruction operands, 20
movlhps instruction, 619
movlpd instruction, 615
movlps instruction, 615
movmskpd instruction, 676
movmskps instruction, 676
movq instruction, 371, 609
movsb instruction, 827
movsd instruction, 370, 827
movshdup instruction, 620
movs instruction, 827
movs instruction performance, 831
movsldup instruction, 620
movss instruction, 370
movsw instruction, 827
movsx instruction, 288
movupd instruction, 612
movups instruction, 612
MSVC (Microsoft Visual C++), 9, 920
mul instruction, 289, 461
mulpd instruction, 670
mulps instruction, 670
mulsd instruction, 371
mulss instruction, 371

Index 989

multi-byte data structure organization
(in memory), 114

multilingual planes (Unicode), 97
Multimedia Extensions (MMX), 624
multiple data values in a single data

declaration, 16
multiplication, 148, 289, 291, 461

floating-point, 339
multiplying

by a reciprocal to simulate
division, 312

register value by ten, 311
without mul or imul, 310

multiprecision
addition, 454
comparisons, 458
operations, 454, 703
subtraction, 457

N
namespace pollution, 220, 878
naming a segment, 604
NaN (not a number), 90, 296, 320
natural data alignment boundary, 144
neg128 (macro), 760
negating large values, 478
negation (floating-point), 349
neg instruction, 478
ne operator, 153
nested array constants, 195
nested dup operator, 195
nested structs, 200
nested subfield access (of a

structure), 200
newLn function, 886
nibble, 51
N/No N rule, 392
noncommutative binary operators, 308
nonvolatile registers, 265
nonvolatile registers (Microsoft ABI), 39
normalized floating-point numbers,

89, 325
not a number (NaN), 90, 296
not instruction, 58, 309, 709
NOT operation, 55, 57
NOT operator, 153
NUL character, 176, 248
NULL pointer references, 107

numbering system, 44
binary, 44
decimal, 44
hexadecimal, 46
positional, 44

numeric
conversion from string, 546
memory addresses, 9
numeric-to-string conversion

performance, 507
numeric-to-string conversions, 491
representation, 48

O
octal words, 55
offset operator, 154, 378
offsets, 113
one’s complement format, 87
opattr operator, 154
opcode, 123
open function, 888
openNew function, 889
operation code (opcode), 123
operations

AND, 309
NOT, 309
on binary numbers, 57
OR, 56, 309
rotation, 74
shift arithmetic right, 77
shifts, 74
XOR, 57, 309

operator precedence, 303
operators, 195

$, 154
AND, 153
dot (structure/record field

access), 199
dup, 182, 195
eq, 153
ge, 153
gt, 153
high, 153
high32, 153
highword, 153
le, 153
lengthof, 153
logical operators, 153

990 Index

operators (continued)
low, 153
low32, 154
lowword, 153
lt, 153
ne, 153
NOT, 153
offset, 154, 378
opattr, 154
OR, 153
size, 154
sizeof, 154
this, 154
type, 159

opposite jumps, 392
optional macro parameters, 766
option directive, 8, 238

epilogue operand, 238
prologue operand, 238

ordered comparison, 90, 373
or instruction, 58, 309, 709
OR operation, 55
OR operator, 153
orpd instruction, 645
output redirection (standard output), 926
overflow exception flag (OE, SSE), 369
overflow exception (FPU), 320
overflow flag, 12, 293

setting after an arithmetic
operation, 71

overflow mask (OM, SSE), 370
overlaid registers (XMM/YMM), 623
oword, 51
oword directive, 15, 55

P
pabsb instruction, 659
pabsd instruction, 659
pabsw instruction, 659
packed

absolute value (integer), 659
addition, 648
arrays of bit strings, 733
byte data types, 597
data, 79
decimal arithmetic, 488
double (precision) arithmetic

instructions, 668

dword data types, 598
floating-point arithmetic, 668
integer comparisons, 660
integer multiplication, 654
memory operands (SSE/AVX), 606
operands for SSE/AVX

instructions, 606
qword data types, 598
shifts, 647
sign extension, 666
sign transfer, 659
(SIMD) integer comparison for

less than, 662
single (precision) arithmetic

instructions, 668
word data types, 597
zero extension, 665

packing and unpacking bit strings, 717
packssdw instruction, 667
packsswb instruction, 667
packusdw instruction, 667
packuswb instruction, 667
paddb instruction, 649
paddd instruction, 649
paddq instruction, 649
paddw instruction, 648–649
page (256-byte) alignment within a

segment, 605
pages (memory management), 111
paragraph memory alignment, 606
paragraph (para/16-byte) alignment

within a segment, 605
parameter declarations with the proc

directive, 255
parameter expansion in macros, 762
parameters, 240

variable length, 248
partial remainder, 348
pass by reference

efficiency, 243
passing

large objects as parameters, 258
parameters by reference, 241
parameters by value, 241
parameters in registers, 243
parameters in the code stream, 246
parameters on the stack, 249

pavgb instruction, 657

Index 991

pavgw instruction, 657
pclmulqdq instruction, 656
pcmpeqb instruction, 660
pcmpeqd instruction, 660
pcmpeqq instruction, 660
pcmpeqw instruction, 660
pcmpgtb instruction, 660
pcmpgtd instruction, 660
pcmpgtq instruction, 660
pcmpgtw instruction, 660
PC-relative addressing mode, 122
performance improvements for

loops, 443
performance of numeric-to-string

conversion, 507
performance of the string

instructions, 837
pextrb instruction, 641
pextrd instruction, 641
pextrq instruction, 641
pextrw instruction, 641
phaddd instruction, 650
phaddsw instruction, 650
phaddw instruction, 650
pi (FPU load instruction), 360
pinsrb instruction, 642
pinsrd instruction, 642
pinsrq instruction, 642
pinsrw instruction, 642
pmaxsb instruction, 657
pmaxsd instruction, 658
pmaxsq instruction, 658
pmaxsw instruction, 657
pmaxub instruction, 658
pmaxud instruction, 658
pmaxuq instruction, 658
pmaxuw instruction, 658
pminsb instruction, 658
pminsd instruction, 658
pminsq instruction, 658
pminsw instruction, 658
pminub instruction, 658
pminud instruction, 658
pminuq instruction, 658
pminuw instruction, 658
pmovmskb instruction, 662
pmovmskd simulation, 663

pmovmskw simulation, 663
pmovmsq simulation, 663
pmovsxbd instruction, 666
pmovsxbq instruction, 666
pmovsxbw instruction, 666
pmovsxdq instruction, 666
pmovsxwq instruction, 666
pmovzxbd instruction, 665
pmovzxbq instruciton, 665
pmovzxbw instruction, 665
pmovzxdq instruction, 665
pmovzxwd instruction, 666
pmovzxwq instruction, 665
pmuldq instruction, 656
pmulld instruction, 655
pmuludq instruction, 656
pointer constants and pointer constant

expressions, 164
pointer data access, 162
pointer problems, 167
pointers, 161
popfd instruction, 140
popf instruction, 140
pop instruction, 135, 222
popping the FPU stack, 326
postfix notation, 364

conversion to assembly
language, 367

precedence
of arithmetic operators, 303
rules, 303

precision, 314
control bits (FPU), 320
control during floating-point

computations, 320
exception (FPU), 321
precision exception flag

(PE, SSE), 369
precision mask (PM, SSE), 370

preserving
machine state, 220
registers, 38, 137, 220

in loops, 442
printf format specifiers, 24
problems with macro parameter

expansion, 765
proc directive, 216, 255

parameter declarations, 255

992 Index

procedural parameters, 280
passing procedures as

parameters, 280
procedure invocation, 216
procedure pointers, 278
procedures, 22, 216

effect on the stack, 278
in MASM, 22

processing SIMD comparison results, 678
proc external symbol type, 851
program counter in a section, 154
programming in the large, 847
programming language

FORTRAN, 424
program size and object/library files, 870
prolog (standard entry sequence

code), 239
option, 239

prologue (operand for option
directive), 238

pshufb instruction, 625
pshufd instruction, 626
pshufhw instruction, 628
pshuflw instruction, 628
psignb instruction, 659
psignd instruction, 660
psignw instruction, 659
pslldq instruction, 647
psllw instruction, 647
psrldq instruction, 647
psubb instruction, 654
psubd instruction, 653
psubq instruction, 653
psubw instruction, 654
ptest instruction, 646
public directive, 8, 849
punpckhbw instruction, 637
punpckhdq instruction, 637
punpckhqdq instruction, 637
punpckhwd instruction, 637
punpcklbw instruction, 637
punpckldq instruction, 637
punpcklqdq instruction, 637
punpcklwd instruction, 637
pushf instruction, 140
pushfq instruction, 140
pushing a value onto the floating-point

stack, 326

pushing the constant 1.0 onto the FPU
stack, 360

push instruction, 134, 222
pushw instruction, 134
puts function, 885

Q
qtoStr (quad word to string)

function, 493
quad words, 55
quad-word strings, 825
question mark in a data declaration

directive, 15
quicksort, 272
qword, 51
qword data declarations, 55
qword directive, 15
qword-sized lanes, 599
qword vectors (packed qwords), 598

R
R8B, R9B, R10B, R11B, R12B, R13B,

R14B, and R15B registers, 10
R8D, R9D, R10D, R11D, R12D, R13D,

R14D, and R15D registers, 10
R8W, R9W, R10W, R11W, R12W, R13W,

R14W, and R15W registers, 10
r10toStr function, 527, 530
radix, 46
range of a function, 586
RAX, RBX, RCX, RDX, RSI, RDI,

RBP, RSP, R8, R9, R10, R11,
R12, R13, R14, and R15
registers, 10

RBP register, 13, 230
rcl instruction, 79, 716
rcpss instruction, 372
rcr instruction, 79, 716
RCX register usage in string

instructions, 826
RDI register usage in string

instructions, 826
rd/rmdir commands (CLI), 933
read function, 887
reading from memory, 13
readLine() function, 30
readLn function, 893

Index 993

readonly
segment argument, 605
variables as constants, 150

real4 directive, 15
real8 directive, 15
real10 directive, 15
real values as parameters, 244
rearranging bytes in an XMM/YMM

register, 625
rearranging expressions

in if statements to improve
performance, 406

to make them more efficient, 406
record, 197

declarations, 198
field access, 199
field alignment, 204

record/struct field access via pointer, 200
recursion, 271
recursively converting numbers to

strings, 500
reference parameters, 241, 256
register

8-bit, 10
16-bit, 10
32-bit, 10
64-bit, 10
addressing modes, 122
aliasing, 10, 623
as a procedure parameters, 243
comparison to zero, 298
FPU, 317
indirect addressing mode, 124
indirect jump instruction, 383
overlaying, 10
preservation, 137, 220, 442

callee, 222
caller, 222

usage in loops, 442
usage in string instructions, 826
usage in the Microsoft ABI, 38

remainder
floating point, 348
signed integer, 407

removing unwanted data from the
stack, 140

ren/rename commands, 933

repeat..until loop, 433, 434
repe prefix on cmpsb, cmpsw, cmpsd, and

cmpsq instructions, 827
repetitive compilation, 756
repne prefix on cmpsb, cmpsw, cmpsd, and

cmpsq instructions, 827
rep prefix on movsb, movsw, movsd, and

movsq instructions, 826
rep/repe/repz and repnz/repne string

instruction prefixes, 826
required macro parameters, 766
restrictions in simple switch statement

implementations, 414
ret instruction, 22, 218
return address, 218
returning a result to a C++ program

from an assembly language
function, 30

reverse
division (floating-point), 343
Polish notation (RPN), 364
subtraction (floating-point), 334

reversing bits in a bit string, 739
RFLAGS register, 12, 140
right

rotates, 78
shift operation, 76, 77
shifts, 75

right associative operators, 304
RIP-relative addressing mode, 123
rol instruction, 78
ror instruction, 78
rotate

left, 77
operations, 74
right, 77

rounding
control (FPU), 319
control (SSE), 370
floating-point numbers, 349
floating-point value to an

integer, 349
round-up and round-down options

during floating-point
computations, 319

row-major array access for three-
dimensional arrays, 191

row-major ordering, 190

994 Index

RPN (reverse Polish notation), 364. See
also postfix notation

RSI register usage in string
instructions, 826

rsqrtps instruction, 670
rsqrtss instruction, 372
rstrActRec (macro), 883
run of zeros bit string, 708
runtime

language, 748
memory organization, 106

runtime versus compile-time
expressions, 155

S
sahf instruction, 86, 350
sar instruction, 77, 312
saturation addition (horizontal), 650, 652
saturation (SSE/AVX/SIMD), 667
saving the machine state, 220
sbb instruction, 457, 716
sbyte directive, 15
scalar data types, 597
scaled-indexed addressing mode, 126
scaling factor, 126
scas instruction, 835
scope, 378, 850

of a local variable, 234
sdword directive, 15
searching

for a bit, 736
for a bit pattern, 743
for a substring within another

string in MASM textual
constants, 751

for the first (or last) set bit, 737
section location counter, 154
segment

alignment option, 605
alignment (powers of 2), 605
class argument, 605
declarations, 604
directive, 604
directive align option (for 32-byte

alignment), 606
faults, 107
faults on unaligned memory

accesses (SSE/AVX), 606

names, 604
registers, 10

separate assembly, 854
separate compilation, 847, 854
setae instruction, 296
seta instruction, 296
setbe instruction, 296
setb instruction, 296
setcc instructions, 295
setc instruction, 295, 716
sete instruction, 296
setge instruction, 297
setg instruction, 296
setl instruction, 297
setnae instruction, 296
setna instruction, 296
setnbe instruction, 296
setnb instruction, 296
setnc instruction, 295, 716
setne instruction, 296
setnge instruction, 297
setng instruction, 297
setnle instruction, 296
setnl instruction, 297
setno instruction, 295
setnp instruction, 295
setns instruction, 295
setnz instruction, 295, 298
seto instruction, 295
set on condition instructions, 295
setpe instruction, 295
setp instruction, 295
setpo instruction, 295
sets instruction, 295
setting bits, 708
setz instruction, 295, 298
shadow storage (for parameters), 255, 264
shift

arithmetic right operation, 77
left operation, 75
operations, 74
operations (SSE/AVX), 647
right operation, 76

shift and rotate instructions, 709, 716
shld instruction, 482
shl instruction, 75, 310
short-circuit

Boolean evaluation, 401

Index 995

short-circuit versus complete
Boolean evaluation, 403

shrd instruction, 482
shr instruction, 76, 312
shuffle instructions, 625
shufpd instruction, 630
shufps instruction, 630
side effects, 403
sign

bit, 62
contraction, 67
extension, 67, 292
extension prior to division, 305

sign and zero flag settings after mul and
imul instructions, 291

signed
comparison flag settings, 294
comparisons, 296
decimal input (extended-

precision), 569
decimal output (extended-

precision), 513
division, 292
integer remainder/modulo, 407
integer-to-string conversion, 507
multiplication, 148, 289, 291, 461
numbers, 62

signed and unsigned numbers, 62
sign extension (SIMD/SSE/AVX), 666
sign flag, 12, 293

setting after an arithmetic
operation, 71

sign flag and the and, or, and xor
instructions, 712

significant digits, 314
sign transfer, 659
SIMD (single instruction, multiple

data), 11, 55, 595
arithmetic/logical operations, 644
bitwise instructions, 645
comparison instructions (floating-

point), 671
comparison results (processing

multiple comparisons), 663
floating-point arithmetic

operations, 668
floating-point conversions, 679
integer absolute value, 659

integer addition, 648
integer arithmetic instructions, 648
integer average instructions, 657
integer comparison

instructions, 660
integer conversions, 664
integer minimum and

maximum, 657
integer multiplication, 654
integer sign-transfer

instructions, 659
integer subtraction, 653
memory alignment

requirements, 606
programming model, 596
saturation, 667
SIMD string instructions, 838
SIMD zero-extension

instructions, 665
simple assignments (conversion to

assembly language), 299
simulating div, 312
sine, 361
single-instruction, multiple-data

(SIMD) instructions. See SIMD
single-instruction, single-data (SISD)

instructions. See SISD
single-precision floating-point format, 87
single-precision (floating-point)

lanes, 598
single-precision vector types, 597
SI register, 10
SISD (single instruction, single data),

595
sizeof function (applied to

UNIONs), 207
sizeof operator, 154
size operator, 154
sizestr directive, 752
software configuration via conditional

compilation, 754
sorting, 185

bubble sort, 185
quicksort, 272

special-purpose application-accessible
registers, 10

special-purpose kernel-mode
registers, 10

996 Index

specifying a variable name and type
without allocating storage, 114

SP register, 10
sqrtpd instruction, 670
sqrtps instruction, 670
sqrtsd instruction, 372
sqrtss instruction, 372
square root, 327, 347
sqword directive, 15
SSE (Streaming SIMD Extensions),

596, 624
aligned data movement

instructions, 610
denormal exception flag (DE), 369
denormal mask (DM), 370
denormals are zero (DAZ), 370
divide-by-zero mask (ZM), 370
floating-point arithmetic

(SIMD), 668
floating-point conversions, 679
flush to zero (FZ), 370
instruction operands, 606
invalid operation mask (IM), 370
memory alignment

requirements, 606
overflow exception flag (OE), 369
overflow exception flag (UE), 369
overflow mask (OM), 370
packed byte data types, 597
packed dword data types, 598
packed qword data types, 598
packed word data types, 597
precision exception flag (PE), 369
precision mask (PM), 370
programming model, 596
rounding control, 370
sign extension, 666
string instructions, 838
unaligned memory access, 606, 612
underflow mask (UM), 370
zero exception flag (ZE), 369
zero extension, 665

SSE2, SSE3, SSSE3, SSE4, SSE4.1,
SSE4.2, 596

SSE/AVX comparison synonyms, 673
SSE/SSE2 instruction set, 11
ST0, 318
ST1, 318

stack, 134
stack fault flag (FPU), 322
stack manipulation by procedure

calls, 224
stack operations

pop, 135, 222
popf, 140
popfd, 140
push, 134, 222
pushf, 140
pushfd, 140
pushw, 134

stack pointer register, 13
stack segment, 134
stack variable address alignment, 607
standard entry sequence (to a

procedure), 231
standard exit sequence (from a

procedure), 233
standard input redirection, 927
standard macro parameter

expansion, 762
standard macros, 760
standard output redirection, 926
state machine, 424
statement labels, 378
statements

break, 438
case, 396, 410
conditional, 396
continue, 438
else, 397
for, 437
if, 396
repeat..until, 433
while, 433

state variable, 424
static variable declaration section, 108
status register (FPU), 321, 364
status word, 350, 364
stc instruction, 716
STDCALL calling convention, 263
stdin_getc function, 892
stdin_read function, 891
std instruction, 86
sti instruction, 86
stmxcsr instruction, 370

Index 997

store data from an SSE/AVX register
into memory, 610

storing AH register into flags, 86, 350
storing single-precision vectors from SSE/

AVX registers to memory, 612
storing the FPU control word, 321
storing the FPU status word, 321,

350, 364
stos instruction, 835
streaming data types, 596
streaming SIMD extensions. See SSE
strength-reduction optimizations, 311
strfill procedure, 244
strings, 174

comparisons, 825
descriptors, 176
equality test for macro/text

arguments, 767
instruction performance, 837
instructions, 825, 836
length, 174
length calculated at assembly

time, 176
length operator in MASM textual

constants, 752
length-prefixed, 175
SSE instructions, 838
zero-terminated, 174

string-to-decimal conversion
(unsigned), 563

string-to-floating-point conversion, 570
string-to-integer conversion, 546
string-to-numeric conversion

(hexadecimal), 556
string-to-numeric conversions, 546
string-to-numeric conversion (signed,

extended-precision), 569
strtoh128 function, 561
strtoh function, 557
strtoi function, 550
strToR10 function, 573
strtou128 function, 567
strtou function, 548, 564
struct arrays, 203
struct assembler directive, 198
struct declarations, 198
struct directive, 198
struct/record field access via pointer, 199

structs, 197
nested, 200

structure field access, 199
structure field initialization, 200
sub instruction, 21
subpd instruction, 669
subps instruction, 669
subregisters, 623
subsd instruction, 371
subss instruction, 371
substr directive, 752
substring operator (MASM text

strings), 752
substring search in MASM textual

constants, 751
subtraction, 457, 716

floating-point, 334
subtract with borrow, 457, 716
swapping bytes in a multi-byte

object, 116
swapping registers on the FPU

stack, 327
switch statement, 410
sword directive, 15
synthesizing

break statements in assembly
language, 438

continue statements in assembly
language, 439

forever..endfor loops in assembly
language, 436

for statements in assembly
language, 437

repeat..until loops in assembly
language, 434

while loops in assembly language,
433

system bus, 9

T
tables and table lookups, 583

table lookup computations, 584
table lookup (hexadecimal-to-

string conversion), 497
tag field, 209
taking the address of a statement

label, 378
tangent, 361

998 Index

tbyte directive, 15
tbyte values (BCD), 488
temporary values in an expression, 307
temporary variables, 306
test for zero (floating-point), 360
testing a floating-point operand for

zero, 322, 360
testing bits, 708
testing to see if a macro argument is

the empty string, 767
testing two text objects for equality, 767
test instruction, 297, 709
text delimiters, 151
textequ directive, 151
this operator, 154
three-dimensional array element access

(row-major), 191
time command (CLI), 933
top of stack pointer (FPU), 324
trampoline, 393
transcendental function instructions, 361
translate arithmetic expressions into

assembly language, 287
translate instruction, 585
tricky programming, 310
true (representation), 308
truncation during FPU calculations, 319
truth table, 55
try..catch statement (C++), 30
two-dimensional row-major ordered

array formula (for accessing
array elements), 191

two’s complement
numbering system, 54
numeric representation, 62
operation, 63

type checking, 20
coercion, 157

type coercion, 157, 159
type declaration section, 156
typedef directive, 156
type operator, 159

U
unaligned loads (to XMM/YMM

registers), 622
unaligned SSE/AVX data

movements, 612

unaligned SSE/AVX memory
accesses, 606

unary operator (conversion to assembly
language), 301

unconditional jump instruction, 69
underflow, 316
underflow exception flag (UE,

SSE), 369
underflow exception (FPU), 321
underflow mask (UM, SSE), 370
Unicode, 54, 96

BMP (Basic Multilingual Plane), 97
UTF-8 encoding, 98
UTF-16 encoding, 98
UTF-32 encoding, 98
code planes, 97
code points, 96
encodings, 97
multilingual planes, 97

uninitialized pointers, 168
unions, 206

accessing fields of a union, 206
anonymous, 208
definition, 206
syntax (declaration), 206

unordered comparisons, 90, 360, 373, 673
floating-point, 357

unpacking bit strings, 717
unpack instructions, 625
unpckhpd instruction, 633
unpckhps instruction, 633
unpcklpd instruction, 633
unpcklps instruction, 633
unraveling loops, 447
unrolling loops, 448
unsigned

comparisons, 296
decimal input (extended-

precision), 566
decimal output, 500
division, 291
integer-to-string conversion

(extended-precision), 508
multiplication, 289, 461
numbers, 62
string-to-decimal conversion, 563

untyped reference parameters, 284
using echo to display equate values, 751

Index 999

uSize function, 514
UTF-8 encoding, 98
UTF-16 encoding (Unicode), 98
UTF-32 encoding (Unicode), 98
utoStrSize function, 517

V
vaddpd instruction, 669
vaddps instruction, 669
value parameters, 241, 253
vandnpd instruction, 645
vandpd instruction, 645
variable-length parameters, 248
variable names, 14
variables in MASM, 14
variant objects, 209
variant types, 209
vcmppd instruction, 671, 674
vcmpps instruction, 671, 674
vcvtdq2pd instruction, 679
vcvtdq2ps instruction, 679
vcvtpd2dq instruction, 679
vcvtpd2ps instruction, 680
vcvtps2dq instruction, 680
vcvtps2pd instruction, 680
vcvttpd2dq instruction, 680
vcvttps2dq instruction, 680
vdivpd instruction, 670
vdivps instruction, 670
vector

absolute value (integer), 659
addition, 648
data types, 597
floating-point arithmetic, 668
instructions, 595
integer comparisons, 660
integer multiplication, 654
memory operands, 606
operands for SSE/AVX

instructions, 606
shifts, 647
sign extension, 666
sign transfer, 659
(SIMD) integer comparison for

less than, 662
zero extension, 665

vertical addition, 649
vextractps instruction, 643

vhaddpd instruction, 671
vhaddps instruction, 671
vhsubpd instruction, 671
vhsubps instruction, 671
vinsertps instruction, 643
vlddqu instruction, 622
vmaxpd instruction, 670
vmaxps instruction, 670
vminpd instruction, 670
vminps instruction, 670
vmovapd instruction, 610
vmovapd operands (MASM), 611
vmovaps instruction, 610
vmovaps operands (MASM), 611
vmovddup instruction, 621
vmovd instruction, 609
vmovdqa instruction, 610
vmovdqa operands (MASM), 611
vmovdqu instruction, 612
vmovhlps instruction, 619
vmovhpd instruction, 618
vmovhps instruction, 618
vmovlhps instruction, 619
vmovlpd instruction, 615
vmovlps instruction, 615
vmovmskpd instruction, 676
vmovmskps instruction, 676
vmovq instruction, 609
vmovshdup instruction, 620
vmovsldup instruction, 620
vmovupd instruction, 612
vmovups instruction, 612
vmulpd instruction, 670
vmulps instruction, 670
volatile registers, 265

Microsoft ABI, 38
von Neumann architecture, 9
vorpd instruction, 645
vpabsb instruction, 659
vpabsd instruction, 659
vpabsw instruction, 659
vpackssdw instruction, 667
vpacksswb instruction, 667
vpackusdw instruction, 667
vpackuswb instruction, 667
vpaddb instruction, 649
vpaddd instruction, 649
vpaddq instruction, 649

1000 Index

vpaddw instruction, 648–649
vpavgb instruction, 657
vpavgw instruction, 657
vpclmulqdq instruction, 656
vpcmpeqb instruction, 661
vpcmpeqd instruction, 661
vpcmpeqq instruction, 661
vpcmpeqw instruction, 661
vpcmpgtb instruction, 661
vpcmpgtd instruction, 661
vpcmpgtq instruction, 661
vpcmpgtw instruction, 661
vpextrb instruction, 642
vpextrd instruction, 642
vpextrq instruction, 642
vpextrw instruction, 642
vphaddd instruction, 650
vphaddw instruction, 650
vpinsrb instruction, 642
vpinsrd instruction, 643
vpinsrq instruction, 643
vpinsrw instruction, 643
vpmaxsb instruction, 657
vpmaxsd instruction, 658
vpmaxsq instruction, 658
vpmaxsw instruction, 657
vpmaxub instruction, 658
vpmaxud instruction, 658
vpmaxuq instruction, 658
vpmaxuw instruction, 658
vpminsb instruction, 658
vpminsd instruction, 658
vpminsw instruction, 658
vpminub instruction, 658
vpminud instruction, 658
vpminuq instruction, 658
vpminuw instruction, 658
vpmovmskb instruction, 662
vpmovsxbd instruction, 666
vpmovsxbq instruction, 666
vpmovsxbw instruction, 666
vpmovsxdq instruction, 666
vpmovsxwd instruction, 666
vpmovsxwq instruction, 666
vpmovzxbd instruction, 665
vpmovzxbq instruction, 665
vpmovzxbw instruction, 665
vpmovzxdq instruction, 665

vpmovzxwd instruction, 665
vpmovzxwq instruction, 665
vpmuldq instruction, 656
vpmulld instruction, 655
vpmuludq instruction, 656
vpshufb instruction, 625
vpshufd instruction, 626
vpshufhw instruction, 628
vpshuflw instruction, 628
vpsignb instruction, 659
vpsignd instruction, 660
vpsignw instruction, 659
vpslldq instruction, 647
vpsllw instruction, 647
vpsrldq instruction, 647
vpsubd instruction, 653
vpsubq instruction, 653
vpsubsb instruction, 654
vpsubw instruction, 654
vptest instruction, 646
vpunpckhbw instruction, 640
vpunpckhdq instruction, 641
vpunpckhqdq instruction, 641
vpunpckhwd instruction, 640
vpunpcklbw instruction, 640
vpunpckldq instruction, 640
vpunpcklqdq instruction, 641
vpunpcklwd instruction, 640
vrsqrtps instruction, 670
vshufpd instruction, 632
vshufps instruction, 632
vsqrtpd instruction, 670
vsqrtps instruction, 670
vsubpd instruction, 670
vsubps instruction, 670
vunpckhpd instruction, 633
vunpckhps instruction, 633
vunpcklpd instruction, 633
vunpcklps instruction, 633
vxorpd instruction, 645

W
while directive, 756
while..endm compile-time

statement, 756
while statement, 433
Win32 API, 876
Windows command line, xxx

Index 1001

word, 51, 53
16-bit variables, 54
alignment in a segment, 605
directive, 15, 54
strings, 825
vectors (packed words), 597
word-sized lanes, 598

wrapper code, 882
WriteFile (Win32 API function), 875
write function, 884
wtoStr (word to string) function, 493

X
xchg instruction, 116
xlat instruction, 584
XMM registers, 11
xor instruction, 58, 309, 709, 712
XOR operation, 55, 57
xorpd instruction, 645

Y
Y2K, 85
YMM registers, 11

Z
zero and sign flag settings after mul and

imul, 291
zero-divide exception (FPU), 320
zero exception flag (ZE, SSE), 369
zero-extension, 292
zero-extension (SIMD), 665
zero flag, 12, 293, 713

setting after a multiprecision
OR, 479

setting after an arithmetic
operation, 71

settings after mul and imul
instructions, 291

zero-terminated strings, 174

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

THE ART OF ASSEMBLY
LANGUAGE, 2ND EDITION
by randall hyde
768 pp., $59.95
isbn 978-1-59327-207-4

C++ CRASH COURSE
A FAst-PAced IntroductIon

by josh lospinoso
792 pp., $59.95
isbn 978-1-59327-888-5

EFFECTIVE C
An IntroductIon to ProFessIonAl c ProgrAmmIng

by robert c. seacord
272 pp., $49.95
isbn 978-1-71850-104-1

THE LINUX COMMAND LINE,
2ND EDITION
A comPlete IntroductIon

by william shotts
504 pp., $39.95
isbn 978-1-59327-952-3

HOW COMPUTERS REALLY WORK
A HAnds-on guIde to tHe Inner WorkIngs oF tHe
mAcHIne

by matthew justice
392 pp., $39.95
isbn 978-1-71850-066-2

WRITE GREAT CODE, VOLUME 2,
2ND EDITION
tHInkIng loW-level, WrItIng HIgH-level

by randall hyde
656 pp., $49.95
isbn 978-1-71850-038-9

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/art-64-bit-assembly/ for errata and more information.

https://nostarch.com/art-64-bit-assembly/

F O R E W O R D B Y
S T E V E H U T C H E S S O N

— M A S M 3 2 . C O M
S I T E M A I N T A I N E R

M O D E R N
I N S T R U C T I O N S

F O R T H E X 8 6
FA M I LY O F

P R O C E S S O R S

THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

Randall Hyde’s The Art of Assembly Language has long
been the go-to guide for learning assembly language.
In this eagerly anticipated follow-up, Hyde presents
a 64-bit rewrite of his seminal text. This fi rst volume
of The Art of 64-Bit Assembly details the instruction
set for x86-64 processors using the Microsoft Macro
Assembler (MASM) tool, and shows you how to write
code that mimics operations in high-level languages.

The book begins with the fundamentals of machine
organization, computer data representation and
operations, and memory access. Your assembly
language education continues with basic data types
and arithmetic, and then progresses through control
structures to advanced topics like table lookups and
string manipulation. You’ll also explore the x87 fl oating-
point unit; single-instruction, multiple-data (SIMD)
operations; and MASM’s powerful macro facilities.
Throughout, you’ll benefi t from ready-to-use library
routines that simplify the programming process.

You’ll also learn how to:

• Use macros to write assembly code more effi ciently

• Write parallel algorithms

• Create standalone programs or link MASM
programs with C/C++ code to call routines in the
C Standard Library

• Organize variable declarations to access data
more quickly, and manipulate data on the
x86-64 stack

• Implement HLL data structures and control structures
in assembly language

• Convert numeric formats, like integer to decimal
string and fl oating-point to string

The Art of 64-Bit Assembly is your master class
on writing complete applications in low-level
programming languages.

A B O U T T H E A U T H O R

Randall Hyde is an embedded software engineer
who has worked in the medical, nuclear, consumer
electronics, and entertainment industries. He taught
assembly language programming at the university
level for over 10 years. He is the author of The Art of
Assembly Language and the Write Great Code series,
all from No Starch Press.

$79.99 ($104.99 CDN)

H
Y

D
E

T
H

E
 A

R
T

 O
F

6
4

-
B

IT
 A

S
S

E
M

B
LY

R A N D A L L H Y D E

T H E A R T O F
6 4 - B I T A S S E M B L Y

V O L U M E 1

V O L U M E 1

X 8 6 - 6 4 M A C H I N E O R G A N I Z A T I O N

A N D P R O G R A M M I N G

	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	A Note About the Source Code in This Book

	Part I: Machine Organization
	Chapter 1: Hello, World of Assembly Language
		1.1	What You’ll Need
		1.2	Setting Up MASM on Your Machine
		1.3	Setting Up a Text Editor on Your Machine
		1.4	The Anatomy of a MASM Program
		1.5	Running Your First MASM Program
		1.6	Running Your First MASM/C++ Hybrid Program
		1.7	An Introduction to the Intel x86-64 CPU Family
		1.8	The Memory Subsystem
		1.9	Declaring Memory Variables in MASM
	1.9.1	Associating Memory Addresses with Variables
	1.9.2	Associating Data Types with Variables

		1.10	Declaring (Named) Constants in MASM
		1.11	Some Basic Machine Instructions
	1.11.1	The mov Instruction
	1.11.2	Type Checking on Instruction Operands
	1.11.3	The add and sub Instructions
	1.11.4	The lea Instruction
	1.11.5	The call and ret Instructions and MASM Procedures

		1.12	Calling C/C++ Procedures
		1.13	Hello, World!
		1.14	Returning Function Results in Assembly Language
		1.15	Automating the Build Process
		1.16	Microsoft ABI Notes
	1.16.1	Variable Size
	1.16.2	Register Usage
	1.16.3	Stack Alignment

		1.17	For More Information
		1.18	Test Yourself

	Chapter 2: Computer Data Representation and Operations
		2.1	Numbering Systems
	2.1.1	A Review of the Decimal System
	2.1.2	The Binary Numbering System
	2.1.3	Binary Conventions

		2.2	The Hexadecimal Numbering System
		2.3	A Note About Numbers vs. Representation
		2.4	Data Organization
	2.4.1	Bits
	2.4.2	Nibbles
	2.4.3	Bytes
	2.4.4	Words
	2.4.5	Double Words
	2.4.6	Quad Words and Octal Words

		2.5	Logical Operations on Bits
	2.5.1	The AND Operation
	2.5.2	The OR Operation
	2.5.3	The XOR Operation
	2.5.4	The NOT Operation

		2.6	Logical Operations on Binary Numbers and Bit Strings
		2.7	Signed and Unsigned Numbers
		2.8	Sign Extension and Zero Extension
		2.9	Sign Contraction and Saturation
	2.10 Brief Detour: An Introduction to Control Transfer Instructions
	2.10.1	The jmp Instruction
	2.10.2	The Conditional Jump Instructions
	2.10.3	The cmp Instruction and Corresponding Conditional Jumps
	2.10.4	Conditional Jump Synonyms

		2.11	Shifts and Rotates
		2.12	Bit Fields and Packed Data
		2.13	IEEE Floating-Point Formats
	2.13.1	Single-Precision Format
	2.13.2	Double-Precision Format
	2.13.3	Extended-Precision Format
	2.13.4	Normalized Floating-Point Values
	2.13.5	Non-Numeric Values
	2.13.6	MASM Support for Floating-Point Values

		2.14	Binary-Coded Decimal Representation
		2.15	Characters
	2.15.1	The ASCII Character Encoding
	2.15.2	MASM Support for ASCII Characters

		2.16	The Unicode Character Set
	2.16.1	Unicode Code Points
	2.16.2	Unicode Code Planes
	2.16.3	Unicode Encodings

		2.17	MASM Support for Unicode
		2.18	For More Information
		2.19	Test Yourself

	Chapter 3: Memory Access and Organization
	 3.1 Runtime Memory Organization
	3.1.1	The .code Section
	3.1.2	The .data Section
	3.1.3	The .const Section
	3.1.4	The .data? Section
	3.1.5	Organization of Declaration Sections Within Your Programs
	3.1.6	Memory Access and 4K Memory Management Unit Pages

	 3.2 How MASM Allocates Memory for Variables
	 3.3 The Label Declaration
	 3.4 Little-Endian and Big-Endian Data Organization
	 3.5 Memory Access
	 3.6 MASM Support for Data Alignment
	 3.7 The x86-64 Addressing Modes
	3.7.1	x86-64 Register Addressing Modes
	3.7.2	x86-64 64-Bit Memory Addressing Modes
	3.7.3	Large Address Unaware Applications

	 3.8 Address Expressions
	 3.9 ���The Stack Segment and the push and pop Instructions
	3.9.1	The Basic push Instruction
	3.9.2	The Basic pop Instruction
	3.9.3	Preserving Registers with the push and pop Instructions

	 3.10 The Stack Is a LIFO Data Structure
	 3.11 Other push and pop Instructions
	 3.12 Removing Data from the Stack Without Popping It
	 3.13 Accessing Data You’ve Pushed onto the Stack Without Popping It
	 3.14 Microsoft ABI Notes
	 3.15 For More Information
	 3.16 Test Yourself

	Chapter 4: Constants, Variables, and Data Types
	 4.1 The imul Instruction
	 4.2 The inc and dec Instructions
	 4.3 MASM Constant Declarations
	4.3.1	�Constant Expressions
	4.3.2	�this and $ Operators
	4.3.3	�Constant Expression Evaluation

	 4.4 The MASM typedef Statement
	 4.5 Type Coercion
	 4.6 Pointer Data Types
	4.6.1	�Using Pointers in Assembly Language
	4.6.2	�Declaring Pointers in MASM
	4.6.3	�Pointer Constants and Pointer Constant Expressions
	4.6.4	�Pointer Variables and Dynamic Memory Allocation
	4.6.5	�Common Pointer Problems

	 4.7 Composite Data Types
	 4.8 Character Strings
	4.8.1	�Zero-Terminated Strings
	4.8.2	�Length-Prefixed Strings
	4.8.3	�String Descriptors
	4.8.4	�Pointers to Strings
	4.8.5	�String Functions

	 4.9 Arrays
	4.9.1	�Declaring Arrays in Your MASM Programs
	4.9.2	�Accessing Elements of a Single-Dimensional Array
	4.9.3	�Sorting an Array of Values

	 4.10 Multidimensional Arrays
	4.10.1	�Row-Major Ordering
	4.10.2	�Column-Major Ordering
	4.10.3	�Allocating Storage for Multidimensional Arrays
	4.10.4	�Accessing Multidimensional Array Elements in Assembly Language

	 4.11 Records/Structs
	4.11.1	�MASM Struct Declarations
	4.11.2	�Accessing Record/Struct Fields
	4.11.3	�Nesting MASM Structs
	4.11.4	�Initializing Struct Fields
	4.11.5	�Arrays of Structs
	4.11.6	�Aligning Fields Within a Record

	 4.12 Unions
	4.12.1	�Anonymous Unions
	4.12.2	�Variant Types

	 4.13 Microsoft ABI Notes
	 4.14 For More Information
	 4.15 Test Yourself

	Part II: Assembly Language Programming
	Chapter 5: Procedures
	5.1 Implementing Procedures
	5.1.1	�The call and ret Instructions
	5.1.2	�Labels in a Procedure

	 5.2 Saving the State of the Machine
	 5.3 Procedures and the Stack
	5.3.1	�Activation Records
	5.3.2	�The Assembly Language Standard Entry Sequence
	5.3.3	�The Assembly Language Standard Exit Sequence

	 5.4 Local (Automatic) Variables
	5.4.1	�Low-Level Implementation of Automatic (Local) Variables
	5.4.2	�The MASM Local Directive
	5.4.3	�Automatic Allocation

	 5.5 Parameters
	5.5.1	�Pass by Value
	5.5.2	�Pass by Reference
	5.5.3	�Low-Level Parameter Implementation
	5.5.4	�Declaring Parameters with the proc Directive
	5.5.5	�Accessing Reference Parameters on the Stack

	 5.6 Calling Conventions and the Microsoft ABI
	 5.7 The Microsoft ABI and Microsoft Calling Convention
	5.7.1 Data Types and the Microsoft ABI
	5.7.2 Parameter Locations
	5.7.3 Volatile and Nonvolatile Registers
	5.7.4 Stack Alignment
	5.7.5 Parameter Setup and Cleanup (or “What’s with These Magic Instructions?”)

	 5.8 Functions and Function Results
	 5.9 Recursion
	 5.10 Procedure Pointers
	 5.11 Procedural Parameters
	 5.12 Saving the State of the Machine, Part II
	 5.13 Microsoft ABI Notes
	 5.14 For More Information
	 5.15 Test Yourself

	Chapter 6: Arithmetic
	 6.1 x86-64 Integer Arithmetic Instructions
	6.1.1	Sign- and Zero-Extension Instructions
	6.1.2	The mul and imul Instructions
	6.1.3	The div and idiv Instructions
	6.1.4	The cmp Instruction, Revisited
	6.1.5	The setcc Instructions
	6.1.6	The test Instruction

	 6.2 Arithmetic Expressions
	6.2.1	Simple Assignments
	6.2.2	Simple Expressions
	6.2.3	Complex Expressions
	6.2.4	Commutative Operators

	 6.3 Logical (Boolean) Expressions
	 6.4 Machine and Arithmetic Idioms
	6.4.1	Multiplying Without mul or imul
	6.4.2	Dividing Without div or idiv
	6.4.3	Implementing Modulo-N Counters with AND

	 6.5 Floating-Point Arithmetic
	6.5.1	Floating-Point on the x86-64
	6.5.2	FPU Registers
	6.5.3	FPU Data Types
	6.5.4	The FPU Instruction Set
	6.5.5	FPU Data Movement Instructions
	6.5.6	Conversions
	6.5.7	Arithmetic Instructions
	6.5.8	Comparison Instructions
	6.5.9	Constant Instructions
	6.5.10	Transcendental Instructions
	6.5.11	Miscellaneous Instructions

	 6.6 Converting Floating-Point Expressions to Assembly Language
	6.6.1	Converting Arithmetic Expressions to Postfix Notation
	6.6.2	Converting Postfix Notation to Assembly Language

	 6.7 SSE Floating-Point Arithmetic
	6.7.1	SSE MXCSR Register
	6.7.2	SSE Floating-Point Move Instructions
	6.7.3	SSE Floating-Point Arithmetic Instructions
	6.7.4	SSE Floating-Point Comparisons
	6.7.5	SSE Floating-Point Conversions

	 6.8 For More Information
	 6.9 Test Yourself

	Chapter 7: Low-Level Control Structures
	 7.1 Statement Labels
	7.1.1	Using Local Symbols in Procedures
	7.1.2	Initializing Arrays with Label Addresses

	 7.2 Unconditional Transfer of Control (jmp)
	7.2.1	Register-Indirect Jumps
	7.2.2	Memory-Indirect Jumps

	 7.3 Conditional Jump Instructions
	 7.4 Trampolines
	 7.5 Conditional Move Instructions
	 7.6 Implementing Common Control Structures in Assembly Language
	7.6.1	Decisions
	7.6.2	if/then/else Sequences
	7.6.3	Complex if Statements Using Complete Boolean Evaluation
	7.6.4	Short-Circuit Boolean Evaluation
	7.6.5	Short-Circuit vs. Complete Boolean Evaluation
	7.6.6	Efficient Implementation of if Statements in Assembly Language
	7.6.7	switch/case Statements

	 7.7 State Machines and Indirect Jumps
	 7.8 Loops
	7.8.1	while Loops
	7.8.2	repeat/until Loops
	7.8.3	forever/endfor Loops
	7.8.4	for Loops
	7.8.5	The break and continue Statements
	7.8.6 Register Usage and Loops

	 7.9 Loop Performance Improvements
	7.9.1	Moving the Termination Condition to the End of a Loop
	7.9.2	Executing the Loop Backward
	7.9.3	Using Loop-Invariant Computations
	7.9.4	Unraveling Loops
	7.9.5	Using Induction Variables

	 7.10 For More Information
	 7.11 Test Yourself

	Chapter 8: Advanced Arithmetic
	 8.1 Extended-Precision Operations
	8.1.1	Extended-Precision Addition
	8.1.2	Extended-Precision Subtraction
	8.1.3	Extended-Precision Comparisons
	8.1.4	Extended-Precision Multiplication
	8.1.5	Extended-Precision Division
	8.1.6	Extended-Precision Negation Operations
	8.1.7	Extended-Precision AND Operations
	8.1.8	Extended-Precision OR Operations
	8.1.9	Extended-Precision XOR Operations
	8.1.10	Extended-Precision NOT Operations
	8.1.11	Extended-Precision Shift Operations
	8.1.12	Extended-Precision Rotate Operations

	 8.2 Operating on Different-Size Operands
	 8.3 Decimal Arithmetic
	8.3.1	Literal BCD Constants
	8.3.2	Packed Decimal Arithmetic Using the FPU

	 8.4 For More Information
	 8.5 Test Yourself

	Chapter 9: Numeric Conversion
	 9.1 Converting Numeric Values to Strings
	9.1.1	Converting Numeric Values to Hexadecimal Strings
	9.1.2	Converting Extended-Precision Hexadecimal Values to Strings
	9.1.3	Converting Unsigned Decimal Values to Strings
	9.1.4	Converting Signed Integer Values to Strings
	9.1.5	Converting Extended-Precision Unsigned Integers to Strings
	9.1.6	Converting Extended-Precision Signed Decimal Values to Strings
	9.1.7	Formatted Conversions
	9.1.8	Converting Floating-Point Values to Strings

	 9.2 String-to-Numeric Conversion Routines
	9.2.1	Converting Decimal Strings to Integers
	9.2.2	Converting Hexadecimal Strings to Numeric Form
	9.2.3	Converting Unsigned Decimal Strings to Integers
	9.2.4	Conversion of Extended-Precision String to Unsigned Integer
	9.2.5	�Conversion of Extended-Precision Signed Decimal String to Integer
	9.2.6	Conversion of Real String to Floating-Point

	 9.3 For More Information
	 9.4 Test Yourself

	Chapter 10: Table Lookups
	 10.1 Tables
	10.1.1	Function Computation via Table Lookup
	10.1.2	Generating Tables
	10.1.3	Table-Lookup Performance

	 10.2 For More Information
	 10.3 Test Yourself

	Chapter 11: SIMD Instructions
	 11.1 The SSE/AVX Architectures
	 11.2 Streaming Data Types
	 11.3 Using cpuid to Differentiate Instruction Sets
	 11.4 Full-Segment Syntax and Segment Alignment
	 11.5 SSE, AVX, and AVX2 Memory Operand Alignment
	 11.6 SIMD Data Movement Instructions
	11.6.1	The (v)movd and (v)movq Instructions
	11.6.2	The (v)movaps, (v)movapd, and (v)movdqa Instructions
	11.6.3	The (v)movups, (v)movupd, and (v)movdqu Instructions
	11.6.4	Performance of Aligned and Unaligned Moves
	11.6.5	The (v)movlps and (v)movlpd Instructions
	11.6.6	The movhps and movhpd Instructions
	11.6.7	The vmovhps and vmovhpd Instructions
	11.6.8	The movlhps and vmovlhps Instructions
	11.6.9	The movhlps and vmovhlps Instructions
	11.6.10	The (v)movshdup and (v)movsldup Instructions
	11.6.11	The (v)movddup Instruction
	11.6.12	The (v)lddqu Instruction
	11.6.13	Performance Issues and the SIMD Move Instructions
	11.6.14	Some Final Comments on the SIMD Move Instructions

	 11.7 The Shuffle and Unpack Instructions
	11.7.1	The (v)pshufb Instructions
	11.7.2	The (v)pshufd Instructions
	11.7.3	The (v)pshuflw and (v)pshufhw Instructions
	11.7.4	The shufps and shufpd Instructions
	11.7.5	The vshufps and vshufpd Instructions
	11.7.6	The (v)unpcklps, (v)unpckhps, (v)unpcklpd, and (v)unpckhpd Instructions
	11.7.7	The Integer Unpack Instructions
	11.7.8	The (v)pextrb, (v)pextrw, (v)pextrd, and (v)pextrq Instructions
	11.7.9	The (v)pinsrb, (v)pinsrw, (v)pinsrd, and (v)pinsrq Instructions
	11.7.10	The (v)extractps and (v)insertps Instructions

	 11.8 SIMD Arithmetic and Logical Operations
	 11.9 The SIMD Logical (Bitwise) Instructions
	11.9.1	The (v)ptest Instructions
	11.9.2	The Byte Shift Instructions
	11.9.3	The Bit Shift Instructions

	 11.10 The SIMD Integer Arithmetic Instructions
	11.10.1	SIMD Integer Addition
	11.10.2	Horizontal Additions
	11.10.3	Double-Word–Sized Horizontal Additions
	11.10.4	SIMD Integer Subtraction
	11.10.5	SIMD Integer Multiplication
	11.10.6	SIMD Integer Averages
	11.10.7	SIMD Integer Minimum and Maximum
	11.10.8	SIMD Integer Absolute Value
	11.10.9	SIMD Integer Sign Adjustment Instructions
	11.10.10	SIMD Integer Comparison Instructions
	11.10.11	Integer Conversions

	 11.11 SIMD Floating-Point Arithmetic Operations
	 11.12 SIMD Floating-Point Comparison Instructions
	11.12.1	SSE and AVX Comparisons
	11.12.2	Unordered vs. Ordered Comparisons
	11.12.3	Signaling and Quiet Comparisons
	11.12.4	Instruction Synonyms
	11.12.5	AVX Extended Comparisons
	11.12.6	Using SIMD Comparison Instructions
	11.12.7	The (v)movmskps, (v)movmskpd Instructions

	 11.13 Floating-Point Conversion Instructions
	 11.14 Aligning SIMD Memory Accesses
	 11.15 Aligning Word, Dword, and Qword Object Addresses
	 11.16 Filling an XMM Register with Several Copies of the Same Value
	 11.17 Loading Some Common Constants Into XMM and YMM Registers
	 11.18 Setting, Clearing, Inverting, and Testing a Single Bit in an SSE Register
	 11.19 Processing Two Vectors by Using a Single Incremented Index
	 11.20 Aligning Two Addresses to a Boundary
	 11.21 Working with Blocks of Data Whose Length Is Not a Multiple of the SSE/AVX Register Size
	 11.22 Dynamically Testing for a CPU Feature
	 11.23 The MASM Include Directive
	 11.24 And a Whole Lot More
	 11.25 For More Information
	 11.26 Test Yourself

	Chapter 12: Bit Manipulation
	 12.1 What Is Bit Data, Anyway?
	 12.2 Instructions That Manipulate Bits
	12.2.1	The and Instruction
	12.2.2	The or Instruction
	12.2.3	The xor Instruction
	12.2.4	Flag Modification by Logical Instructions
	12.2.5	The Bit Test Instructions
	12.2.6	Manipulating Bits with Shift and Rotate Instructions

	 12.3 The Carry Flag as a Bit Accumulator
	 12.4 Packing and Unpacking Bit Strings
	 12.5 BMI1 Instructions to Extract Bits and Create Bit Masks
	 12.6 Coalescing Bit Sets and Distributing Bit Strings
	 12.7 Coalescing and Distributing Bit Strings Using BMI2 Instructions
	 12.8 Packed Arrays of Bit Strings
	 12.9 Searching for a Bit
	 12.10 Counting Bits
	 12.11 Reversing a Bit String
	 12.12 Merging Bit Strings
	 12.13 Extracting Bit Strings
	 12.14 Searching for a Bit Pattern
	 12.15 For More Information
	 12.16 Test Yourself

	Chapter 13: Macros and the MASM Compile-Time Language
	 13.1 Introduction to the Compile-Time Language
	 13.2 The echo and .err Directives
	 13.3 Compile-Time Constants and Variables
	 13.4 Compile-Time Expressions and Operators
	13.4.1	The MASM Escape (!) Operator
	13.4.2	The MASM Evaluation (%) Operator
	13.4.3	The catstr Directive
	13.4.4	The instr Directive
	13.4.5	The sizestr Directive
	13.4.6	The substr Directive

	 13.5 Conditional Assembly (Compile-Time Decisions)
	 13.6 Repetitive Assembly (Compile-Time Loops)
	 13.7 Macros (Compile-Time Procedures)
	 13.8 Standard Macros
	 13.9 Macro Parameters
	13.9.1	Standard Macro Parameter Expansion
	13.9.2	Optional and Required Macro Parameters
	13.9.3	Default Macro Parameter Values
	13.9.4	Macros with a Variable Number of Parameters
	13.9.5	The Macro Expansion (&) Operator

	 13.10 Local Symbols in a Macro
	 13.11 The exitm Directive
	 13.12 MASM Macro Function Syntax
	 13.13 Macros as Compile-Time Procedures and Functions
	 13.14 Writing Compile-Time “Programs”
	13.14.1	Constructing Data Tables at Compile Time
	13.14.2	Unrolling Loops

	 13.15 Simulating HLL Procedure Calls
	13.15.1	HLL-Like Calls with No Parameters
	13.15.2	HLL-Like Calls with One Parameter
	13.15.3	Using opattr to Determine Argument Types
	13.15.4	HLL-Like Calls with a Fixed Number of Parameters
	13.15.5	HLL-Like Calls with a Varying Parameter List

	 13.16 The invoke Macro
	 13.17 Advanced Macro Parameter Parsing
	13.17.1	Checking for String Literal Constants
	13.17.2	Checking for Real Constants
	13.17.3	Checking for Registers
	13.17.4	Compile-Time Arrays

	 13.18 Using Macros to Write Macros
	 13.19 Compile-Time Program Performance
	 13.20 For More Information
	 13.21 Test Yourself

	Chapter 14: The String Instructions
	 14.1 The x86-64 String Instructions
	14.1.1	The rep, repe, repz, and the repnz and repne Prefixes
	14.1.2	The Direction Flag
	14.1.3	The movs Instruction
	14.1.4	The cmps Instruction
	14.1.5	The scas Instruction
	14.1.6	The stos Instruction
	14.1.7	The lods Instruction
	14.1.8	Building Complex String Functions from lods and stos

	 14.2 Performance of the x86-64 String Instructions
	 14.3 SIMD String Instructions
	14.3.1	Packed Compare Operand Sizes
	14.3.2	Type of Comparison
	14.3.3	Result Polarity
	14.3.4	Output Processing
	14.3.5	Packed String Compare Lengths
	14.3.6	Packed String Comparison Results

	 14.4 Alignment and Memory Management Unit Pages
	 14.5 For More Information
	 14.6 Test Yourself

	Chapter 15: Managing Complex Projects
	 15.1 The include Directive
	 15.2 Ignoring Duplicate Include Operations
	 15.3 Assembly Units and External Directives
	 15.4 Header Files in MASM
	 15.5 The externdef Directive
	 15.6 Separate Compilation
	 15.7 An Introduction to Makefiles
	15.7.1	Basic Makefile Syntax
	15.7.2	Make Dependencies
	15.7.3	Make Clean and Touch

	 15.8 The Microsoft Linker and Library Code
	 15.9 Object File and Library Impact on Program Size
	 15.10 For More Information
	 15.11 Test Yourself

	Chapter 16: Stand-Alone Assembly Language Programs
	 16.1 Hello World, by Itself
	 16.2 Header Files and the Windows Interface
	 16.3 The Win32 API and the Windows ABI
	 16.4 Building a Stand-Alone Console Application
	 16.5 Building a Stand-Alone GUI Application
	 16.6 A Brief Look at the MessageBox Windows API Function
	 16.7 Windows File I/O
	 16.8 Windows Applications
	 16.9 For More Information
	 16.10 Test Yourself

	Part III: Reference Material
	Appendix A: ASCII Character Set
	Appendix B: Glossary
	Appendix C: Installing and Using Visual Studio
		C.1	Installing Visual Studio Community
		C.2	Creating a Command Line Prompt for MASM
		C.3	Editing, Assembling, and Running a MASM Source File

	Appendix D: The Windows Command Line Interpreter
		D.1	Command Line Syntax
		D.2	Directory Names and Drive Letters
		D.3	Some Useful Built-in Commands
	D.3.1	The cd and chdir Commands
	D.3.2	The cls Command
	D.3.3	The copy Command
	D.3.4	The date Command
	D.3.5	The del (erase) Command
	D.3.6	The dir Command
	D.3.7	The more Command
	D.3.8	The move Command
	D.3.9	The ren and rename Commands
	D.3.10	The rd and rmdir Commands
	D.3.11	The time Command

		D.4 	For More Information

	Appendix E: Answers to Questions
	E.1	Answers to Questions in Chapter 1
	E.2	Answers to Questions in Chapter 2
	E.3	Answers to Questions in Chapter 3
	E.4	Answers to Questions in Chapter 4
	E.5	Answers to Questions in Chapter 5
	E.6	Answers to Questions in Chapter 6
	E.7	Answers to Questions in Chapter 7
	E.8	Answers to Questions in Chapter 8
	E.9	Answers to Questions in Chapter 9
	E.10	Answers to Questions in Chapter 10
	E.11	Answers to Questions in Chapter 11
	E.12	Answers to Questions in Chapter 12
	E.13	Answers to Questions in Chapter 13
	E.14	Answers to Questions in Chapter 14
	E.15	Answers to Questions in Chapter 15
	E.16	Answers to Questions in Chapter 16

	Index

